
المملكة العربية السعودية
تــدريـــ�س الـــتــعلـيــــم وزارة قـــــررت
نفقـتـها عــلــى وطــبــعــه ــاب ــت ــك ال ــذا هـ

Secondary stage - Pathways system

Τhird year

The book is distributed freely and cannot be sold. 1445 - 2023 Edition

Software Engineering

Publisher: Tatweer Company for Educational Services

Published under a special agreement between Binary Logic SA and Tatweer Education Services Company
(Contract No. 0003/2022) for use only in the Kingdom of Saudi Arabia

Copyright © 2023 Binary Logic SA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without permission in writing from the publishers.

Please note: This book contains links to websites that are not maintained by Binary Logic. Although
we make every effort to ensure these links are accurate, up-to-date and appropriate, Binary Logic
cannot take responsibility for the content of any external websites.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. Binary
Logic disclaims any affiliation, sponsorship, or endorsement by the respective trademark owners.
Tinkercad is a registered trademark of Autodesk Inc. “Python” and the Python logos are registered
trademarks of Python Software Foundation. Jupyter is a registered trademark of Project Jupyter.
CupCarbon is a registered trademark of CupCarbon. Arduino is a registered trademark of Arduino SA.

The above companies or organizations do not sponsor, authorize, or endorse this book.

The publisher has made every effort to trace all copyright holders, but if they have inadvertently
overlooked any they will be pleased to make the necessary arrangements at the first opportunity.

©Ministry of Education, 2023

L.D. no.: 1445/9204

ISBN: 978-603-511-444-8

King Fahd National Library Cataloging-in-Publication Data
Ministry of Education

Software Engineering / Secondary Education -
Pathways System Third Year / Ministry of Education -

Riyadh, 2023
224p.; 210*25.5cm

ISBN: 978-603-511-444-8
1- Software Engineering 2- Curriculum I-Title
005.1 dc 1445/9204

Dear students, parents and anyone interested in education, we welcome your
communication to improve our textbooks. Your suggestions are our top priorities.

Dear teachers and educational supervisors, we appreciate your participation in developing
the new textbooks. Your input will have a definite impact on supporting and improving the

educational process for our students.

Educational Support Materials at “iEN Ethraia Platform”

ien.edu.sa

fb.ien.edu.sa

fb.ien.edu.sa/BE

Introduction:
The progress and development of countries is measured by the ability to invest in education, and the
extent to which their educational system responds to the requirements and changes of the generations.
In the interest of the Ministry of Education sustaining the development of its educational systems and
in response to the vision of the Kingdom of Saudi Arabia 2030, the Ministry of Education has taken
the initiative to adopt the “Secondary Education Pathways” system to bring about an effective and
comprehensive change in high school education.

The secondary education pathways system provides a distinguished and modern educational model
for high school in the Kingdom of Saudi Arabia, which efficiently contributes to:

• Strengthening the values of belonging to our homeland “the Kingdom of Saudi Arabia” and loyalty
to its wise leadership “may God protect him” based on a pure belief supported by the tolerant
teachings of Islam.

• Strengthening the values of citizenship by focusing on them in school subjects and activities, in line
with the demands of sustainable development, and the development plans in the Kingdom of Saudi
Arabia that emphasize the consolidation of both values and identity, based on the teachings of
Islam and its moderation.

• Qualifying students in line with future specializations in universities or the required jobs; ensuring
the consistency of education outputs with the labor market requirements.

• Enabling students to pursue education in their preferred path at early stages, according to their
interests and abilities.

• Enabling students to join specific scientific and administrative disciplines related to the labor market
and future jobs.

• Participation of students in an enjoyable and encouraging learning environment in school based on
a constructive philosophy and applied practices within an active learning environment.

• Delivering students through an integrated educational journey from the primary level to the end
of the high school level and facilitating their transition process to post-general education.

• Providing students with technical and personal skills that help them deal with life and respond to
the requirements of their level.

• Expanding opportunities for graduate students through various options in addition to universities,
such as: obtaining professional certificates, joining applied faculties, and earning job diplomas.

The pathways system consists of nine semesters that are taught over three years, including a common
first year in which students receive lessons in various scientific and humanities fields, followed by two
specialized years, in which students study a general path and four specialized paths consistent with their
interests and abilities, which are: the Rightful path, Business Administration path, Computer Science
and Engineering path, Health and Life path, which makes this system the best for students in terms of:

• The existence of new study subjects that match the requirements of the Fourth Industrial Revolution
and development plans, and the Kingdom’s Vision 2030, which aims to develop higher-order thinking,
problem-solving, and research skills.

• Elective field programs that are consistent with the needs of the labor market and students’ interests,
as they enable students to join a specific elective field according to a specific job skill.

• Scale as it ensures the achievement of students’ efficiency and effectiveness, and helps them identify
their tendencies and interests, and reveals their strengths, which enhances their chances of success
in the future.

• Volunteer work designed specifically for students in line with the philosophy of activities in schools,
and is one of the graduation requirements; which helps to promote human values, and build society
(its development and cohesion).

4

• Bridging which enables students to move from one path to another according to specific mechanisms.

• Proficiency classes through which skills are developed and the achievement level improved, by
providing enrichment and remedial mastery classes.

• The options of integrated learning and distance learning, which are built in the paths system based
on flexibility, convenience, interaction and effectiveness.

• The graduation project that helps students integrate theoretical experiences with applied practices.

• Professional and skill certificates granted to students after completing specific tasks, and certain
tests compatible with specialized organizations.

Accordingly, the Computer Science and Engineering Pathways, as one of the updated paths at the
secondary level, contributes to achieving best practices by investing in human capital and transforming
the student into a participating and productive individual for science and knowledge while providing
him with the skills and experience necessary to complete his studies in fields that meet his interests
and abilities or to join the labor market.

Software Engineering is one of the main subjects in the Computer Science and Engineering Pathways
course. It helps students learn the basics of software engineering by engaging and participating in
discovering a wide variety of topics in the field. This book provides an overview of the Software
Development Life Cycle and discusses the main concepts of Human-Computer Interaction and
prototyping. Additionally, the student learns to design and develop a mobile application with accessibility
in mind. There are also realistic exercises for the student to solve that stimulate his cognitive levels
under the guidance and supervision of the teacher.

The Software Engineering book is characterized by modern engagement methods which make students
able to learn from and interact with it through the various exercises and projects it provides. This
book also emphasizes important aspects of Software Engineering education and learning which are:

• The connection between the content and real-life problems.

• Diversity of ways to display engaging content.

• Highlighting the role of the learner in the teaching and learning processes.

• Attention to the content structure and coherence.

• The skill of employing appropriate techniques in different situations.

• The ability to employ various methods in evaluating students in proportion to their individual
differences.

To be on pace with global developments in this field, the Software Engineering book will provide the
teacher with an integrated set of diverse educational materials that take into account the individual
differences between students, in addition to educational software and websites which provide students
with the opportunity to employ modern technologies and practice-based communication; This solidifies
their role in the teaching and learning process. As we present this book to our dear students, we
hope they will capture their interest, meet their requirements, and make learning this material more
enjoyable and useful.

God grants success

Contents

1. Software Engineering . 8

Lesson 1 Principles of Software Engineering . 9

 Exercises . 21

Lesson 2 Programming Languages and Languages Processors 28
 Exercises . 39

Lesson 3 Software Development Tools . 42

 Exercises . 55

Project . 60

 2. Prototyping . 62

Lesson 1 Analysis . 63
 Exercises . 79
Lesson 2 Interaction Between the User and the Computer 84
 Exercises . 91

Lesson 3 Creating a Prototype . 95

 Exercises . 109

Project . 112

3. Developing Applications with App Inventor . 114

Lesson 1 Introduction to MIT App Inventor . 115

 Exercises . 133

Lesson 2 Adding More Elements to the App . 135

 Exercises . 151

Lesson 3 Programming the Mobile App . 153

 Exercises . 180
Project . 182

4. Software Accessibility and Digital

Inclusion . 184

Lesson 1 Testing and Deploying Applications . 185
 Exercises . 190

Lesson 2 Digital Inclusion . 192

 Exercises . 200

Lesson 3 Accessibility Features in an Application . 203

 Exercises . 219

Project . 220

6

8

In this unit, students will be introduced to the most common software
development methodologies. They will learn about the life cycle of a system
and explain its different phases. Students will also understand the importance
of converting high-level programming languages into executable instructions
in machine language, and they will learn about the programs used to do this.

Learning Objectives
In this unit, you will learn to:
> Distinguish the most popular software development

methodologies.

> Recognize the different stages of the software development
life cycle.

> Create a software development life cycle for an application.
> Describe the analysis phase of the software development

life cycle.
> Recognize different requirement collection methods.
> Classify programming languages and their features.
> Outline the function of the compiler and the interpreter.
> Classify different software development tools.
> Explain what a code editor is and what the advantages and

challenges of using one are.
> Recognize an integrated development environment and

explain the advantages and challenges of using one.
> Recognize how different software development tools can

be used to provide different software solutions.

1. Software
Engineering

9

The Software Development Life Cycle (SDLC)

The Software Development Life Cycle (SDLC) describes the organization of the production processes for systems

in various fields. The aim of the SDLC is not limited to improving the final product, but also extends to the

management of the production and development processes and the optimal use of resources during these

processes. In this lesson, we will discuss the stages of the SDLC in the context of developing systems for Information

and Communication Technology (ICT). The SDLC consists of a series of phases, which are illustrated in the figure.

You will discover all the phases of the SDLC through an example of building software for a banking system.

Lesson 1

Principles of Software Engineering

Link to digital lesson

Figure 1.1: The Software Development Life Cycle

Analysis

DesignMaintenance

E
va

lu
a

ti
o

n

D
o

cu
m

e
n

ta
tio

n

Development

Testing

Implementation

Software Engineering is a branch of computer science that deals with developing and maintaining software systems.

It involves the application of engineering principles and practices to software product design, development, testing,

and maintenance. Software engineering aims to produce reliable, efficient, and high-quality software that meets

the requirements of its stakeholders. This is achieved through systematic and repeatable processes, tools, and

techniques. Software engineering also involves the management of the software development process, including

project planning, estimation, risk management, and quality assurance.

1

2

3

4

5

6

10

Analysis

The first step of the SDLC is to identify the problem that needs to be solved, followed by

defining the requirements for its solution as accurately as possible through requirements

engineering. Requirements engineering involves analyzing, specifying, validating, and

managing the needs and expectations of stakeholders for a software system. It involves

understanding the problem domain and determining the functional and non-functional

requirements for the software. The difference between functional and non-functional

requirements is the following:

• Functional Requirements: These are the specific capabilities or features that the software

must have to meet its stakeholders' needs. For example, a common functional requirement

for an online shopping website is the ability for users to search for products, add them

to a shopping cart, and complete a secure checkout.

• Non-functional Requirements: These are the constraints, and quality attributes the

software must meet to be acceptable to its stakeholders. Examples of non-functional

requirements include performance requirements (e.g., response time, throughput),

security requirements (e.g., data privacy, authentication), and usability requirements

(e.g., user-friendly interface).

During the analysis process, all resources (human, material, costs, budget, time available

and everything else related to the project) must be taken into consideration, and all

functions required for the new system must be defined in detail with reference to any

limitations that exist.

The analysis process involves identifying users, and their needs and requirements. The

following tools are most commonly used to collect the required data:

• Questionnaires
• Interviews

• Observation

Design

The design phase is the second stage of the SDLC, in which the systems analyst participates

in providing expertise and skills for building the structure and designing the solution to

the given problem.

The design phase defines the different interfaces and data types that are used in the ICT

system. More specifically, the following steps are taken:

1. Define the flow of data and information in all aspects of the new system.

2. Determine the main data to be processed. This will define the data structures used by

the system.

Consider a bank. Its problem is how to establish an electronic system to provide banking services

via the Internet. The analysis phase of this project will include collecting data from management

and customers about their requirements in order to understand which banking services should

be automated, the design required for the user interface, security requirements, digital

permissions assigned to bank employees and customers, etc.

11

3. Determine where and how data is stored so that it is accessible and secure.

4. Design reports and other data and information outputs.

5. Design the user interface and define the functions of all the elements in it.

6. Design integration interfaces for data exchange with other ICT systems.

7. Determine the method for testing the system, the data used for testing and

how to use these in quality assurance.

Development and Testing

Next come the development and testing phases. After carrying out

detailed analysis and design processes, programmers and system

testers must now convert the requirements and specifications into

code segments using appropriate programming languages or computer

programs. The development and testing phases cannot be separated

as the system must be comprehensively tested during and after

development to ensure all issues are addressed and that the system

reaches its end users as per their requirements. Elements of the

system that require independent testing include the following:

In the design of an electronic banking system, data flow pathways should be defined between

the system and the user and various databases and integrated systems, all of which will depend

on the different data types that need to be stored, secured and transferred. The system

requirements for data input and output should be defined, and user interfaces for staff and

clients should be designed as well as interfaces for data and monetary exchanges with other

organizations. Finally, it must be decided what tests must be carried out to ensure the system

operates as expected.

1. Testing the validity of the entered data:
The entry of invalid data may cause problems within the banking system, it is therefore important to

test the validity of the entered data. In the example of electronic banking services, this will require

the development of security rules for receiving passwords from users and the number of incorrect

attempts allowed when entering passwords, rules for verifying the numbers entered into the system,

such as phone numbers and personal numbers, and rules specifying the maximum amounts that can

be withdrawn or transferred through the system.

2. Testing system functionality and usability:
This includes testing the user interface and user experience. For example, for the electronic banking

system, this will require the formation of a group of stakeholders to test whether the system and its

various functions (such as checking balances or making a transaction) are working as they should.

12

3. Operation Error Testing:
This includes testing for logical errors in the code. For example, in the electronic banking system, it may

be necessary to test whether the steps to complete a transaction are done logically, and whether the

appropriate messages (such as error and confirmation messages) appear at the appropriate steps.

4. Test communication with other systems:
This depends on the extent to which the system is linked with other systems. For the electronic

banking system, this will require testing that the new system integrates well with other information

technology systems in the bank, such as customer databases, currency conversion systems, and

automated teller systems.

Implementation

After obtaining user approval for the new system that has been developed and

tested, the implementation phase begins. This is the phase where the theory

is converted into practice as the product is put into service. The system is

prepared for deployment and installation at the target site in order to be

operational and ready for productivity.

Implementation may involve training end users to ensure they know how to

use and familiarize themselves with the system. The implementation phase

may take a long time depending on the complexity of the system. Implementation

sometimes requires transferring data from the previous system to the new

system. It is often preferable to introduce the new system gradually.

If a bank implements a new electronic banking system, the transition may require the

deployment of a "beta" version of the system, so that the public can test it and give feedback

on the experience, before the final version of the system is implemented.

Figure 1.2: Designing and implementing a software product

13

Maintenance

Maintenance is necessary to eliminate errors in the system during its working life

and tune the system to any variations in its working environments. It must meet

the scope of any future enhancement, future functionality and any other added

functional features to cope with the latest needs. Through user feedback and the

evaluation of the IT team, the system is continuously assessed to ensure that it does

not become obsolete. Working with the new system means that some small fixes

or adjustments will be required. Needs and requirements change regularly, and

during this stage the IT team has to keep everything working as expected.

Documentation

The documentation process includes describing all the details of the analysis, design,

development, testing, implementation, and maintenance of the system, and is later

used to build a knowledge base of how the system works. System documentation

is referred to if any change, repair or adjustment is required, and the documentation

itself may then need to be updated. Documentation is important in software

development because it promotes communication, transparency, maintenance,

compliance, training, and legacy. Documentation helps to ensure that the software

system is developed consistently and effectively and that it will continue to meet

the needs of its intended users over time.

Among the areas that need continuous
evaluation are:
• System efficiency
• Ease of use and learning

• System suitability for the required tasks

Evaluation may be carried out by the
following actors to ensure that the system

meets the requirements:

• IT team

• Users

• Management

Evaluation

Each stage of the SDLC must be evaluated. This may involve making some difficult decisions, as a

design problem may lead to larger problems later during development or when implementing and

using the system.

In the example of an electronic banking system, once the system is implemented, ongoing

maintenance will be required to ensure the system remains functional, secure and up-to-date.

Systems require many major and minor software and hardware updates to protect against new

security threats, fix unforeseen bugs, and implement new functionality. Some system

maintenance can be done automatically, such as automated security updates, but other tasks,

such as carrying out hardware updates, may require engineers to be present on site.

14

Analysis

DesignMaintenance

E
va

lu
a

ti
o

n
D

o
cu

m
e

n
ta

tio
n

Development

Testing

Implementation

SDLC for a Smartphone Application

Let's say we want to create a mobile application that provides information about different tourist attractions

in KSA. More specifically, the application aims to help elderly people with vision problems or trembling

hands to browse on the screen for information on tourist sites to visit in KSA.

The application will allow people with vision problems to adjust the font size of the text to suit them so that

they can read information easily, and it will also allow those who suffer from shaky hands the opportunity

to adjust the size of the buttons to prevent them from incorrectly pressing a button by mistake, and finally,

users will be able to change the colors in the application to black and white to facilitate reading and reduce

eyestrain.

Test then publish the

application and train

users in how to use it.

Includes

feedback from

users

An application destined for

smartphones and tablets,

for people with vision

problems and shaking

hands, with adjustable size

fonts and buttons.

Receiving

feedback from

users and

limiting system

problems and

maintenance.

 An application

designed for

android operating

systems, with fixed

screen size and

with colors.

App Inventor is the main

program for the implementation

of our application.

Figure 1.3: Summary of the SDLC of a smartphone application

1

2

3

4

5

6

15

Based on what you have learned so far in this lesson, the SDLC of this application will include the following

phases of Analysis, Design, Development and Testing, Implementation, Maintenance and ongoing

Documentation and Evaluation.

Analysis:

In the analysis phase, we identify the problem that needs solving. The application will be:

• Destined for smartphones and tablets.
• Designed for people with vision problems.

• Designed for people with shaky hands.

Based on these requirements, the applications must have adjustable font and button sizes. Also, for

people with shaky hands, the buttons must be very big so that they can be easy to press.

Design:

The design phase will include the determination of all the technical details of our application. More

specifically, the technical requirements include:

• The application must be designed for Android operating systems.
• The size of the screen must be fixed.
• It must not have many colors because that would be confusing for the users.

Development, Testing, Implementation:

In the development and testing phase, software engineers and testers will take the requirements and

specifications described in the previous steps and implement them in the working code. For this purpose,

we will use App Inventor as our main program for the development of our application. The app will then

need to be thoroughly tested before being published on an app store such as Google Play. It may be

preferable to begin by releasing a beta version, available to a limited number of users, in order to further

test the app before its full release.

Maintenance:

The maintenance phase will include the procedure of getting feedback from users, in order to use it to

improve our application. Through user feedback our application will be continuously assessed to ensure

that it does not become obsolete. Small fixes or adjustments will be required.

Documentation and Evaluation:

Documentation for a mobile application is a set of written materials that provide information about the

application, including its design, development, and maintenance. It helps developers, stakeholders, and

users understand the application's purpose, functionality, and behavior. Regarding the evaluation, we

can gather information from Google Play's ratings and reviews of our application. To document the

app, you will need to perform the following steps:

• Write a clear document explaining the design of the system.

• Add annotations within code sections during the development process.
• Document system testing processes.
• Prepare a user guide.

16

Software Development Methodologies

The process of developing information systems differs from that of writing small programs. Developing

large programs such as the systems of government institutions or commercial companies requires

great effort and may take months or even years. Understanding customer requirements and the

nature of the required system or software functionality is also a challenge for the development team.

Software engineering aims to develop workflows, methods and protocols to overcome these difficulties.

There are many software development methodologies and each one is used for different purposes.

The most common ones are the following.

The Waterfall Methodology

This method is considered one of the oldest methods in software development. It gets its name because its

development stages are sequential from one stage to another in a unidirectional manner. When a certain

stage in development is completed, the transition to the next stage is carried out without returning to the

previous stages. The outputs of each stage represent the inputs for the next stage.

Job Opportunities in Software Engineering

Software engineering offers various job opportunities in various domains and industries. The following are

some of the most common job opportunities in software engineering:

• Web Developer: This role is responsible for developing websites and web applications.
• Mobile Developer: This role is responsible for developing mobile applications for iOS or Android platforms.
• DevOps Engineer: This role is responsible for automating the deployment and operation of software

systems.

• Cloud Engineer: This role is responsible for building and maintaining cloud-based software systems.
• Database Administrator: This role is responsible for managing and maintaining databases.

• Quality Assurance Engineer: This role is responsible for testing software systems to ensure they meet
quality standards.

• System Administrator: This role is responsible for maintaining and managing computer systems and

networks.

Figure 1.4: Planning the development of a software product

17

The waterfall methodology goes through all

stages of developing the system sequentially,

and each stage depends on the outputs of

the stages that precede it, as follows:

1. Analysis stage
At this stage, requirements are collected in

the ways that were explained earlier, and

after completion, they are documented

accurately and in detail. They are verified and

approved by the customer before the design

stage is begun. Changes to the requirements

later in the process can cause serious

problems in the system.

2. Design stage
The requirements documented from the

previous stage are translated into a design

that clarifies the structure of the system and

identifies its resource needs. The system

design reflects how the requirements are

implemented from a technical point of view

and the logical sequence of the operations

that take place in it.

3. Development stage
At this stage, the system is built and programs

are written based on the outputs of the

design.

4. Testing stage
At this stage, testers verify that the system has met the requirements documented in the previous stages,

and investigate whether there are any errors to be fixed. The customer sees the real product for the first

time at this stage.

5. Implementation stage
This is the stage in which the system is implemented and delivered to the client. Users are trained or deployed,

and the system's performance is monitored to ensure that there are no errors during the implementation.

6. Maintenance stage
This stage includes fixing errors that appear during everyday use of the system as well as making some

developments and improvements to the system.

Testing

Development

Design

Analysis

Figure 1.5: The stages of waterfall methodology

Maintenance

Implementation

18

Rapid Application Development Methodology (RAD)

In contrast to the waterfall methodology, in which the development process takes place through

separate phases, the rapid application development methodology relies on development through

iterative cycles. The key characteristic of this methodology is the development of prototypes of the

system in order to obtain feedback and suggestions from the client in the early stages of development.

This helps avoid misunderstanding of requirements and thus avoids the significant cost of returning

to modify the system after development has been completed. It is worth noting that these prototypes

are modified to become part of the final product.

Construction Cutover

Refine Test

Prototype

User DesignRequirements planning

Figure 1.6: The stages of RAD methodology

Advantages of the Waterfall Methodology in Development:

• The stages are clear and specific and do not overlap with each other.
• Project planning, management and follow-up is easy due to the clarity of the stages.

• It is suitable for small projects whose requirements are clear and stable.

Challenges of the Waterfall Methodology:

• It is difficult to go back from one stage to the previous stages for modification because
each stage depends on the previous one. Going back and making changes to earlier

stages greatly affects the next stages and increases the cost of development.
• It is not suitable for large and complex systems and software.
• It is not suitable for software and systems whose requirements are subject to change.
• It is not possible to begin a new stage before the completion of the previous stage.

This delays the discovery of any misunderstanding of the client’s requirements that

may appear in late stages, and makes late-stage modification after that a difficult and
costly process and even increases the risk of project failure.

19

This methodology includes the following stages:

1. Requirements Planning
The requirements planning phase in Rapid Application Development (RAD) is the stage in the software

development process where the scope and objectives of the software project are defined. The

requirements planning phase focuses on ensuring that the software project is well defined and

understood and that the resources and schedule needed to complete the project are identified.

2. User Design

The user design phase in Rapid Application Development (RAD) is the stage in the software development

process where the software requirements and design are created in close collaboration with end

users. The user design phase focuses on ensuring that the software application meets the needs and

expectations of its intended users.

3. Construction
The construction phase in RAD is the stage in the software development process where the software

application is developed and built. This phase involves writing code, integrating the various components

of the software application, and testing it to ensure it meets the requirements and quality standards.

This phase also involves fixing any bugs or issues discovered during testing. The construction phase

focuses on efficiently delivering a working software application that meets the requirements defined

in earlier stages of the RAD process.

4. Cutover

The cutover phase in RAD is the final phase of the software development process, in which the new

software application is transitioned into the live production environment. The cutover phase involves

a series of activities that must be completed in order to successfully transition the new software

application into the production phase and training the users on how to use the application.

Advantages of the Rapid Application Development Methodology

• Developers receive end-user feedback continuously from the beginning of the project,
which reduces the risk of failure and the cost of modification.

• User participation, through their feedback, leads to more efficient software production
and reduces the error rate.

• The use of iterative cycles and prototyping contributes to reducing the time required
for system development.

Challenges of the Rapid Application Development Methodology

• The development cycle is more complex and must be carefully managed.

• Stakeholder interaction in providing insufficient feedback may result in a product that
does not meet the desired requirements.

• It requires highly qualified programmers and designers who are able to get things done
quickly.

20

Agile Methodology

The agile development methodology uses a project delivery method with successive releases called sprints. Each

release adds new features to the previous one, and each release goes through all stages of system development

from planning to testing and approval by the user.

The agile development methodology can be distinguished from the rapid application development methodology

because in the agile development methodology a functioning product is presented to the user at each stage. When

needed, the product is worked on and modified or new functions are added. This is in contrast to the rapid

application development methodology, in which the user is presented with an incomplete prototype in order to

give feedback only when all the requirements are fully established is the final product developed.

The agile methodology requires effective communication and continuous collaboration

between all teams involved in planning, design, development, and user testing.

INFORMATION

Figure 1.7: The stages of Agile methodology

Sprint

A sprint is a time-boxed iteration of work in Agile software development that typically lasts one to four
weeks. The purpose of a sprint is to deliver a potentially shippable increment of the software product,
focusing on meeting the goals and objectives set at the beginning of the sprint.

Advantages of the Agile Development Methodology:

• Less time needed to achieve the first product release.
• Project risks are identified easily through user feedback.
• Stakeholder participation in the development of the system gives them more confidence in the

developed software or system.

Challenges of the Agile Development Methodology:

• This methodology focuses more on development and less on documentation. It is therefore difficult
to integrate new team members into a project after it has begun.

• The response and performance of users affects the speed of production and quality of the product.
• A change in project requirements can disrupt the entire project, especially if the user is frequently

changing their mind.

SPRINT 1 SPRINT 2

ReleaseFeedback ReleaseFeedback ReleaseFeedback

Te
st

 D
ev

elo
pment Design A

n
alysis

Te
st

 D
ev

elo
pment Design A

n
alysis

Te
st

 D
ev

elo
pment Design A

n
alysis

SPRINT 3

21

1 Choose the appropriate method that corresponds to each of the following statements:

Exercises

Product evolution in the form

of successive versions.

You cannot move to the next

stage without completing the

previous one.

It is based on the method of

designing and improving

prototypes.

Not suitable for large

and complex systems.

Repeated cycles are used

to reduce production time.

The fastest way to get a preview

of the real product.

Rapid application

development
2

Agile methodology 3

Waterfall

methodology
1

22

2 Compare the three methodologies described in the lesson by their design and

implementation phases.

3 Clarify the role of the user in the three methodologies, with reference to the stage in

which this role appears clearly.

Waterfall RAD Agile

 Designing Phase

 Implementation Phase

23

4

5 Fill in the blanks for the phases of the SDLC in the following diagram.

Read the sentences and tick True or False. True False

1. Software development refers to the process of planning.

2. The methodology of software development is a framework that is used for
many procedures.

3. Software development involves the creation, testing and development of
an information system.

4. The procedure of the development of an information system is controlled
by the software development methodology that is used.

5. Software development is the process that divides the whole procedure
into distinct phases and is also called the software development life cycle
(SDLC).

1 5

2 6

3 7

4 8

7 8

1

6

5

4

3

2

24

6 Study the following figure and then answer the questions that follow.

1. Which software development methodology is represented by the figure?

2. What is meant by the term sprint?

3. What are two advantages of this methodology?

4. What are two challenges of this methodology?

Release

SPRINT 1 SPRINT 2

ReleaseFeedback ReleaseFeedback ReleaseFeedback

Te
st

 D
ev

elo
pment Design A

n
alysis

Te
st

 D
ev

elo
pment Design A

n
alysis

Te
st

 D
ev

elo
pment Design A

n
alysis

SPRINT 3

25

7 Match each of the following stages of system development with the appropriate

processes in each of the following sentences:

The theory is turned into practice.

This eliminates errors in the

system during the working life.

The requirements and the

specifications are converted into

effective code.

All the details of the new system

are defined here.

This has to do with the knowledge

base which is required for anyone

involved to understand how the

system works.

The problem that needs to be

solved is identified.

This can be performed not only by

the IT team but also by the users

and management.

1

2

3

4

5

6

7

Analysis

Design

Development

and testing

Implementation

Maintenance

Documentation

Evaluation

26

8 Graphically illustrate how each of the three software development methodologies
works.

Waterfall methodology

Rapid Application Development methodology

Agile development methodology

27

9

Choose the correct answer:

1. The stage in which data collection tools are
used is:

Analysis

Design

Implementation

Maintenance

2. The stage in which a programming language

or computer program is used to prepare the

system is:

Design

Evaluation

Development

Documentation

3. The stage in which the user guide for the

system is prepared is:

Analysis

Documentation

Evaluation

Testing

4. In the evaluation phase of the smartphone
application:

The application is created using the App
Inventor program.

The user needs are determined.

Feedback is received from users.

The application is designed to work on the
Android platform.

28

Lesson 2

Programming Languages
and Languages Processors

A Brief History of the Development Programming Languages

Many things have changed since the creation of the first computer to the present day. Computer

components and technologies have evolved greatly, as have advanced processing capabilities. Despite

this, the concepts of computer operation formulated by von Neumann in 1945 still apply.

Programming languages were invented for the purpose of human-machine
communication.

Hardware

Machine Language

Assembly Language

High-Level Language

Fourth-Generation Language

Figure 1.8: Evolution of programming

Link to digital lesson

29

Assembly Language

Between machine language and high-level programming languages there is an intermediate language

called assembly language, also called symbolic programming language.

Assembly language is similar to machine language but is somewhat easier to program as it allows the

programmer to replace numbers (0, 1) with symbols.

For example, in assembly language, the word ADD, followed by two numbers, is used for addition.

This is easy to understand and memorize for humans, but must be translated into a series of bits in

the computer to carry out the required operation. This translation process is carried out by a special

program called the assembler.

Assembly language commands are made up of symbolic segments that correspond to machine

language commands.

Machine Language

In order for a computer to perform any function required from it, it must be given the appropriate

sequences in the form of binary numbers, consisting of 0s and 1s. This "machine language" will

not be understood by humans. Machine languages are very difficult for a programmer to apply

and implement due to the need for a deep knowledge of computer components and their structure,

and especially since the machine language of each Central Processing Unit (CPU) is different.

A machine language program is a sequence of binary bits, which are
the instructions issued to the processor to carry out basic operations.

Human comprehensible assembly language commands are converted
into corresponding sequences of 0's and 1's for the computer to

understand and execute.

Challenges of Assembly Language

• The use of assembly language makes it easier to program simple operations of unintelligible binary
sequences, but it is nevertheless considered a low-level language.

• The assembly language used varies depending on the architecture of each computer.

• Assembly language does not provide commands to perform more complex functions than simple
additions, multiplications and comparisons, forcing the programmer to write long and complex
programs that are difficult to understand and debug.

• A program cannot be transferred from one computer to another of different architecture.

30

Table 1.1: Calculating an addition

The following table shows a program with an addition written in a high-level programming language

and its equivalent in assembly and machine language for a computer with a 6502 8-bit CPU. The

high-level language program can be used on most computers, while the assembly and machine

translation will work only on a computer with the same CPU architecture.

High-Level Programming Languages

The shortcomings of machine language and assembly language led to a concerted effort to achieve better

human-machine communication, which resulted in the emergence of the first high-level programming

language in the 1950s.

High-level programming languages use programming commands which resemble human language. The

resulting programs must be translated into machine language by the computer itself, using a special program

called the translator. Compilers and interpreters are types of translators used for different types of

programming languages.

FORTRAN COBOL PASCAL PYTHON C#

LISP BASIC PROLOG
C

JAVA

JAVASCRIPT

1957 1960 1970 1991 2000

1958 1964 1972 1995

Figure 1.9: The evolution of programming languages

High-level language Assembly

language
Machine language

sum = 0

sum = sum + 5

print (sum)

LDA #0

STA sum

LDA sum

CLC

ADC #5

STA sum

LDA sum

JSR print

10101001 00000000

10000101 00000000

10100101 00000000

00011000 00000000

01101001 00000101

10000101 00000000

10100101 00000000

00100000 11100001

31

The Evolution of High-Level Programming Languages

The developer chooses the programming language that allows the application to be easily developed

in a given environment to implement a software solution, but at the same time the developer also

chooses the language based on their personal knowledge, skills and preferences.

Each programming language has a unique set of reserved words (words that the language understands)

and a syntax that the programmer uses to write instructions.

Table 1.2: Basic information of programming languages

Programming
language Developer Etymology Properties

FORTRAN

IBM FORmula

TRANslation
Suitable for solving mathematical and
scientific problems, but not suitable for
managing data files, for example.

LISP MIT LISt Processor A language for artificial intelligence.

COBOL
CODASYL Common

Business

Oriented

Language

Suitable for developing commercial

applications and general management
applications.

BASIC
Dartmouth

College

Beginner's All

Purpose

Symbolic

Instruction Code

A multi-domain programming
language.

PASCAL
Professor

Nicholas Wirth

Named after the
mathematician
Blaise Pascal

It is famous for introducing structured

programming techniques. It adopts

program design in a systematic and
accurate manner.

C

Dennis Ritchie

and Bell Labs

The C language

is named after a
prior language

named B

It is used for UNIX operating system
development, and is suitable for

different operating systems.

JAVA

Sun

Microsystems

Named after a
type of coffee
(Java)

It is an Object Oriented programming

language used to develop applications
that can run on a wide range of

computers or different operating
systems.

32

Features of High-Level Programming Languages:

High-level programming languages have several advantages over assembly language:

• They use logic and programming formulas that are understandable and close to human language.

• They are independent of the type of computer, and can be used on any device with or without

minor modifications.

• Developers can learn high-level programming languages more easily and quickly.

• Software debugging and maintenance is much easier.

In general, high-level programming languages reduce the time and cost of software development

significantly compared to low-level programming languages.

Fourth-Generation Programming Languages

Among high-level programming languages, we note that there are so-called fourth-generation

programming languages, which are usually abbreviated as 4GL. Fourth-generation programming

languages are closer to human language than other high-level languages and are accessible to people

without formal training as programmers because they require less coding.

Fourth-generation languages are more programmer-friendly and enhance programming efficiency by

using English-like words and phrases, as well as icons, symbolic representations, and graphical interfaces

when needed. The key to achieving efficiency with 4GL is compatibility between the tool and the field

of application.

Computer users in fourth-generation languages can make changes to the program in order to meet

a new need and have the ability to solve small problems by themselves. Multiple joint operations can

be performed using a single command entered by the programmer.

Scripting languages are a type of programming language typically interpreted rather than compiled.

They are used to automate repetitive tasks, simplify complex operations, and enable rapid prototyping

of software systems. Some common examples of scripting languages include JavaScript, Ruby, PHP

and Perl. They often feature rich libraries, and a focus on productivity, making them well-suited for

tasks that require rapid prototyping and iteration. However, they may not be as efficient or scalable

as compiled languages and may not be suitable for performance-critical or resource-intensive

applications.

For data operations, a user can create queries and reports using SQL for statistics and scientific projects,

and a mathematician or researcher can use software such as SPSS, MATLAB, and LabVIEW to analyze

this data.

33

How Computers Understand Programming

Languages

Any program written in any programming language

is converted into machine language that can be

understood and executed by a computer, through the

use of special translation programs.

There are two ways to run programs written in a

high-level language. The most common is to compile

the program with a compiler but in some programming

languages an interpreter is used instead.

Let's go over how to implement these two different

methods.

Programming languages can also be classified according to what they are used for:

1. General programming languages: In theory, any general programming language can be used to

solve any problem, but in practice, each language is designed to solve a specific type of problem.

These languages are divided as follows:

• Science-oriented languages such as Fortran.

• Business-oriented languages such as COBOL.

• Multi-domain languages such as BASIC and Pascal.
• Operating system programming languages such as C.
• Artificial intelligence languages such as PROLOG.
• Specialized database management languages such as SQL.

2. Specialized languages such as LISP are used for a specific type of application such as robotics or

integrated circuits.

Classifications of Programming Languages

There are many classifications of programming languages. Languages can be classified in terms of the type of

commands used, such as procedural programming languages and object-oriented programming languages.

Procedural programming uses a set of instructions to tell the computer what to do step by step. Examples of

procedural programming languages are COBOL, Fortran, and C.

In object-oriented programming, the program is divided into units called objects. Examples of object-oriented

programming languages are C#, C++, Java and Python.

Compiler

A compiler is a computer program that converts

an entire block of code written in a high-level
programming language into machine language,

which is understood by the computer's

processor.

Interpreter

An interpreter is a computer program that

converts each line of code from a block of code

written in a high-level language into machine
language and sends it for execution directly,
before moving on to the next line of code.

34

Program translation and linking process:

• The compiler accepts a program written in a high-level language as the input file (the source
code), and produces an equivalent machine language program called object code.

• The compiler cannot compile statements that refer to standard libraries or resources outside

of the source code, so the process will require an additional step of linking and converting
those statements.

• Another program called the Linker or Loader handles the linking process and links the object

code file with the standard library files, and produces the executable code, which is the final
program that the computer executes.

Target machine code

y = x + 3

Translation

Loading

Link all commands

together

Compiler Python

Source code

Figure 1.10: The process of compiling and executing a program using a compiler

The source code is the program written in a high level programming language.

x = 10

print(y)

35

Figure 1.11: Stages of translating and linking the
program

Library files

if a<b

Lib ref
do while

z=x-y

Lib ref

11011001

Lib ref
00010111

10101011

Lib ref

11011001

01000100
00010111

10101011

11111100

11011001
01000100
00010111
10101011
11111100

Compiler Linker

Object Code Executable Code Source Code

Compilers and interpreters perform the same task, which is to convert the program written in the

high-level programming language into machine language, but in two different ways.

x = 10

y = x + 2

print(y)

Analysis - Check for errors

Send command 1 for execution

Analysis - Check for errors

Send command 2 for execution

Analysis - Check for errors

Send command n for execution

 Interpreter

Figure 1.12: The process of compiling and executing the program using an interpreter

 Python

Source code

36

Interpreted and Compiled Programming Languages

Most modern programming languages use compilers to produce optimized code quickly, but there

are some languages that still use interpreters when there is a need to create a simple program for

which speed is not the primary concern.

Compiled Languages

The C, C++, C#, and Java programming languages use a compiler to build fast, reliable programs. The

executable code is created for each type of computer hardware, which means that developers have

to know what the end user's computer hardware is.

Interpreted Languages

Legacy JavaScript, LISP, and BASIC use interpreters, which means that programs run slowly but their

source code can run on any computer that has a particular programming language's interpreter. For

example, a web application written in JavaScript can run on a Windows computer or an Android tablet

with a web browser that integrates the JavaScript interpreter.

Python

C
C++
C#
Java

LISP
BASIC
JavaScript

Compiler Interpreter

Python is both an interpreted and a compiled language. The Python application
compiles each line of code so that it can be read by the interpreter on the hardware

in use. The syntax used by the programmer doesn't change because the Python
application converts it into the correct form for the interpreter used on that hardware.

Figure 1.13: Python is an interpreted and a compiled language

37

Compiler Interpreter

Main Function

Converts the entire source code
written in a high-level programming
language into machine language,

and produces an executable

program.

Converts the block of code into

machine language so that it

translates and then executes the

block of code, moving to the next

block while the program is running.

Input

The compiler takes the entire
source code as input.

The interpreter takes one of the

source code instructions as input
each time.

Output
The compiler generates and stores

an object code file as output.
The interpreter does not generate

an object code file.

Memory
Requires more memory due to

object code generation.
Less memory is required.

Implementation
process

The compilation process takes
place for the entire source code
before execution begins.

The interpretation process for each
code statement takes place in

parallel with the execution process.

Error checking

The compiler displays all language

errors and warnings when

compiling the program. You cannot

run the program until all errors are
corrected.

The interpreter reads one line of

code and displays any errors in it.

This error must be corrected before

moving on to the next line.

Link files
Needs a program to associate the

object file with standard library
files to create the executable.

Does not need the link process, and

does not create an executable file.

Speed

Availability of .exe file makes
execution faster.

The execution process is slower
because the executable file is not
available. The program is

interpreted again on each

execution.

Dependence

on hardware
and operating

systems

The executable file generated by
the compiler depends on the target

hardware. It cannot run on

different CPU architectures or
different operating systems.

The interpreter is hardware and

operating system independent.
For example, a Python interpreter

can run on Windows and Linux with

the same source code and give the

same results.

Table 1.3: Compiler vs Interpreter comparison

38

Dealing with Software Errors

Compilers and interpreters operate differently when they face errors and bugs in the source code.

Correction of Errors During the Debugging Process

The source code in its first version may often contain many errors, which are divided into three types:

• Logical errors: Errors in the logic of the program.

• Runtime errors: Errors that occur during the execution of the program.
• Syntax errors: Errors in the syntax of the code.

 Logical errors and runtime errors only occur when the program is executed, while syntax errors occur during

compilation. The program is executed only if the source program contains no syntax errors.

Compiler:

1. Program creation.

2. The compiler will analyze and

process all lines of code and

make sure that they are

correct.

3. If there is an error, an error

message will appear.

4. If there is no error, the compiler

will convert the source code

into machine language.

Multiple code files will be

associated with a single

executable program (known as

an EXE file).

Debugging Syntax Errors:

• In the first step, the compiler or interpreter detects syntax errors and presents messages
indicating the error and its location. Some of them can specify the cause of the error.

• The next step is to correct errors in the program.

• Finally, the corrected program compiles correctly, without any error messages.

Interpreter:

1. Program creation.

2. The interpreter reads one line of

code and displays any syntax error.

This error must be corrected

before moving on to the next line.

3. All the lines of the source code

code are executed line by line

during program execution by the

interpreter.

39

1 What are the shortcomings of assembly language?

2 Draw a diagram to show the difference between the process of translating and
implementing code in a compiler and in an interpreter.

Exercises

40

3 Write three advantages of high-level programming languages.

4 Relate each programming language to the classification it belongs to.

Object-oriented languages

Artificial intelligence languages

Multi-domain languages

Systems programming languages

Python

BASIC

PROLOG

C

2

3

4

1

41

5 Choose the appropriate word or phrase to complete the sentences (Not all options
apply to a blank line):

1. accepts the source program as input, and produces an equivalent

machine language program called .

2. The used by the interpreter is less than that used by the compiler.

3. Using is an advantage in terms of real-time debugging, but program

execution is slower.

4. The compiler cannot convert statements that refer to , so it needs to

concatenate and convert those statements.

5. The executable can be created if there are no in the source program.

6. Errors that occur during program execution are called .

the source codethe compilerruntime errorsobject code

standard libraries
interpreted

languages
syntax errorsmemorylink

42

Lesson 3

Software Development Tools

Software Development Tools and Programs

Developers use a wide range of tools to develop software applications, each of which has its advantages

and disadvantages. The programming process requires developers to be flexible and creative to take

full advantage of the capabilities of different software development tools to deliver high-quality work

for their clients.

Software development tools and programs are used to assist the software development team in

various tasks, including creating, modifying and maintaining programs, as well as debugging and

implementing software tasks and development processes. There are also many specialized programs

that provide or support specific tasks in the stages of the software development cycle.

Table 1.4: Classification of software development tools

Software development tools Description

Code Editors Used to write and make changes to code.

Compilers and Linkers Translate programs into executable machine language.

Debuggers Help us correct errors in the software.

Project Builders
Make sure that all the necessary files will be compiled and
linked to one final program.

Code Management Tools
Ensure that program files are not accidentally replaced when
multiple programmers are working on the same program
concurrently.

Integrated Development
Environment (IDE)

Provides programmers with an integrated software
environment that includes a text editor, compiler, linker, and

debugger.

Profilers
Usually give us a good idea of the program's needs and

handling of processor time and memory resources while
running.

Network Analyzers Necessary when writing software for networking
applications in particular.

Database Explorer and Analyzer Allows dealing with databases and analyzing the

performance of specific database queries.

Link to digital lesson

43

Features of Code Editors

• Error-checking

• Auto-completing and code suggestions
• Code snippets

• Syntax highlighting
• Facilitate navigation of code files and resources
• Adding more functionality via extensions

Code Editors

A code editor allows us to create and edit several connected programming language files, and usually it can handle

many different languages like HTML, CSS, JavaScript, PHP, Ruby, Python, C, etc. Code editors use indents and

different colors to format the code into code sections. This makes them much more suitable for writing code than

ordinary word processors and text editors like Microsoft Word or Notepad.

There are many code editors that can be chosen by the programmer according to their preferences.

The only criterion for choosing an editor is the efficiency of that editor for the required task. Some

examples of code editors are:

• Sublime Text
• Atom

• Visual Studio Code

• Espresso

• Python IDLE
• Coda 2

• Notepad++
• Vim

• BBedit

• Ultraedit

Figure 1.14: Python script in a code editor

Advantages and Challenges of Using Code Editors

Advantages
• They can rival the Integrated Development Environment (IDE) Editor for standard programming

tasks when appropriate extensions to support different programming languages are used.
• They are smaller and faster to load than IDEs.

• Their streamlined interfaces make it easy to focus on our code.

Challenges
• They lack a lot of editing features which only IDEs provide, such as smart editing.
• Users may need to configure the code editor with the appropriate extensions before use.

44

Integrated Development Environments (IDE)

Integrated development environments are usually presented with their own built-in applications, which

include a number of software development tools such as an interpreter for use during the program creation

phase, and a compiler for finalizing and publishing the program.

Modern integrated development environments are not limited to providing a compiler for the

programming language only, but rather contain all the necessary programs and tools to help write

and implement code, and most importantly, to diagnose and correct programs. Among the most

important tools included in integrated programming environments are:

• File Explorer
• Code Editor

• Interpreter

• Compiler

• Linker
• Debugger

• Output Viewer

IDEs must include an editor dedicated to facilitating the creation of graphical objects such as forms,

menus, and dialog boxes, in order to provide the developer with the appropriate tools to create the

code blocks related to these objects.

Features of IDEs

• Smart completion of code in the code editor.
• Integration with code management tools for version control.
• Advanced testing tools
• Automatic linking of source code libraries.
• Tools for automating code creation and deployment.

All these services can be accessed through a unified user interface.

Examples of IDEs

In the past, most IDEs supported only one programming language and were usually created by the

software companies or organizations that created that specific language.

Nowadays, most software development projects integrate different technologies and programming

languages, which requires IDE development environments that can support a wide range of languages.

For example, Microsoft Visual Studio supports C, C++, C#, VB.Net, Python, Ruby, Node.js, JavaScript,

HTML / CSS, etc.

Other popular IDE tools include NetBeans, Eclipse, Atom-IDE, Xcode, Android Studio, IntelliJ IDEA and

PyCharm.

Xcode is used to develop mobile application software for iOS devices. For Android devices, Android

Studio is used.

45

Advantages of Using Cloud Software Development Environments

• Access to software development tools from anywhere in the world.
• Possibility of using any device with a web browser.

• There are no requirements to download and install the software environment.
• Can facilitate collaboration between remote developers.

Cloud Software Environments

Besides traditional software development environments, there are web-based cloud development

environments, such as Amazon Cloud9.

Cloud software environments provide the ability to work on our project from any computer, anywhere

in the world, as our software development project data resides in the cloud.

One of the main drawbacks of these environments is the need to connect to the Internet to access

data and do work.

Advantages and Challenges of Using integrated Development Environments (IDE)

Advantages:
• Provide intelligent code completion and analysis tools for faster programming with less errors.
• They provide powerful code browsing and discovery tools, and make it easy to access any part of

the program, no matter how large the project.
• They offer multiple ways to debug and test code without leaving the editor.
• They support many programming languages natively and provide many code navigation and code

analysis tools to facilitate work and productivity on large projects.

Challenges:
• The interfaces are packed with a lot of features which can make them complicated and difficult to

use.

• They require a certain amount of training to use them correctly.

• Excessive functions often lead to slow performance.

46

Prototype Creation

A software prototype is usually an organization chart, an image, or a set of images that show the

functional elements of an application, or it may be a website used to map out applications or the

structure and functionality of the website.

Specialized Tools for Specific Stages of Software Development

Creating professional software solutions requires working in a team and using a variety of tools that are not

limited to the programming stage only, but extend to the process as a whole.

There are many tools that can be used during the SDLC of a software product, and it can be difficult to list

all the software and other essentials needed to develop business software, but a selection of these tools

are described below.

• Pencil

• Balsamiq Mockups
• Adobe Xd

Examples of tools used:

Figure 1.15: Amazon Cloud9 environment

Figure 1.16: Balsamiq Mockups tool

Programmers spend most of their programming time in testing and debugging, so integration of the
code editor with the compiler and debugger is very convenient. This is the main feature of the IDE.

Version Control Management - Source Code

The source code is subject to many modifications during the development process, and it may be

necessary to undo certain steps in the program or reuse code that has been changed or deleted.

When working in a team of programmers, two or more may need to work on the same files at the

same time and make changes to the same code.

47

The tool we can use to control this process is called "version control management" or "code

management". This tool enables the following:

1. Different team members can access the source code simultaneously without creating work conflicts.

2. Previous versions of code files can be kept for reference when some problems occur.

Version control uses a repository to record all changes made and creates a working copy of the project's

code files, sometimes called a checkout copy, when a programmer wants to work on the code. All

changes to the code are approved by the version control management software when changes to the

code are saved to the repository.

• Git
• Subversion
• Mercurial
• Azure DevOps

• DiffMerge

Examples of tools used:

Figure 1.17: Version control management

"Branching" is a very useful feature of version control. It is the ability to copy all

project code as a new parallel project to allow testing or making changes to create

an updated or new version of the application. Parts of the new code can later be

ported over to the original project to be used in the original application as well.

INFORMATION

Code Deployment

Until a few years ago, it was easy to deploy an application since the compiled output of the program

was placed on a disk ready to use.

With the advent of the Internet, it became necessary to "publish" applications via the Internet, as

installable software through application stores or directly as web applications, and accordingly special

programs and tools appeared for publishing code on the web.

• TeamCity
• Google Cloud Deployment

Manager
• GitLab
• Jenkins
• AWS CodeDeploy
• Azure DevOps

Examples of tools used:

Figure 1.18: Code deployment

48

Testing

Testing is not just debugging the code, but also includes testing the operation of the program and the

effectiveness of its use by a large number of users, as well as performing security and other tests.

Examples of tools used:

• Apache JMeter
• Ghostlab

• Selenium
• Telerik Test Studio

• Azure DevOps

• IronWASP
• Zed Attack Proxy
• Wapiti

Project Management, Collaboration and Issue Tracking

As we have already learned, having a successful product requires keeping track of the entire process

and sharing knowledge with the entire team, especially when the team is expanding. This is where

the project management process becomes especially important.

• Microsoft Teams for collaboration and communication.
• Scrum Trello for Agile Planning and Tracking.
• Jira to track specific issues and manage projects.
• MeisterTask for task management.
• Slack for collaboration and communication.
• Basecamp for managing projects and communicating with clients.
• Azure DevOps for Application Life Cycle Management (ALM)

Examples of tools used:

Figure 1.19: Examples of project management, collaboration and issue tracking tools

49

Using Development Tools to Provide Different Solutions

Development teams rely on the tools we described earlier to produce a wide range of IT solutions,

many of which we use today to build applications of various kinds, such as:

• Web applications
• Smartphone Applications

• General applications
• Embedded systems

Building a Web Application

A web application is an interactive program that is built using HTML, CSS, and JavaScript web

technologies, and which stores data on database servers. This application is used by users who perform

tasks over the Internet.

Stages of Building a Web Application

1. The Ideation Stage:

Before creating a web application, we must set the goals and main idea of the application.

2. Market Research:

We must do what is called market analysis to find out:

• Whether the target consumer has a need for this product or service.

• Whether a similar product or service exists.

3. Define Web Application Functionality:

We must identify functions that provide solutions to the problems of the target market.

4. Wireframing/Prototyping:

Wireframing is about designing the layout of our web application, and prototyping takes the

organization chart a step further by adding interactivity to test the functionality of the application.

5. Seek Validation:

At this stage, constructive opinions and feedback are collected from relevant parties and potential

users regarding the design.

6. Architect and Build Database:

At this stage, the data needed by programmers and users is determined as well as the tool used to

build the required database for the web application.

50

9. Hosting our Web Application

To run our web application on a specific server, we need a web hosting provider. The hosting service

may be simple and cheap, or it may be a large cloud computing service that allows our cloud

infrastructure to grow as the number of application users grows and our needs grow.

There are many database design tools that are used for different purposes, but the nature of the

program and how it is proposed to deploy our software solution will determine the choice of a specific

tool. Examples of tools used in designing and building databases are:

• MySQL

• SQL Server

• Amazon DynamoDB

• Azure SQL

• MongoDB

• Firebase

7. Building the Frontend

The front end is the visual element of our web application, and it represents the interface between

the user and the system. This interface represents what the user sees and interacts with.

Examples of tools used to build an optimized user interface for the web include:

• jQuery

• Reactjs

• Django

• Vue.js

• Angular

8. Building the Backend

The backend is used to manage the data in the program. It refers to the databases and servers as well

as all other parts that are not visible to the user within the web application.

Building the backend includes writing the core code that provides the application's functionality, as

well as preparing the database, the networks, and verifying the integration between the different

subsystems. Security and performance considerations become of particular importance. Examples of

tools used in building the backend are:

• Express JS

• ASP.NET

• Ruby on Rails

• Flask

• Laravel

• Spring Boot

51

Figure 1.20: Basic web application architecture

Table 1.5: Web hosting providers

Types Examples

 Hosting Providers

• Bluehost

• HostGator

• GoDaddy

• Rackspace

Cloud Service Providers

• IBM Cloud

• Microsoft Azure
• Amazon Web Services

• Google Cloud Platform
• Alibaba Cloud

Request

What the User Sees

and Interacrs with
HTML, CSS, Javascript

Contains App Logic
PHP, Javascript, Python, Java

File System
HTML, CSS,

Images

Database
MySQL,

PostgressSQL,

MariaDB

User
Response

Collect Data

Display Results

Frontend Backend

Web Server

52

The Cloud-Ready Application Architecture

It is preferable to develop and deploy cloud-based web applications as a set of cloud services. This

process involves building data structures and then creating services, which are combined to form an

integrated system.

The following diagram shows how to build a scalable and high-performance web application using

Microsoft Azure services. The same concept applies to all cloud computing providers.

The most important points to consider when using cloud application architecture are:

• The design of the application as a set of services.
• The separation of data, security and performance standards.
• The requirements for communication through networks between application

components.

• The scalability of the design.

• System security must be a core part of the application and not something
to be planned for later.

• The physical distance from users is the most important consideration when
choosing data centers.

Figure 1.21: Building a web application with Microsoft Azure

53

Building an Application for Smartphones

The steps for creating a mobile application are similar to those for a web application but with some special

considerations. The mobile application is used on a phone which usually has a small screen, and, as the

name suggests, the user will use the application "on the go", which means it is important to consider the

convenience of the interface. The user should be able to adjust the screen size and access important

information in a clear and simple way. It is also important to note that the difference in devices leads to the

need for responsive applications.

The two major mobile platforms, iOS and Android, each support a different but similar set of technologies.

For example, iOS recommends Xcode and Swift for software development, while Android recommends

Android Studio and Java.

These environments only allow building a final app that is ready to be published to the specific app store

in that environment. However, there are environments that try to solve this problem by supporting app

deployment to multiple stores.

With the following tools, a single application can be developed in a way that runs in different software

environments:

• Xamarin

• React Native
• Ionic

• Kotlin

Testing mobile applications is a big challenge and it is difficult for a programmer or even a software

development company to have all the mobile devices available in the market to do the testing. This

is why there are online services that offer simulations for a wide range of mobile devices where we

can simulate testing our application for compatibility on the different devices.

Examples of tools that enable

application testing are:

• Xamarin Test Cloud

• BrowserStack

• Firebase Test Lab

Figure 1.22: Same mobile application on different devices

54

Building a General-Purpose Application

General purpose software is a type of application that can be used to perform many tasks, as is the

case with traditional office software such as word processors, graphic design software, Enterprise

Resource Planning (ERP) business applications, or Customer Relationship Management (CRM) software.

Despite the focus of new software development technologies on the web and mobile applications,

these traditional applications still retain their importance. The development of such applications relies

on ready-made and reusable code libraries, especially user interface components and reporting tools.

Building an Embedded Application

An embedded system is a special computer with a real-time operating system, often without a user

interface. Software on the embedded system handles sensors, actuators, and mechanisms for wired

or wireless data exchange. These programs must be reliable, secure and fast. These applications

require real-time operating systems such as RTLinux, Windows 10 IoT, and QNX as well as programming

languages that are optimized for data processing, and network connectivity.

Examples of embedded systems are traffic lights, fire alarms and home security systems.

Embedded systems can be programmed using the following programming languages:

• Assembly language (difficult and unsuitable for practical use).
• C, Embedded C, nesC, Rust.

• Object Oriented languages such as C#, C++, and Java.

Figure 1.23: General-purpose application

Figure 1.24: Embedded system

55

1

Choose the correct answer:

1. Project Builders:

Make sure that all the files you select will be compiled and
linked into one final program.

Translate your program into executable code on the device.

Are necessary in the case of creating specialized programs
related to networks.

2. Code management tools:

Help you debug the program.

Work with databases and analyze the performance

of queries on some databases.

Ensure that program files are not accidentally replaced
when multiple programmers are working

on the program concurrently.

3. Profilers:

Provide or support a specific task in any state of the
development or programming cycle.

Usually give us a good idea of the handling and needs

of the program in terms of processor time and memory
resources during operation.

Are special computers with real time operating systems and
usually without a user interface.

Exercises

56

2 Choose the appropriate word to complete the sentences:

1. help you write and make changes to the code.

2. are not suitable for programming as they do not allow the easy

formatting of code into code blocks.

3. A(n) includes a code editor, compiler, linker and debugger.

4. A(n) is an organization chart and is used for planning applications,

website architecture, and functions.

5. tools ensure that work is synchronously integrated by the various team

 members.

6. A(n) is an interactive program that stores data on database servers and

is used by a number of users who perform tasks over the Internet.

7. programs are used to perform a wide range of tasks.

web application

general purpose code editors IDE

version control program prototype word processors

57

3 Match the following:

The visual elements of a web

application; the interface

between the user and the system.

Enables previous versions of code

files to be preserved for reference

when problems occur.

Version control

software

A type of software used to modify

text files.

Manages your data, databases,

servers and all components that

the user can't see inside the web

application.

Front end

Contains all the software and

tools needed to write and

implement programs and to

diagnose and fix problems.

Text editor 1

2

IDE 3

4

Backend 5

58

4 What are the most important points to consider when using cloud application architecture?

5 What is meant by general purpose software? Give some examples.

6 Give four types of software development tools.

59

7 Give three examples of code editors.

8 List the basic steps for building a web application.

9 Give three basic features of an IDE.

60

The Kingdom of Saudi Arabia has developed a vision for the future based

on three primary themes: a vibrant society, a thriving economy and an

ambitious nation. The Vision 2030 plan is the first step towards achieving

Saudi Arabia’s economic aspirations and transforming the lives of citizens.

1

Suppose you want to create a mobile application that provides information

about tourism projects in Vision 2030. More specifically, the application aims

to help elderly people with vision problems or trembling hands to browse for

information on Vision 2030 megacity projects: Amaala, Neom and Qiddiya.

2

Search and find information and images about these projects

that you will use when creating the application.

3

Then, create a summary of the SDLC of the application, where you will

present what you will do in each phase of the SDLC.

Finally, create a presentation to illustrate this project.

4

Project

61

Now you have learned to:
> Differentiate between stages of the SDLC.
> Classify the advantages and challenges of Waterfall, RAD and Agile

methodologies.

> Describe different programming languages, their history, classifications
and areas of use.

> Explain how a computer understands programming languages and
deals with their errors through a compiler or an interpreter.

> Identify the different software development tools and their uses in
the different stages of software development and the production of
different software solutions.

Agile Methodology

Assembly language

Code Editor

Compiler

Development

Embedded System

Evaluation

Executable Program

Fourth-generation

Language

General-purpose

Application

High-level Programming

Language

Integrated Development

Environment (IDE)

Interpreter

Lifecycle

Linker

Machine language

Maintenance

Mobile Application

Rapid Application

Development (RAD)

Software Development

Life Cycle (SDLC)

Software Development

Tool

Software Development

Methodologies

Testing

Version Control/Source

Code Management

Waterfall Methodology

Web Application

KEY TERMS

Wrap up

62

In this unit, students will be able to compare the various ways of collecting
the user requirements for a new system. Students will explain what a

workflow diagram is, and they will learn to design a diagram with workflow
processes. Finally, they will also learn how to prototype a mobile app

using Pencil Project.

Learning Objectives
In this unit, you will learn to:

> Recognize the requirements collection methods.
> Recognize the types of charts used in the analysis phase.
> Explain what analysis is.

> Classify the functional and non-functional requirements.
> List the data collection methods.
> Describe workflow diagrams.
> Use Pencil Project to design a workflow diagram.
> Explain the human-computer interaction (HCI).
> Illustrate the difference between user interface (UI) and user

experience (UX) design.
> Describe the basic functions/uses of mobile devices and

desktop computers.

> Identify the advantages and disadvantages of mobile
devices and desktop computers.

> Prototype a mobile app.

2. Prototyping

Tools
> Pencil Project

Lesson 1

Analysis

Analysis Phase of the SDLC

As we have already mentioned in the previous lesson, SDLC can be broken down into five stages, the first

of them is the Analysis phase. During the analysis stage, the system analyst meets with the users to determine

exactly what the user wants and undertake feasibility studies.

In the analysis stage, the details of the required system or any requirements raised by the customer are

searched for, which are divided into two parts:

1. Functional requirements
2. Non-functional requirements

Functional Requirements

The official definition of a functional requirement is that it essentially specifies something the system

should do. Some of the more typical functional requirements include:

• Business Rules and Administrative functions

• Transaction corrections, adjustments and cancellations

• Authentication and Authorization levels

• External Interfaces

• Certification Requirements

• Reporting Requirements

1. The system must send a confirmation email whenever an order is placed.

2. The system must allow users to verify their accounts using their phone number.
3. The system must allow blog visitors to sign up for the newsletter by leaving their email.

Examples of functional requirements are:

6363

Link to digital lesson

64

Now that the requirements have been defined, we can see how the gathering of these

requirements can be realized and by which methods.

Requirements Gathering

An important point of analysis involves finding out what people want from the new proposed system

or looking at the existing system to find out how it works and might be improved. There are several

methods of data collection:

1. The ability of the system to recover unsaved data when a sudden power outage occurs.
2. The system works effectively when used by up to ten thousand users at the same time.

Examples of non-functional requirements are:

Questionnaires

Examination

of existing

documentation

Interviews

Observation

Non-Functional Requirements

Non-functional software requirements are a set of constraints or criteria that define how a software

system should behave, perform, or operate beyond its basic functional requirements. Some of the

more typical non-functional requirements include:

• Performance: Requirements related to the speed, responsiveness, and scalability of the software
system, such as response time, throughput, and resource usage.

• Security: Requirements for protecting sensitive data, such as user authentication, encryption, and
access control.

• Usability: Requirements for ease of use and user experience, such as navigation, user interface
design, and accessibility.

• Reliability: Requirements related to the software system’s availability and stability, such as error
handling, failover, and recovery.

• Compatibility: Requirements related to the compatibility of the software system with other systems,
platforms, or devices, such as browser compatibility, mobile compatibility, and interoperability.

65

Characteristics of Using Questionnaires:

• It is usually collected without identifying the user to get more credible answers.
• It takes less time compared to interviews.
• It can be analyzed automatically through the use of electronic forms and specialized software.

Challenges of Using Questionnaires:

• Incorrect answers are more likely, due to unclear questions or the respondent's lack of interest.
• The questionnaires do not serve to collect descriptive data.

Characteristics of using interviews:

• An immediate explanation of the questions can be given by the interviewer when needed.
• Questions can be modified or changed to suit the team members being interviewed.
• People usually take an interview more seriously than a questionnaire.

Challenges of Using Interviews:

• Interested persons may get nervous during the interview, which affects the accuracy of the
information provided.

• Interviews are expensive due to the need to visit people's whereabouts and disrupt their regular
work.

• Arranging and conducting interviews takes a lot of time, especially when many people need to be
interviewed.

Questionnaires

A questionnaire could be given to each user and left with them for completion. Questions should be

about how the job is done now and not about the overall running of the system. It could also be about

the information the new system needs to give them.

Interviews

Interviews take longer than questionnaires, so this method is appropriate when there are only a few

users of the system. People at different levels in the organization, who will use the new system, should

be interviewed. At these interviews you can find out how the existing system works and what is

required from the new system.

66

Observation

In this method, an observer is with a user who is actually doing the job the new system is designed

to do. Then the observer sees the problems encountered with the old system as well as talks to the

user about what the new system must be able to do.

Examination of Existing Documentation

This method of data collection involves examining any paperwork involved with the current system.

This would include documents such as order forms, lists of stock, and so on. We can also look at the

records that are kept in filing cabinets

Characteristics of using Observation:

• We can instantly identify the processes involved within the system.
• The analyst gets acquainted with accurate details in the current system that are difficult to obtain

through questionnaires and interviews.
• It is less expensive than interviews as it does not require users to be interrupted while performing

tasks.

Challenges of Using Observation:

• Using this method requires knowledge of the current system and the new system.

• The person being observed may act differently than they normally would during the observation.

Characteristics of using Examination:

• It saves a lot of time, especially in the case of previous system analysis documents.
• The documents provide a clear picture of the process of data flowing through the system.
• The documents allow the person doing the analysis to determine the size of the system needed by

looking at order volume, invoices, etc.

• The documents provide a clear picture of the current input and output designs of the system.

Challenges of Using Examination:

• It depends greatly on the quality of the documents in the organization and the accuracy of the data
it provides.

• The process of collecting and analyzing documents is expensive and requires a lot of effort from
those who carry out the collection and analysis.

67

Here is a comparison of the advantages and the disadvantages of the different ways to collect the

requirements of the system in the Analysis phase.

It is important to note that the criteria for choosing the method of data
collection may differ according to the nature of the organization’s work, the

number of people targeted in the data collection process, etc.
Usually, more than one method is used to collect data to obtain accurate and

realistic outputs.

Table 2.1: Comparison of the ways of collecting user requirements

Methods Advantages Disadvantages

Questionnaires

Users can be honest when they

answer anonymous

questionnaires.

Questionnaires may not be clear or
well understood.

It takes less time to collect
information from a lot of people.

You cannot collect all the

information you want via a
questionnaire.

Interviews

The questions can be adjusted
for specific users depending on
their position or other criteria.

Users may not give honest answers

since there is no anonymity.

The participants (users) will take
the interview or the focus group

seriously.

Interviews are time consuming for
the analysts but also for the users

that will need to be taken away

from their job. You cannot interview

a lot of people, owing to it is an

expensive process.

Observation

The analyst can get a real

understanding of the existing
system. The users can continue
working.

Users may not work in a normal

way as observation may be
intimidating.

68

Using Diagrams in the Analysis Phase

Diagrams and charts are useful tools that can help us in the Analysis phase, especially workflow

diagrams. But, before we start working with workflow diagrams, let's think about what exactly a
diagram is. A diagram is a visualized representation of information, using shapes and arrows to

show arrangements and relations.

Why Do we Use Diagrams

Through diagrams, we can better explain statistical data, system

functions, organization charts and other processes. The visual

representation of such information is more effective. For example,

using shapes and different colors in a diagram, makes it easier for the

reader to compare data and differentiate each result.

Diagrams are used in a wide range of applications. We can use a

diagram to show the organization chart of a company, the flow of the

processes for a task to be completed or how network components

are connected and related.

Figure 2.1: Diagramming a process

69

Different Diagram Examples

There are many different kinds of diagrams we can use during the different phases of a Software

development life cycle. Some of them are:

Workflow Diagram

We can say that the Workflow
diagram is similar to the

flowchart diagram you learned
to design in order to describe

the algorithm of a program.

Typically, it consists of a set of

symbols representing actions
and processes connected by

arrows indicating the flow from
one to another.

We can use workflow diagrams
to show the flow of tasks
during each phase of a SDLC.

Tree Diagram

A Tree diagram represents

the hierarchical nature or

organization of a structure
in a graphical form. The root

is usually at the top and the

tree elements, called nodes,

at the bottom.
It is widely used to show

how a company or the tasks

of a project are organized. It

can also be used to

represent conditional
probabilities in
mathematics.

Figure 2.2: Workflow diagram

Figure 2.3: Tree diagram

Data Structures

Tree

Stack Queue Linked List

Graph

Linear NonLinear

70

Wireframe Diagram

A Wireframe diagram is a

visual representation of the
framework of a website or

an online App. This chart

usually lacks typographic

style or graphics, since its

purpose is to focus on the

content's structure and
functionality. It is widely
used in website and

applications development.

Use Case Diagram

A Use Case diagram is a type

of diagram that represents

the different ways a user
might interact with a system.

Use case diagrams are very

helpful to represent the

gathered requirements of a

system during the Analysis

phase of a SDLC.

Figure 2.4: Wireframe diagram

Figure 2.5: Use case diagram

71

Using Pencil Project to Design a Workflow Diagram

Pencil Project is a free and open-source GUI (Graphical User Interface) prototyping tool
for making diagrams, using built-in drawing features and shape collections. We can use

Pencil Project to create almost every type of diagram, such as flowcharts, workflows

and wireframes.

Shapes Panel

Save/Edit Project NameShape selector

Design CanvasFont Editor

In addition to the built-in shapes included in the program,

more shapes and cliparts can be imported from the Internet

to enrich the existing library shapes.

INFORMATION

Figure 2.6: The Pencil interface

72

Basic Shapes of a Workflow Diagram

There are different symbols we can use to represent different aspects of a workflow diagram. For

example, a process is represented by a rectangle while a diamond is used to represent a decision.

The following table shows some basic shapes which are usually used in a workflow diagram.

Creating a New Diagram

In this lesson, we will use Pencil

Project to create a workflow diagram

of the maintenance of the application

which we will create later about the

KSA tourist guide for elderly people

with vision problems.

Table 2.2: Basic shapes of workflow diagrams

DescriptionName Symbol

Represents a start or an end point for the

workflow.Start / End

Represents a repeatable set of steps.Process

Represents a decision needed to be made,

leading to a process or another decision.
Decision

Represents a document such as error

reports or other types of reports and

outcome documents.

Document

Represents the input or output of Data.Input / Output

A connector that shows relationships
between the processes.

Arrows

Figure 2.7: Application workflow diagram

73

You can use the shape's
pointers to resize it.

You can adjust the zoom of the diagram by

using the Zoom In and Zoom Out buttons.

1

4

2

3

Figure 2.8: Creating a new workflow diagram

To create a workflow diagram:

> Open Pencil program and click Create a New Document. 1

> On the Shapes panel click the Flowchart section to add a
shape. 2

> Drag and drop the Terminator shape into the canvas to set

the starting point of the diagram. 3

> The starting point of the diagram has been created. 4

74

To add text to the shape:

> Double click the shape you want to add text to,

and then type the text you want. 1

To add new shapes to a diagram:

> To add a process, go to the Shapes panel, click

the Flowchart section 1 and then drag and drop

the Decision shape into the canvas.

> The shape has been added to the diagram. 2

1

In the same way, you

can add an operation or

a document to the chart.

You can copy any

shape or text field.

Adding New Shapes to the Chart

We can add new shapes that represent decisions, processes, documents, or any other information

we want to add to the workflow diagram.

1 2

Figure 2.9: Adding text to a shape

Figure 2.10: Adding new shapes to a diagram

75

To connect two shapes:

> On the Shapes panel, click the Flowchart

section and drag and drop a Multi-segment
Connector into the canvas. 1

> Use the connector pointers to connect the

starting point of the diagram with the next
three decisions. 2

> Continue connecting all the shapes of the
diagram with the appropriate connectors. 3

1

2 3

To make the diagram fit on

the canvas, you just have to

resize the canvas by right-

clicking on it and choose

one of the three options:

Adding Links and Texts

It is necessary to add links to represent the connection and relationships between the different shapes

of the diagram, and we can add simple text when needed to explain or analyze the different outputs

of a decision, process, or any other related form within the diagram.

Figure 2.11: Connecting shapes in the diagram

76

To add a text block to the diagram:

> On the Shapes panel click the Common Shapes

section and drag and drop a Rich Text field into
the canvas. 1

> Place the text field in the desired position inside
the diagram and type the text you want. 2

> The text block has been added to the diagram. 3

> From the Shapes panel, click the Common Shapes

section, drag and drop the Plain Text field onto the
canvas, 4 to insert Yes/No options at the graph's
Decisions. 5

You can change the

size of the text to make

it more clear from the

text style section.

2

1

5

4

3

Figure 2.12: Adding a text block to the diagram

77

To save a diagram project:

> Click the main menu 1 and click Save as. 2

> In the appearing window type a name 3 for the file to save and click Save. 4

> The diagram has been saved.

Saving the Diagram and Export Options

When the final diagram is finished, we can save the file and export it in various formats such as Image

(PNG), PDF, Document or a Web Page.

1

4

2

3

Figure 2.13: Saving a diagram project

78

To export the project:

> Click the main menu 1 and click Export. 2

> In the Export Document window, click the Output Type to

select the type of the exported diagram. 3

> Select the type you want (e.g. PDF) 4 and click Export. 5

2

1

4

5

3

Figure 2.14: Exporting a diagram project

79

1

1 Open Pencil Project and see what the following shapes represent:

Start / End Point

Input/Output Data

Document

Decision

Process

Connector

1

4

2

5

3

6

Exercises

80

2 Match each of the following requirements with their examples in each of the following:

Data Integrity

Scalability and Capacity

Serviceability and Regulatory

Usability and interoperability

External Interfaces

Reporting Requirements

Regulatory Requirements

Certification Requirements

Administrative functions

1
Functional

requirement

2
Non-Functional

requirement

81

3

Read the sentences and tick True or False. True False

1. The identity of the interviewee can be kept anonymous.

2. The observation process must take place while users are using the system.

3. Examination of existing system documentation can show current output and

input designs.

4. Inadequate answers regarding system functions can be obtained by examining

the existing documentation.

5. The answers provided through questionnaires are more realistic.

6. An additional explanation of the questions can be provided during the

questionnaires if the person has difficulty understanding the meaning of a

question.

7. The person to be observed may act differently from his nature during the

observation.

82

4 Match each of the following requirements with their examples in each of the following:

Wireframe diagram Tree diagram Workflow diagram

Wireframe diagram Workflow diagram Tree diagram

Use case diagram Workflow diagram Tree diagram

83

5 List one use for each of the following diagrams:

1. Workflow diagram:

2. Use case diagram:

3. Tree diagram:

4. Wireframe diagram:

84

What is Human-Computer Interaction (HCI)?

Human-Computer Interaction (HCI) refers to the study of interaction between humans and computers,
and is concerned with designing and adapting systems for human use, with a focus on designing

interfaces used by people (users) and computers.
Researchers in this field note the ways in which humans interact with computers and the various

design techniques that allow humans to interact with computers in new ways.

As mentioned earlier, the principle of HCI consists of three components: the user, the computer, and

the interaction loop, which is defined as the flow of information between the human and the computer.

Lesson 2

Interaction Between the User
and the Computer

Human-Computer Interaction Majors

The study of human-computer interaction extends to draw data from the fields

of human factors engineering and cognitive science as well as computer science.

HCI is concerned with the cognitive and academic

aspects of user behavior, whose outputs are essential

inputs to the applied field upon which User Experience

(UX) and User Interface (UI) designs are based for
various applications such as smartphone applications

and websites.

Thus, the collaboration between researchers in the field

of HCI and designers on the user experience and

interface ultimately leads to perfect designs that meet

the needs of users.

Computer

science

Human factors
engineering

Cognitive
science

Human-Computer
interaction

Figure 2.15: Human-Computer Interaction

Link to digital lesson

85

User Experience Design (UX)

User experience (UX) refers to a person's impressions and attitudes about using a particular product,
system, or service. This includes the practical and emotional aspects of human-computer interaction.

User experience also includes user's perception of various aspects of the system such as utilities, ease
of use, and efficiency, and this concept can be applied to any system such as ATMs, cars, phones, etc.

Key factors affecting user experience:

The concept of user experience has expanded to include many aspects in addition to usability, and it

has become important to pay attention to all aspects of user experience in order to deliver successful

products to the market.

To improve user experience, the design, contents and functionality of the system should be:

1. Useful: Meets users' needs.
2. Usable: The system can be used easily and intuitively.

3. Attractive in appearance: The design elements are used in a unique way that attracts the user and

gives the system its own identity.

4. Easily Findable: Its contents can be easily browsed and accessed from within or outside the system.

5. Accessible: The design should include users with special needs in its characteristics.

6. Credible: The system derives its content from reliable and approved sources.

7. Valuable: The product must deliver value to the business which creates it and to the user who buys

or uses it

Useful

Credible

Easily findableValuable

Attractive

Accessible and
usable

Figure 2.16: Key factors affecting UX

86

Figure 2.17: UI for tablet devices

User Interface (UI)

The user interface (UI) is the point of interaction and communication between the human and the
computer inside the device, and it can be said that the user interface is the graphic form of the

application, and it contains buttons, readable texts, images, scroll bars, and text entry fields, as well

as many all other elements that the user interacts with, including screen layout, transitions, GUI

animations, all the interaction subtleties and any animation effects that need to be designed.

Considerations for creating a good user interface:

User interface design considerations are related to many other sciences and disciplines such as

psychology and the visual arts, including the following:

The task of user interface (UI) designers is to define the look and of the application and the interface.
They must choose color schemes, button shapes, font widths, and text font types.

1. The shape of buttons and other elements
should be indicative of their function and the
design should allow the user to easily explore

these functions.

2. Interfaces must be designed and

laid out properly and ergonomically

for the user, so that controls are

adjacent to their related objects.

��� ��

87

4. The interface should provide its users with messages and signals showing the system's response
to the commands to be executed and providing feedback.

Product added.

Warning: Product description cannot be empty.

The product could not be added. Ensure that the product name is valid.

3. Interface elements must take into account the visual capabilities

of the user in terms of font size, text adjustment, and color

brightness and contrast.
clear text

5. Consider providing as many default settings as possible to reduce the burden on the user (for
example, providing pre-populated forms).
What do you want to see next?

Do you have any product suggestions or ideas? We are all ears.

Tell us why you like this idea?

Idea detailsSend

Name

E-mail address

Khaled Abdullah

khaled@email.com

Autofill

Autofill

88

How Do UX and UI Work Together?

The concepts of UX and UI are often confused in web design and smartphone applications. The
difference is that user interface is concerned with the graphical layout of an application or website,

while user experience focuses on how easy or difficult it is to interact with user interface elements.

Therefore, user experience usually dictates user interface specifications.

Desktop Computer and Smartphone

The use of mobile devices has now overtaken the use of computers as the way most people browse

shop, use social media and perform other online tasks. Therefore, it is important to consider the

device that the user is using when developing websites and smart applications, which you will address

in the coming lessons.

When designing applications and websites, it should be taken into account how they will work on all

devices (mobile and desktop), and how the user experience differs when using the application on the
mobile phone than using the desktop computer, and to understand this, you must realize the important

factors that make the mobile phone different. Once you understand this difference, you can take

these factors into consideration when designing your mobile application or making your decision to

design the website.

The Main Characteristics of Desktop Computers and Mobile Phones

In the following table, the characteristics of mobile devices (smartphones and tablets) and computers
(desktops and laptops) are illustrated.

Table 2.3: Main device properties

Mobile phones/tabletsDesktop and laptop computersProperty

Smartphone screens vary by

manufacturer and model. However,

they are always smaller than

desktop or laptop computers, and

the screen size usually ranges

between four and seven inches.

Desktop computers can connect

to multiple screens, which enables
you to choose what suits you best.

Desktop or laptop screens are

usually between 15-30 inches.

Screen size

Most mobile devices have fewer

pixels than desktop computers, for

example, a high-quality smartphone

screen has 1334 x 750 pixels.

The smallest laptop screen

contains 2304 x 1440 pixels.Screen

resolution

Smartphones are lightweight and

can fit in a purse or pocket, they are
designed to go everywhere with

you, a tablet may not fit in your
pocket, but it is still light and can be
carried in one hand.

Although laptops are usually light

and portable by design, they

cannot compete with

smartphones in this regard.
Transport

89

Functional Differences between Mobile Phones and Desktop Computers

Mobile phones and computers have different functions and both are important in their own way,

mobile phones provide the flexibility necessary for the user to search online or use e-mail anywhere,

while the computer is used for more complex tasks, and using both at the same time can facilitate

your work and accomplish your tasks.

Mobile phones/tabletsDesktop and laptop computersProperty

Smartphones may have an on-screen

keyboard or touch screen that is much

smaller than a computer, and users

with large fingers or vision problems
can have difficulty typing.

The keyboard or mouse is used

for input, and it is smooth and

easy to use for the majority of

users, and it comes in different
sizes.

Input

methods

Despite the huge development in the

capabilities of mobile phones, they still
fall short of running huge programs

compared to the performance of

traditional desktop or laptop
computers.

Because of their less restrictive
size, components, and power

requirements, desktop and

laptop computers can run more

powerful software than a
smartphone or tablet.

Software

Mobile operating systems (Android)
and (iOS) are designed to run on a
specific set of devices without giving
you full access to your system

hardware. They also have a strict

system of hardware requirements

because the mobile app ecosystem is

closely tied to specific hardware
features. In other words, you can't run
the latest apps on an older mobile OS,

and vice versa. The Android operating
system is open source.

Desktop and laptop operating
systems are designed to take

advantage of fast CPUs, large

disk space, large amounts of

RAM, and use new chipset

features that most mobile

devices don't have. Microsoft's
operating system is closed
source.

Operating
system

Smartphones and tablets can connect

to Wi-Fi networks to access the

Internet. Smartphones and most

tablets can also connect to a mobile

data network, which allows access to

the Internet from almost anywhere,

but it can be more expensive.

Desktop computers are

characterized by the ability to

connect to the wired Internet

network Ethernet, and most of

them require the use of a

wireless network card USB

Wi-Fi Adapter to connect to the

wireless network, most laptops

contain a wireless and wired

network card.

Internet

Connection

90

Android User Interface and Windows Operating System

The increasing reliance of many companies on web applications and mobile applications has led

companies to focus on improving the user interface in order to improve the overall user experience,

so there is a wide variety of types of user interfaces.

Both Microsoft Windows and Google

Android OS support Graphical User

Interface (GUI), which means that instead
of typing commands, different graphical

objects such as icons are handled using

a pointing device. The basic principle of

different GUIs is very similar, using your

knowledge of how to use a Windows

user interface we'll walk you through
how to use Android and some other

GUIs.

The following are some of the main characteristics of the UI and UX of Microsoft Windows and Google
Android, which are some of the most used operating systems.

Microsoft Windows User interface

Windows uses dialog boxes that contain various

visual elements that quickly show the user as

much relevant information as possible, and with

the use of the mouse and minimal keyboard

typing, the user can select appropriately and

launch the required applications/commands.

Google Android User interface

User interface design requirements for mobile

devices differ significantly from those for desktop

computers, as the small screen size and touch

screen controls force special considerations when

designing the user interface to ensure usability,

readability and consistency.

In the mobile interface, icons could be used more

extensively and controls may be automatically

hidden when not used. The icons themselves need

to be smaller, and there isn't enough room to
display a label for everything on the screen which

can cause some confusion to the user. Users must

be able to understand each command's icon and
its meaning either through readable text or an

understandable graphical representation.

Figure 2.18: GUI considerations in application development

Figure 2.19: User interface in different device types

91

1 Answer the following questions, based on what you learned in this lesson.
1. What is meant by human-computer interaction (HCI)? Mention its components.

2. What is User Interface Design (UI)?.

Exercises

2 Briefly explain the difference between user experience and user interface.

UIUX

92

3

Put a tick in front of the appropriate device type for each

of the following descriptions:
Desktop

Computers

Portable
Devices

1. Low cost devices with high specifications.

2. Its screen size can be up to 30 inches.

3. Screen resolution is usually higher in.

4. These devices are light in weight and fit in the pocket.

5. It is usually attached to a mouse and keyboard.

4 Compare the means by which desktop and mobile devices connect to the Internet.

93

5

Read the sentences and tick True or False. True False

1. HCI exclusively studies the business logic development of applications.

2. One of the most important similarities between the mobile and desktop

experience is that people use them in the same way and for the same types

of tasks.

3. HCI includes the scientific field of cognitive science.

4. The operating system has no effect on the speed of a mobile phone or desktop

computer.

5. Mobile devices give you full access to all the hardware resources.

6. Mobile data networks are the cheapest means to connect to the Internet.

7. Microsoft Windows and Google Android use the same GUI components.

8. Mobile device users have the opportunity to search online while commuting

or using public transportation.

9. Mobile devices are more commonly used by people in office environments

than computers.

10. The difference in smartphone and desktop computer usage affects the types

of websites and apps that work well on each device.

94

6 List some of the main UI and UX features of the Google Android and Microsoft Windows
operating systems.

Microsoft Windows operating systemGoogle Android operating system

7 Explain the difference between the operating systems of desktop and mobile devices.

95

Lesson 3

Creating a Prototype

System Design

The system design stage comes directly after the analysis stage, during which the system elements,

components, and system interfaces are identified, and this in turn includes planning for several things

such as system architecture, hardware components, operating systems, programming, integration

with other systems, and system security issues.

The Main Operations of the Design Phase

The processes in the design phase revolve around what the system (interfaces) and works (functions)
will look like. Some parts of this phase focus on the technical features of the system while other parts

focus on how the system responds and interacts with the user.

Other Operations Involved During the Design Phase

• Designing screen-based inputs, which includes designing how data enters the system,

such as through text boxes, drop-down lists, forms, and so on.

• Designing User-Interface layouts, which include how system menus, web pages, or

applications will look. It is often useful to use organization charts to design this part.

• Designing system reports, which includes the process of designing system outputs

such as usage reports, summaries, statistical data, invoices, or any type of printed
report.

• Designing screen-based outputs, including screen outputs and system reports such as

search results, error messages, or any type of report that appears only on the screen.

• Designing data structures to store data, including designing how data is stored in

databases and tables.

• Designing rules for validating inputs and verifying data includes how to prevent incorrect
or corrupt data from being entered into the system and how to validate it.

Link to digital lesson

96

Now that you have gotten to know the concept of UI and UX and gotten acquainted with the operating systems
of smartphones, you are ready to create an application for users with special needs. First you need to design the

prototype of the application, and in this tutorial, you will create this model using the Pencil Project tool.

Table 2.4: Why is the prototype important?

Prototype

A prototype is a model that simulates the product we want to create, and since designers want to

fully define and understand how users will interact with the product to test it, they build a prototype,

as it is not feasible to produce a final product and then have it tested by users.

The Importance of the Prototype

Prototyping helps focus on the basic functions of the application and gives an idea about the look

and feel of the product to benefit the customer in making a right decision about the appropriateness

of these elements.

Prototyping is designed to enable designers to think about their solutions

differently, to reduce the cost of failure and to avoid investing time and

money in an idea that may not be suitable.

Better understanding of
design content.

Not only does prototyping provide a solid visualization of the
design to understand the look and feel of the final product, but
it also helps the team better understand why they are creating
their design, what they are designing and for whom.

Facilitates the process of

obtaining feedback.

Using prototypes, you can gather feedback from stakeholders at

every stage of product development, whether adding new

features or redesigning parts of the product, testing what works
for them and what doesn't according to the specific objectives of
the application in progress.

Validate modifications
before development.

Prototyping allows for multiple discussions regarding changes to
work before entering the final development phase. This process
facilitates the adoption of appropriate changes and ensures that
realistic requirements are built that meet the application
objective.

Early changes save time
and cost.

Early changes help you achieve your goals faster. Making

adjustments in the final stages is expensive and may require
radical restructuring and more thought and reformulation.
Having a ready-made prototype enables us to make needed

changes early before investing a lot of time and effort into
creating the final product.

97

Prototyping Categories

There are different approaches to modeling, and you should always select the right one that works

with your product and the resources available for the work.

Prototyping methods are generally classified based on their accuracy into the low-fidelity category,

the medium-fidelity category, and the high-fidelity category.

Low-Fidelity Prototype

> This model is usually created using paper in the initial
stages of design and is constantly refined throughout
the process.

> It helps to make changes easily and quickly, as it

focuses more on how the system is used rather than

what it looks like.

> As the product becomes more complex it is difficult
to keep the low fidelity model in the development
cycle, making paper prototypes ineffective in keeping
up with the required depth of design.

Medium-Fidelity Prototype

> A model that is created to simulate and represent

system functions, even limited ones, based on
specific usage scenarios.

> This model is best for the intermediate stages of

product development when moving from a low

fidelity prototype to a medium fidelity prototype.

High-Fidelity Prototype

> This model is often confused with the final product
because of the similarity between them in

appearance, and the effectiveness of some system
functions in the model. High-resolution models are
the best in giving a realistic experience similar to the
product with actual functions.

> It is characterized by accuracy in estimating the
required cost and time.

> Supports the analysis of more complex parts of the

product in advanced stages, as showing this model in

the initial stages of modeling may confuse the
stakeholders and not provide the necessary

preliminary knowledge.

Figure 2.20: Low-Fidelity prototypes

Figure 2.21: Medium-Fidelity prototypes

Figure 2.22: High-fidelity prototypes

98

Modeling Instructions

Proper prototyping is important to validate design solutions for our project, so let's go over some tips to
keep in mind when working with prototyping:

• Invest time in creating the template and don't go into too much detail.
• Always remember product goals while working

• Consider the user first.

Application Scenario

Not all users have the same needs, that's why applications must take into account these differences
and modify their user interface and functionality.

We are going to create an application to help tourists navigate through the screen so that they can

read information about the different tourist spots that they can visit in the cities of Riyadh and Jeddah.

The Low-fidelity Prototype for our accessible tourism application would look like this:

The first screen of the application consists

of an image and two buttons so that the

user can press the first button that connects

the user to the next screen and the second

button to change the language from English

to Arabic.

1

2 The second screen of the app consists of

two images so that the user can choose

the city he wants. The images also work

as a button that connects the user with

the next screen.

3 The third screen displays a list with two

highlights of each city, each one works as

a button to move on to the next screen.

4 The last screen displays an image and a

simple description about the highlight

99

Creating the Prototype with the Pencil Project Software

Pencil Project provides an open source graphical user interface (GUI) for prototyping for all platforms.
In the previous lesson, we used Pencil Project to create a flowchart. In this lesson, we will create a

Medium fidelity Prototype for a mobile application.

To create a new prototype:

> Open Pencil Project and click Create a New Document. 1

> From the Shapes panel, click Mobile - Android ICS to

add a shape. 2

> Drag and drop the Phone shape to the canvas. 3

> Drag and drop the Status Bar shape to the top of the

phone screen as it looks in a real phone. 4

> From the Shapes panel, click the Common Shapes

section to add the shape. 5

> Drag and drop a Bitmap Image onto the canvas to load

an image. 6

1

100

2

43

5

Place the phone shape

to the left of the canvas

to make room for the

rest of the shapes.

6

Figure 2.23: Creating a new prototype with Pencil

101

To insert an image:

> Right click on the bitmap shape and select Action

then Load Embedded Image. 1

> Choose the image file. 2

> Click to download the image from your device. 3

> Drag and drop the image to the middle of the

image outline to fit the phone screen. 4

1

2

3

4

Figure 2.24: Inserting an image in the prototype

102

To add a button:

> From the Mobile - Android ICS
section, drag and drop the
Focused Button shape to the

middle of the screen. 1

> Double tap and label the button
"Discover". 2

1

2

Repeat the steps you followed when adding the button to add the second button with the label "Arabic".

Figure 2.25: Adding an English button

Figure 2.26: Adding an Arabic button

103

Multi-Page Application

The user cannot interact with the Pencil Project prototype, so the multiple app screens must

appear side by side in the same order they would appear while using the actual app.

Create a Multi-Page Application
A Multi-Page Application (MPA) consists
of several pages with static information

(images, text, etc.) and links (text, button,
image, etc.) as well as other pages.

To create the app's second screen:

> From the Mobile – Android

ICS section, drag and drop
the Phone shape to the right

of the first Phone shape. 1

> Drag and drop the Status

Bar shape to the top of the

phone screen as it looks in a

real phone. 2

> Below the status bar, add

the Screen Header shape,
3 then double-click and

type in the title "Discover

Saudi Arabia". 4

> Change the text size to 11

from the Font Editor bar. 5

2

3

4
1

5

Figure 2.27: Multi-page application

Figure 2.28: Creating a second screen

104

Repeat the steps you

followed when adding the

image and the Screen

Header to make the screen

look as shown on the right.

Then you have to add two

images displaying the cities
of Riyadh and Jeddah as

shown.

Figure 2.29: Setting up the second screen

Figure 2.30: Adding images of cities

105

To insert a text shape:

> From the Mobile – Android ICS section, drag and
drop the Text shape. 1

> Then double-click and type " RIYADH". 2

> Change the text size to 22 from the Font Editor

bar. 3

> Click on Color Palette 4 and choose the color

with code: #FFFFFF. 5

> Repeat the steps to add a label for the second

image. 6

1

2

106

4

5

Figure 2.31: Setting up text label for the second image

6

You can also click on the

Properties tab to make

changes to the text.

3

107

To create the app's third screen:

> From the Mobile-Android ICS section, drag and drop the Phone

shape to the right of the second Phone shape. 1

> Drag and drop the Status Bar shape to the top of the phone screen

as it looks in a real phone. 2

> Then drag and drop the Text shape 3 and then from the Properties

tab change the color of the text and write "Al Masmak". 4

> Repeat the two last steps to write "Boulevard of Riyadh City". 5

3

4

1

2

5

Figure 2.32: Creating a third screen

108

The Role of Users in Prototyping

After the prototype creation process is complete, it is important that it be viewed by users. To facilitate

the prototyping process, the system analyst must clearly communicate the purpose of the prototype

to users, making it clear that prototypes are only valuable when meaningfully engaged with users.

After obtaining feedback from users, the system analyst should modify the home screen designs

according to users' feedback on the prototype.

Finally, create the last screen, which displays an image and a brief description of Al Masmak.

Do not forget to save your
project when finished.

Best Strategies for Getting Feedback on Prototyping:

• Find multiple, alternative ways to get feedback from users such as interviewing them to get them
to talk about their thought process while using the prototype.

• Test your prototypes on the right people. If you're in the early stages of your design project and
want to get some simple or advanced feedback, testing your prototypes on your teammates should
suffice.

• Be sure of what you are going to test and ask the appropriate questions.
• Be neutral when presenting your ideas, avoid being biased towards your idea, and try to recognize

the error when there are negative reactions.
• You can improvise from the original test scenario in order to adapt to the test environment, so as

to get the best feedback from the users.

• Let the user contribute ideas based on your prototype and provide helpful criticism that will improve
the application.

Figure 2.33: Creating the final screen

109

1 Match the types of prototypes with the appropriate terms.

Exercises

It can be expensive and time consuming.

Changes can be made to it easily and

quickly.

It can be created with paper.

It is used in the intermediate stages of

product development.

It is designed to represent the

functionality of the system and focuses

more on it than appearance.

Closest prototype to what the actual

final product looks like.

High-Fidelity

Prototype

Low-Fidelity

Prototype

Medium-Fidelity

Prototype

1

2

3

110

2 What are the benefits of prototyping?

3 What are the tips to follow when preparing a prototype?

111

4 What are the three prototyping methods?

5 Complete the prototype of the Visit Saudi Arabia app.

 1. Open the app prototype with Pencil Project.

 2. Add a new page in the project.

 3. Create a screen to display the second highlight of Riyadh.

 4. Create three new screens for Jeddah city, as we did for Riyadh city:

• one screen where two highlights in Jeddah are listed.

• two screens to display each of the two highlights of Jeddah.

112

You will continue the tourism mobile application that provides information

about Saudi Vision 2030 that you started in the previous unit.

1

Use the Pencil Project program to create a tree diagram to represent how

the components of the application you will build are organized, the pages

it will contain and components of each page.

2

Then, you have to create a Low-fidelity Prototype for your

application. Use paper and pencil to draw the screens of your

app.

3

In the next stage, use the Pencil Project to create a Medium-fidelity

Prototype for the mobile application.

Finally, create a presentation to illustrate this project.

4

Project

113

Wrap up

Now you have learned to:
> Distinguish the diagrams in the Analysis stage.
> Create a workflow diagram using Pencil Project.
> Design a prototype with Pencil Project.

Diagram

Flowchart

Functional requirement

High-Fidelity Prototype

Human-Computer

Interaction (HCI)

Low-Fidelity Prototype

Medium-Fidelity

Prototype

Multi-Page Application

(MPA)

Non-Functional

requirement

Process

Prototyping

Tree diagram

Use case diagram

User Experience (UX)

Design

User Interface (UI)

Design

Wireframe

Workflow Diagram

KEY TERMS

114

In this unit, you will use MIT App Inventor to develop a functional and
interactive mobile application for a tourism campaign. You will use the
prototype you created in the previous unit to design the UI and then you
will program it.

Learning Objectives
In this unit, you will learn to:

> Utilize a wireframe prototype as a guide to build a UI.
> Design a functional UI.
> Utilize prototype feedback to improve an application.
> Develop an application from specifications.
> Enrich an application with content.
> Enhance mobile applications with interactive UX

components.

3. Developing
Applications with
App Inventor

Tools
> MIT App Inventor

115

Link to digital lesson

Lesson 1

Introduction to MIT App Inventor

Developing Mobile Applications

The process of designing and developing a mobile application is

similar to the process of developing a web or desktop application.

Figure 3.1: Types of mobile applications

Email applications

Social media applications

Communication apps such as instant messaging applications

Map applications

Administrative applications for governmental entities such

as ministries, hospitals or schools

Mobile games

Table 3.1: Examples of smartphone applications

Stages of Creating Smartphone Applications

 Analysis and Design:

 Select the idea, the goal of the application, and the target group. Create a manual app diagram

of the different user interfaces and how they relate to one another.

 Development:

 Use a smartphone application development program to implement the design that you devised

in the previous stage.

 Testing:

 Test the application and address any programming or design problems that may arise, then add

the final touches to your work.

 Publishing and Marketing:

 Approve the application publish and upload it to an application store.

Mobile Application

A mobile application is a type

of application software that

is designed to run on mobile

devices such as smartphones

and tablets.

116

Advantages of Using MIT App Inventor

 Shorten development time, as we can develop an application

in less than one hour.

 Helps develop creativity skills through the use of software

building blocks and reduces the chances of making

programming mistakes.

 Ease of sharing the applications that are created in this

program.

 Access to many basic functions in the phone, such as phone

calls, SMS messages, location sensors, audio and video,

among others.

 Ability to save data via cloud storage platforms.

Developing a Tourism Application

You will develop an application for tourists visiting the KSA that allows them to look

for the most popular destinations. When they select a destination, they will be shown

a list of highlights for that destination. They will then choose a highlight and be

presented with a photo and a description of that highlight. This is the application that

you developed a wireframe prototype for in the previous unit. In this lesson you will

design all the screens for the application, and in the next lesson you will program them.

Differences between Prototyping UI and Developing UI

When designing wireframes with a prototyping tool, the appearance of the elements

and the components on a screen is arranged with declarative tools. This means that

the arrangement of components such as buttons, labels and images can be explicitly

specified. When developing the actual application, components are arranged

dynamically according to the tool used. MIT App Inventor, like most development

platforms, uses container components that are used to arrange and align other

components that are placed inside them. Keep in mind that the methods of creating

a UI are different when prototyping and when developing an application.

MIT App Inventor

MIT App Inventor is

a development tool

for smartphone apps,

allowing apps to be

created without having

to write code by using

a building block

environment similar to

the Scratch application.

Traditional mobile

development uses

coding with mobile-

native programming

languages like Java,

Kotlin or Swift. App

Inventor can also

package your

application in a form

ready for distribution.

App Inventor was developed by Google in 2010 and is now maintained by MIT

(Massachusetts Institute of Technology).

INFORMATION

117

Transitioning from Prototype to Application

As you have already created a wireframe prototype, you know how to design the UI of the application. This

means that the development time will be shorter because the UI and UX decisions have been made previously.

You only need to use the tools provided by App Inventor to replicate the wireframe's appearance as closely

as possible. However, the original wireframe prototype does not represent the final view of the application.

UI changes and new features are implemented during the development of the application, because feedback

is given by testing users.

While you are preparing to develop the application, users testing give feedback on the wireframe prototype

that you created in the previous unit. Their comments can be used to iterate the prototype again, or they

can be implemented during the development phase. In this case, you will implement them directly when

developing the application in App Inventor.

The main points from the prototype feedback are the following:

• The components of the Cities and Highlight screens need to have a container with a slightly different
background color to the image of the flag.

• The Highlight screen needs to have a look consistent with the Cities page.
• It would be helpful if there was a way to view the location of each highlight presented.

You will now begin to develop the application UI with the prototype as a guide, and you will also implement the

comments from the given feedback.

Start Building Apps with App Inventor

To start building apps with MIT App Inventor, you need to log into the App Inventor website with your

Google account.

To start MIT App Inventor:

> Go to appinventor.mit.edu and click Create Apps!. 1

> Sign in with your Google account. 2

> You are now viewing the MIT App Inventor workspace. 3

1

2

118

3

To start a new project in MIT App Inventor:

> Click on Start new project. 1

> Type a name for your project 2 and click OK. 3

1

2

3

Figure 3.2: Signing in to App Inventor

Figure 3.3: Start a new project in App Inventor

119

The App Inventor Interface

The App Inventor interface is split into two pages. These are the Designer and Blocks pages which you can

access through the two buttons (Design & Blocks) at the top right of the screen. The Designer page is where

you insert components into the screen and change their basic properties. The Blocks page is where you

program those components.

Project name

The Components section is

where all the elements we use

in the project are presented.
Designer button

User Interface components

The Viewer is the workspace for

adding tools and previewing their

appearance in the application.

Figure 3.4: The App Inventor Designer interface

Properties are used to change

the properties of the elements

added to the application screen.

Blocks button

120

Changing the Properties of a Component

You will make the name Home the title of the first screen, Screen1, which will be the main screen

of the application. In the viewer, you will change the Title of the screen to Home , as illustrated in

the figure below.

To change the screen title:

> Select Screen1, from the Components section. 1

> Scroll the sidebar down in the Properties section 2

and in the Title field, write the word Home. 3

1

2

3

Table 3.2: App Inventor - most commonly used components

Component Icon Description

Button
A command button to perform a

specific task when pressed.

Image
A special component that displays

images.

Label
Displays text to be customized in the

Text field in the Properties panel.

ListPicker

It is a button that when pressed,

displays several text options to choose

from.

Figure 3.5: Changing the screen title

121

Adding a Button to the Screen

You will now create a command button called Visit KSA. When you click on this button, the app will open

a new screen and offer destinations to visit in the KSA.

To add a button component:

> Drag and drop the Button from the User Interface panel to the display. 1

> Click Rename. 2

> Type Visit_KSA 3 and press OK. 4

> Scroll the sidebar down in the Properties section, click Text and type "Visit Saudi Arabia". 5

1

2

4

3

5
The name will be changed

in the display.

The name will change in

the components section

and when using building

blocks.

Figure 3.6: Adding a button component

122

Aligning the Components of the Screen

Your application buttons should be located in the middle of the main screen.

To put the button in the center of the screen:

> Select Screen1, from the Components section. 1

> From the Properties section, select AlignHorizontal to Center : 3. 2

> Then select AlignVertical to Center : 2. 3

1

The number 2 is the number assigned to

this setting of the vertical alignment tool.

3
2

Figure 3.7: Centering a button

The number 3 is the number assigned to

this setting of the horizontal alignment tool.

123

Adding a Background Image to the Screen

You will make some improvements to the app, by adding a background image.

To add a background image:

> From the Properties section of Screen1, select the BackgroundImage property. 1

> Click Upload File to upload the image from your computer. 2

> Click Choose File to choose an image from your computer. 3

> An Open window will appear. Choose the image you want to add from your computer, 4 then click

Open. 5

> Then click OK. 6

> Scroll the sidebar down in the Properties section of Screen1, 7 untick the TitleVisible property. 8

2
1

3

2

4

5

6

124

8

When you untick this

property the name of the

screen is not displayed.

7

Figure 3.8: Adding a background image

125

To add a Label component:

> From the User Interface group, add a Label component to the screen by dragging and

dropping it below the button 1 and rename it welcome_label by selecting Rename

from the Components panel. 2

> In the welcome_label component, clear the Text property 3 and set the TextColor

property to White. 4

1

2

3

4

Figure 3.9: Adding a label component

126

Programming the Interactive Button

Now that you've added the command button, you'll add some code that makes the button display the sentence

"Welcome to Saudi Arabia!" when pressed. To do this, you have to change the view from "Designer" to "Blocks".

The App Inventor Blocks Page

This is the Blocks page of the App Inventor interface. All the components that you add from the Designer

page will be shown here and they can be programmed with a block-based visual programming language.

There are block elements for program logic, event handling, variable manipulation and component alteration.

We can store the blocks in the Backpack

and then drag and drop them from there

so we can quickly access them later.Code blocks categories.

Show programmable codeblocks.

Zoom In

Zoom Out

User interface

components of Screen1

Switch between Designer mode

and Blocks mode.

Figure 3.10: The App Inventor Blocks interface

Programming Area

We can delete building

blocks by dragging and

dropping them to the basket.

Center

codeblocks.

127

Each component that you select will have its own event handlers and
operations to alter their properties.

To select the Click event for the button:

> Select the Visit_KSA component. 1

> Select the when Visit_KSA.Click block. 2

> Drag and drop it into the programming area. 3

1

2

3

Understanding the groups of programmable commands

Controlling the program flow.

Performing logical operations.

Performing mathematical operations.

Performing operations on text and strings.

Initializing and interacting with list data structures.

Initializing and interacting with dictionary data structures.

Adding colors to components.

Initializing and manipulating variables.

Performing custom procedures.

Figure 3.11: Selecting the Click event for the button

128

To access the Text property of the label:

> Select the welcome_label component. 1

> Drag and drop the set welcome_label.Text to block. 2

> Place it inside the do section of the when Visit_KSA.Click block. 3

1

2

3

Figure 3.12: Accessing the Text property of the label

129

To modify the Text property of the label:

> Select the Text group 1

> Select the empty string block. 2

> Place an empty string block in the set Text block. 3

> Type "Welcome to Saudi Arabia!" in the empty string block. 4

1

3

4

Figure 3.13: Modifying the Text property of the label

2

130

Testing the Application

At various stages in the development of an application, you need to test the application in order to make sure all

the features are working. Frequent testing during development helps you discover potential bugs in the programming

which should be corrected before publishing and delivering your application.

In MIT App Inventor there are two methods of testing your application. The first method is the Emulator which is

a program you install on your computer that emulates a mobile device.

The second method is the MIT AI2 Companion, which is an application you install on your physical mobile phone.

The App Inventor website provides you with a QR code that you scan with the MIT AI2 Companion application

which loads the application that you have created on the browser on your physical phone. You can install the MIT

AI2 Companion app at the following link: https://play.google.com/store/apps/details?id=edu.mit.appinventor.

aicompanion3.

Setting up the Android Emulator

You will now install the Android Emulator to run the mobile application on your computer.

To setup the Android Emulator application:

> Go to the following website: https://appinventor.mit.edu/explore/ai2/windows. 1

> Click on the Download the installer link to download the .exe installer file. 2

> After the installer is downloaded, follow the steps as shown on the webpage. 3

1

2

3

Figure 3.14: Installing the Android Emulator application

131

To run the application:

> Click Connect. 1

> Choose Emulator. 2

> Click the button to display the message. 3

1. Run the Application with Android Emulator

The Emulator desktop application
needs to be running before you
initiate the connection on the

App Inventor website.

2. Run the Application with AI Companion

To connect the app to the AI Companion:

> Click Connect 1 and AI Companion from the top menu. 2

> A dialog box with a QR code will appear on your PC screen. 3

> On your mobile device, launch the MIT AI2 Companion app, then click the Scan QR code

button on the Companion, 4 and scan the code in the App Inventor window and the app

you are building will be displayed on your device.

> Click the button to display the message. 5

Figure 3.15: Testing an application with the App Inventor Emulator

1

2

3

Before scanning both devices have
to be connected to the same WiFi

network.

132

1

2

4

When you close the Companion app, the application
is removed. In order for it to remain on your mobile

device it needs to be installed.

Figure 3.16: Testing an application with the MIT AI2 Companion

5

3

133

1 Describe the four stages of developing a mobile application.

2 Compare how developing applications with MIT App Inventor differs from traditional
mobile app development.

3 List the advantages of developing mobile apps with MIT App Inventor.

Exercises

134

4 Create a simple application about a country you want to visit.

• Add a new screen named "Home" and add a background image with the country's

flag.
• Add two buttons named "Sightseeing" and "Useful Information".
• Create a new screen and use the Label tool to write some useful information that

will appear when the button is clicked.

5 Describe how a wireframe prototype will help with the development of the tourism

application.

135

Lesson 2

Adding more Elements to the App

Designing the Home Screen

In the previous lesson, you created the Home screen of the app with a button, which when pressed, made a

message appear.

Now, you will add some useful buttons on the Home screen and make some changes to its appearance.

To add a VerticalArrangement component:

> From the Components section, select Visit_KSA button 1 and then click Delete. 2

> From the Layout group, add a VerticalArrangement component to the screen by dragging and

dropping it in the viewer. 3

> In the VerticalArrangement1 component, set the AlignHorizontal property to Center: 3, 4 the

AlignVertical property to Center: 2 5 and the BackgroundColor property to None. 6

> Set the Height property to Fill parent 7 and the Width property to Fill parent. 8

3

1
4

2

6

8

5

7

Use a VerticalArrangement

component to display a

group of components one

below another.

Figure 3.17: Adding a VerticalArrangement component

Link to digital lesson

136

To add an English language button:

> From the User Interface group, in the palette panel, add a Button component to the screen 1

and rename it discover_button_en. 2

> In the discover_button_en component, set the BackgroundColor property to Custom 3 and

type the value #28a595ff, 4 set the Text property to "Discover", 5 set the Shape property to

rectangular 6 and set the TextColor property to White. 7

> Repeat the steps to add an Arabic language button. 8

1

2 3
4

6

5

8
Hex color codes are a way of specifying

colors in web design and digital graphics.
They consist of a six-digit hexadecimal

(base-16) code that represents a color's
red, green, and blue (RGB) components.

Figure 3.18: Adding an English language button

7

اكت�شف

137

4

To add a new screen:

> Click on the Add Screen button 1 and create a New Screen with the name Cities. 2

> In the Properties section of Cities, untick the TitleVisible property 3 and in the

BackgroundImage property put an image of a Saudi flag. 4

1

4

Creating the Second Screen of the App
The next screen will be the one that shows the user the cities of Riyadh and Jeddah and their highlights. When
the user clicks on one of the cities, a list of available highlights will appear.
Now, you will add some useful buttons on the Home screen and make some changes to its appearance.

Figure 3.19: Adding a new screen to the app

2

3

138

To add a label:

> From the User Interface group, add a Label component to the screen 1

and rename it discover_label. 2

> In the discover_label component, set the BackgroundColor property

to Black, 3 set the Width property to Fill parent 4 , set the Text

property to "Discover Saudi Arabia" and set the TextColor property

to White. 5

1

2
3

4

5

Figure 3.20: Adding a label component

139

To add a VerticalArrangement component:

> From the Layout group, add a VerticalArrangement component to the screen. 1

> In the VerticalArrangement1 component, set the BackgroundColor property to

Custom and type the value #11613eff. 2

> In the VerticalArrangement1 component, set the Height property to Fill parent 3

and the Width property to Fill parent. 4

1
2

4

3

Figure 3.21: Adding a VerticalArrangement component

140

To add a cities label:

> From the User Interface group, add a Label component to the screen 1 and

rename it cities_label. 2

> In the cities_label component, set the BackgroundColor property to None 3

set the FontSize property to 18.0 4 set the Text property to "Cities" and set

the TextColor property to White. 5

1

2

3

4

5

Creating a List

Lists are a type of data structure we use to create

and manage different combinations of values/items,

and in your app, a list will be contained in each image

you will add.

For example, when you press the image of Riyadh

city, a list of two highlights of this city will appear as

follows:

• Al Masmak

• Boulevard Riyadh City

Figure 3.22: Adding a text label

Figure 3.23: Opening a new page from the ListPicker

141

To add a ListPicker component for Riyadh:

> From the User Interface group, add a Label "RIYADH" 1 and then a ListPicker component

to the screen 2 and rename it riyadh_list. 3

> In the riyadh_list component, set the Height property to Fill parent 4 and the Width

property to Fill parent, 5 upload an image of Riyadh from the Image property 6 and clear

the Text property. 7

> Repeat the steps to add a Label "JEDDAH" and a ListPicker for the city of Jeddah. 8

2
1 3

4

6

7

5

The ListPicker component will be used to select the highlight from each city. Each city will be

represented by a ListPicker. So, there will be a ListPicker for Riyadh and a ListPicker for Jeddah.

8

Figure 3.24: Adding a ListPicker component

142

When you run the finished application on your mobile phone, the ListPicker component works in the

following way. When you select an image of each ListPicker, the screen contents will change to show

the list of options. For example, when you click on the ListPicker component for Riyadh, the application

will have the following behavior:

Creating the Third Screen of the App

The final screen will be the screen that displays information about the selected highlight from the previous

screen. This screen will show the title of the highlight, a representative image, a text description and a map

button which will launch an interactive map to view the location of the highlight in the respective city. Each

highlight will have its dedicated screen, and in this lesson, you will create a screen for Al Masmak.

Figure 3.25: The ListPicker component

143

To add elements on the screen:

> From the Layout group, add a VerticalArrangement component to the screen. 1

> In the VerticalArrangement1 component set the BackgroundColor property to

Custom 2 and type the value #11613eff.

> In the VerticalArrangement1 component, set the Height property to Fill parent 3

and the Width property to Fill parent. 4

> From the User Interface group, add a Label component to the screen and rename it

title_label. 5

> In the title_label component, set the BackgroundColor property to None, 6 set the

FontSize property to 18.0 7 set the Text property to "Al Masmak" 8 and set the

TextColor property to White. 9

Figure 3.26: Creating the third screen

Add a new screen as you have already learned and

rename it "AlMasmak". Then add the KSA flag as a

background and the screen title as shown below.

You will need to remove the
original screen title label
and replace it with the

Discover Saudi Arabia label.

144

1
2

3
4

5

6

7

8

9

Figure 3.27: Adding elements to the third screen

145

To add an image component:

> From the User Interface group, add an Image component to the

screen 1 and rename it image. 2

> In the image component, set the Height property to Fill parent 3 and

the Width property to Fill parent 4 and set the Picture property to

an image of Al Masmak. 5

1

2

3

5

4

To add a text description component:

> From the User Interface group, add a Label component to the

screen 1 and rename it description_label. 2

> In the description_label component, set the Height property to

Fill parent, 3 set the BackgroundColor property to None 4 and

the TextColor property to White. 5

Now, you will add a Label that will contain a description of Al Masmak. But, at this point, you will add

a placeholder for the text that will be added in the next lesson.

Figure 3.28: Adding an image component

When more
components are

added, the image
will be scaled

properly.

The component
instance name

cannot be the same
as the name of the
component type,

but image and
Image are different

names.

146

1

2

3

4

5

Adding an Interactive Map to the Application

On the screen of each highlight, the users will be able to launch an interactive map that displays the accurate

location of the highlight so that they can see where each highlight is located in each city. You will first create a

container for a button that will activate the interactive map, and then you will add the component.

Figure 3.29: Adding a text description component

Horizontal Arrangement Component

• With the HorizontalArrangement component, objects are arranged horizontally along the horizontal axis

and aligned vertically in the center.
• If the Height or Width property is set to Automatic, then the actual height of the component is specified

as the length of the tallest object within it.

• If the Height property for the HorizontalArrangement component is blank, the Height will be 100.

• If the Height or Width property of the HorizontalArrangement component is specified by Fill Parent or

pixels (in pixels), any Width property specified by the Fill Parent will equally take up space not occupied

by the other components.

147

To add a HorizontalArrangement component:

> From the Layout group, add a HorizontalArrangement component to the screen. 1

> In the HorizontalArrangement1 component, set the BackgroundColor property to

None, 2 set the AlignHorizontal property to Center : 3, 3 and set the AlignVertical
property to Bottom : 3. 4

> Set the Height property to Fill parent 5 and the Width property to Fill parent. 6

1
3

2

6

4

5

To add a map button:

> From the User Interface group, add a Button component to the screen 1 and

rename it map_button. 2

> In the map_button component, set the BackgroundColor property to None, 3

clear the Text property 4 and set the Image property to an icon of a map. 5

Figure 3.30: Adding a HorizontalArrangement component

148

1

2

3

4

5

To add a map component:

> From the Maps group, select the Map component 1 and place it

under VerticalArrangement1. 2

> Set the Height property to Fill Parent 3 and the Width property to

Fill Parent. 4

> Untick the Visible property. 5

> Set the ZoomLevel property to 16. 6

Figure 3.31: Adding a map button

149

1

2
3

5

6

4

When you run the finished application on your mobile phone, the map component opens at the location of the

selected highlight. In the next lesson, you will programmatically add the coordinates depending on.

Figure 3.32: Adding a Map component

150

You can interact with the map component as you would with any
other complete map application.

Figure 3.33: Activation of the Map component by the map button

151

1 Describe how HorizontalArrangement and VerticalArrangement components help you
form the layout of a mobile screen.

2 State the difference between a ListPicker and a Button component.

Exercises

152

3 Design an application with a VerticalArrangement and two HorizontalArrangements.
Each HorizontalArrangement has two buttons. All of the components are in the center
of their container. Use the Alignment properties of the appropriate components.

4 Design another screen for the above application which has a HorizontalArrangement
as an external container and two VerticalArrangements with buttons inside. All of the
components are in the center of their container. Use the Alignment properties of the
appropriate components.

5 Design another screen for the above application which has a VerticalArrangement and
three rows of HorizontalArrangements. Each HorizontalArrangement row will have two

photos. Each photo will be from a different sport. Make sure that all the components
are arranged in the center of their containers and all the photos have the same

dimensions.

153

Variables in App Inventor

App Inventor allows you to create and interact with

variables. Variables can be initialized with multiple data

types, like floating point numbers and strings. Variables in

App Inventor can have the following scopes:

• Global: The variables are accessible by all control and

procedure codeblocks.

• Local: The variables are accessible only by the procedure

that includes them.

Local variables are used to save the memory of the device

because they are created and accessed when their

procedure needs them.

For the purposes of this project, you will use only global

variables because you will not create complex procedures

that need local variables.

Lists in App Inventor

Lists are a simple and useful data structure that you can

use to implement your application logic. App Inventor also

offers methods to interact with and manipulate the data

on the lists.

Creating an empty list

Initializing a list with data

Programming Applications in App Inventor

Before developing applications with the codeblocks, there are certain concepts and commands that need to be

explained, such as working with variable data, and implementing logic and program flow.

Lesson 3

Programming the Mobile App

Setting a global variable

Initializing a global variable

Getting a global variable

In order to set the number of

items of the list, click on the gear

icon and drag and drop items to

remove and add list items.

Link to digital lesson

154

The ListPicker Component

The ListPicker allows you to create custom application logic depending on the selection that you have made. When

you click on a ListPicker component, the screen changes its appearance to show the list contents. The property of

the component that stores the list data is called Elements.

Accessing ListPicker elements

A ListPicker will take a variable
which contains a list as

elements.

Initializing a ListPicker Elements with list Data

Interacting with the ListPicker element selection The application will
open the screen

that has the name
of the ListPicker

selection.

Conditional If Statements in App Inventor

If codeblock statements in App Inventor are constructed similarly to lists. You can add if or else if statements to

the codeblock using the gear icon.

Simple if statement Adding an else statement Adding an else if statement

Sending Variables to Another Screen

You want to send the value of the language variable to the next screen in order to initialize the text in the appropriate

variable. In App Inventor, when you use a command to open another screen, you can send an initializer value that

can be accessed by the next screen.

155

The HorizontalArrangement Component

The HorizontalArrangement component is used to format other components on the horizontal axis and make a

container for alignment. The alignment of the components inside the container can be changed with the following

codeblocks.

Programming the Home Screen

The Home screen (Screen1) will send the user to the Cities screen and define the language that will be used on

the next screens as well.

Programming Language Support Buttons

You will now program the language buttons to change the text on the home page and store a variable

for the next screen to know in which language to initialize the text. Each page will default to the

English language.

To program the language buttons in the home screen:

> Select the when.Click block for the discover_button_en component. 1

> Select the Control group and open the screen Cities with a startValue. 2

> Set the startValue to "en". 3

> Repeat the above step for the discover_button_ar and set the startValue to "ar". 4

The VerticalScrollArrangement Component

The VerticalScrollArrangement component is used to format other components on the vertical axis and make a

container for alignment. It also supports scrolling for the components that do not completely fit into the screen.

The alignment of the components inside the container can be changed with the following codeblocks.

Figure 3.34: Initial blocks page

156

1

2

157

3

4

The Complete Code for the First Screen (Screen1)

Figure 3.35: Programming the home screen buttons

Figure 3.36: Complete code for the first screen

158

Creating the Content for the ListPicker

You want to fill the ListPicker Elements with the appropriate text depending on the language. The first

step is to define the lists of the highlights for a destination both in English and in Arabic. The second

step is to initialize the ListPicker components with the corresponding language.

To create the content lists:

> Create a new variable named riyadh_highlights_en. 1

> Create a make a list block and place it on the riyadh_highlights_en variable. 2

> Fill the list with highlight names in English. 3

> Repeat the process for a variable named riyadh_highlights_ar. 4

Programming the Cities Screen

As mentioned earlier, the home screen will send the user to the Cities page and define the language that will

be used on the next screens as well.

1

2

159

4

3

The if-then block is used to program the menu item so that when pressed it opens the screen associated with it.

If we click on Al Masmak, the corresponding page should open.

To select the content for the list:

> Select the BeforePicking block for the riyadh_list component. 1

> Create an if else if statement. 2

> Add one equals statement on the if and one on the else if statements. 3

> Add the get start value variable on the left side of the equals clauses. 4

> Add the "en" and "ar" on the right side of the equals clause. 5

> Select the Set Elements command of the riyadh_list. 6

> Add the appropriate list variables for the above command. 7

> Add the if else if codeblock to the BeforePicking event. 8

Figure 3.37: Creating the content lists

160

1

2

3

161

4

5

162

6

7

163

Opening a New Page from the ListPicker

You have the list of highlights from the city you choose and you want to open a specific highlight. Each highlight

will have its unique page. Each selection from the ListPicker will detect the highlight and then open it. The page

for each highlight will also support English and Αrabic language.

To get the new page name from the ListPicker selection:

> Create a new variable named selection. 1

> Add an empty text block on the selection variable. 2

> Select the AfterPicking event for the riyadh_list component. 3

> Add the selection variable inside the AfterPicking event. 4

> Set the selection variable to the Selection property of the riyadh_list. 5

> Add an if codeblock inside the AfterPicking event. 6

1

8

Figure 3.38: Initializing the ListPicker content

164

3

4

2

165

The if clause will be used to
determine which page to

redirect the application to.

6

Opening the Appropriate Page for the ListPicker Selection

A new page for a highlight will be displayed depending on the selection of the ListPicker, and the codeblock

will recognize the destination whether it is in Εnglish or Αrabic. The codeblock will also send language
configuration to the screen as well.

To open the appropriate page from the ListPicker selection:

> Add an or clause that contains two more equals clauses and put them in the if statement inside the

AfterPicking event. 1

> Add the selection variable to the left side of the equals clauses. 2

> Add the texts of the Al Masmak highlight both in English and in Arabic in the right side of the equals

clauses. 3

> Open the Al Masmak screen with the startValue being the one you used in the previous screen. 4

Figure 3.39: Selecting the page from the ListPicker

5

166

1

2

167

4

Figure 3.40: Opening the appropriate page from the ListPicker selection

3

168

Programming the Highlight Screen (Al Masmak)

A highlight screen will change the language and the formatting of the text depending on the selection of the

home page and will also offer the option to display an interactive map with the location of the highlight.

Dynamically Changing the Language for the Highlight Page

The user will be directed to a page that contains text and an image for the selected highlight. The text

language will change according to the selected language. The text will also need to be aligned correctly

depending on the original language selection on the home page. If the language selection is English,

the text will need to be aligned to the left, and if it is Arabic, the text will need to be aligned to the

right.

The Complete Code for the Second Screen (Cities)

Figure 3.41: Complete code for the second screen

169

To change the language dynamically:

> Create variables for the label texts. 1

> Add text for the title and description labels for the Al Masmak highlight both in

English and in Arabic. 2

> Select the Initialize event for the Al Masmak screen. 3

> Add an if else if codeblock inside the Initialize event. 4

> Add an equals clause inside each if statement. 5

> Add the get start value on the left side of each equals clause. 6

> Add the "en" and "ar" in the right side of the equals clause. 7

> Set the Text property of the title_label to the title variable of the appropriate

language. 8

> Set the Text property of the description_label to the description variable of the

appropriate language. 9

> Set the AlignHorizontal property of VerticalArrangement1 to the text direction

of the appropriate language. 10

1

170

Search the Internet for descriptions
of the Al Masmak castle both in

English and in Arabic.

3

2

171

4

5

6

172

2

8

7

173

9

174

Figure 3.42: Changing the language dynamically

10

175

Programming the Interactive Map

The application will open the interactive map when the user presses the map button. The map will be

initialized to the coordinates of the respective highlight.

To program the interactive map:

> Add a new variable named coordinates. 1

> Add the following text to the coordinates variable: 24.6312, 46.7134. 2

> Select the Click event for the map_button component. 3

> Set the CenterFromString property of the map component to the coordinates variable. 4

> Set the Visible property of the map component to a true codeblock. 5

1

2

176

3

4

177

5

Figure 3.43: Programming the interactive map

178

The software is ready and you have to test it. For this you can use the Android Emulator, or you can

download a package format for deployment and run it on your Android device. You can also scan the

QR code with the Android device to preview. In the pictures below, the screens of your application

are shown when you run the program using the Emulator.

Figure 3.44: Complete code for the third screen

The Complete Code for the Third Screen (Al Masmak)

179

Figure 3.45: Application t in the Emulator

Here are the screens shown when pressing the Arabic button:

استكشف

180

1 In each destination, add more options for highlights and create more pages for each
highlight. Search the Internet for photos and information for each new highlight.

Exercises

2 Add two new navigation buttons in each page. One button will take the user to the
home screen and the other will take the user to the previous screen.

181

3 In each page, add another row with buttons that change the language between English
and Arabic and modify each page's code to accommodate this feature.

4 In a highlight page, add a new text label that will display the coordinates of the interactive
map component. You can find the coordinates properties by clicking the map component
in the blocks page.

5 In a highlight page, add two new buttons that will change the type of the interactive
map between Aerial and Road views. You can find the map type properties by clicking
the map component in the blocks page.

182

Create an application in App Inventor that will present Vision 2030 megacities
to the user. These cities will be Amaala, ΝΕΟΜ and Qiddiya.

2

The user will be able to choose a megacity and then be presented with images

and descriptions of each project.

3

Project

1
In previous Units, you started a project about Vision 2030. You have already

created a prototype with Pencil Project. Now you will build your app.

Develop the app with the appropriate layout and navigation controls.4

183

Now you have learned to:
> Design an application UI with a wireframe guide.
> Develop a functional and interactive UX application for users.
> Utilize feedback to iteratively improve an application.
> Program complex business logic for an application.
> Compile content for an application and display it appropriately.

Blocks

Coordinates

Emulator

Event

Event handler

HorizontalArrangement

ListPicker

Variables

VerticalArrangement

KEY TERMS

Wrap up

184

4. Software
Accessibility and
Digital Inclusion
In this unit, you will learn about the process of testing applications and
then you will deploy and test the application you built in the previous
unit. Then you will understand the digital divide and digital inclusion and
how it can be solved. Finally, you will develop accessibility features for the
mobile application you built in order to make it more inclusive towards
users with disabilities.

Learning Objectives
In this unit, you will learn to:

> Explain the various stages and methodologies of testing
software.

> Deploy and test mobile applications in MIT App Inventor.
> Define the problems created by the digital divide.
> Distinguish the solutions for fostering digital inclusion.
> Analyze the various accessibility features for both hardware

and software.
> Enhance mobile applications with accessibility features.

Tools
> MIT App Inventor

> Pencil Project

Lesson 1

Testing and deploying applications

The Importance of Application Testing

When you complete developing an application, you may feel confident that everything has worked as you planned.

However, mistakes can happen, and the initial application may not achieve the desired results, so you must verify

that the program works as expected without errors or defects. The purpose of testing is to show that the program

works correctly and to find previously undiscovered errors or errors related to incorrect application usage.

What is Software Quality

Software quality is the study of a software product to check whether it meets the user specifications,

if it is usable and functional, if it has few errors and if it can be properly maintained and improved.

The following table illustrates the main quality attributes of a software product.

Table 4.1: Main software quality attributes
Attribute Description

Functionality A software product is functional when it meets the end-user
requirements and can accomplish all the specified tasks.

Reliability
A software product is reliable when it is not prone to errors and can
perform well under restricted resources.

Usability
A software product is more usable if different users can easily access its
capabilities.

Efficiency A software product is efficient when it does not waste resources such
as processing power, memory or network capacity.

Maintainability A software product is maintainable if bugs can be easily fixed as they
appear and new features can be easily implemented.

Portability
A software product is portable if it can work under other operating
systems, on many machines, with other software, etc.

Link to digital lesson

185

Difference between Application Debugging and Testing

Debugging is the process of removing bugs and malfunctions from the software, which occurs after testing. Testing

is the process of validating the software. For example, during testing, it may occur that a specific component in

the UI of an application does not render the correct information to the user. During debugging, it is found that a

false calculation in program logic causes the error in the rendering, and it is corrected. Therefore, proper testing

is needed to proceed to the debugging phase.

Who Performs Tests

The programmer or developer tests the code they write most often. But the programmer who wrote

the code is not the best option. Sometimes he may not be able to see the mistakes he made. For this

reason, we need another person called a tester to do the testing focusing on the program's functionality

and testing the results by entering different input data sets, for example. Programmers do the initial

tests, but the tester judges the software's quality and that it works as expected. Some software

development companies include a testing department, usually called the Quality Assurance

Department, which specializes in validating the correct behavior of the program.

A test does not guarantee that the program is 100% correct, but it does reveal potential errors.

Automated Testing

Often the software is large and complex, with many updates and modifications that may change its

functionality after its initial release. In this case, the testing procedure must perform the same tests

and some new ones to verify that the software is working properly. But if the tests are many, it will

take a lot of time and effort to do it manually. The tester can create a set of automatic tests updated

each time the program is changed. The tester writes their code to test the program through several

Choosing Test Data

The best way to test a program is to manually compute its output before running it and see if the

results match what you calculated or not. In other words, write the expected outcome of the program

before running it and compare the running result with the real output of the program.

Whatever data the user enters, the program must function correctly. If invalid data is entered, the

program must state that the data is not acceptable and request a re-enter. The developer needs to
consider all the possible values of the entered data. To properly test the program, we need to choose

test data representing all possibilities of user input. Test data is divided into the following categories:

• Normal data: The data is usually used when dealing with the program by the user, and it

includes a set of values of the same type as the expected data. For example, if you have to

enter a month as an integer from 1 to 12, then the normal data is an integer from 1 to 12.

• Boundary data: It is data located on the outliers of the range of expected values. For example,

if you expect to enter a year between 1900 to 2020, then the outliers are 1900 and 2020,

and so you are testing the program when you enter 1900 or 2020 as numbers into the program
to see if any errors happen.

• Erroneous data: Data that is outside the range of expected values or is of an incorrect data

type. In the previous example, if the user entered 0 or 13 as the month, or entered the word

January instead of the integer 1, there would be an error.

186

Table 4.2: Common testing strategies

Testing Strategies

Testing is divided into several categories depending on the complexity of the code or application being

tested. Most testing time is consumed on programming functions and the main program at the lowest

level. Developers, both small and large, use many different testing strategies. The following table

illustrates the most common testing strategies.

tools to automate this process. For example, some of the most popular testing frameworks for Android are Appium,

Espresso and UI Automator.

Test Planning

A test plan or test schedule is a list of tests planned to be carried out to check the accuracy of the program

and then to record the results of each test.

• A table that includes test data, the purpose of each test, expected results, and actual results when the

program is run. Each row in this test table is called a test case.

Name Description

Dry Run

Testing

In this method, you follow the logic of the program as the computer executes

each statement in the code and records the value of each variable in the

tracking table.

Usability

Testing
Usability or user experience (UX) tests are conducted to ensure that the

software is easy and understandable to the end user.

Black-Box
Testing

Black box tests consider the parts of the program that you test as a closed

box, so the code is ignored, and the input and output data are dealt with only

to see if the tester gets the expected results when entering the data or not.

White-Box
Testing

In white-box testing, the tester has access to the code, so the testing process
is focused on verifying the correctness of the code implementation. This
includes testing the code logic, data structures, algorithms, error handling,
and boundary conditions.

Unit Testing Unit testing is testing each program's function separately to ensure that each
process works before fully verifying that the program works.

Integration
Testing

Integration tests check how different parts of a program behave when they
work together as an integrated system.

Performance

Testing

Performance tests check the performance of a program or system under data

loads or increased user numbers. Issues that need to be fixed to ensure
scalability will emerge.

Acceptance
Testing

Acceptance tests will show whether the product meets all the requirements

of users with different needs, and this test is suitable for large multi-user
software.

Penetration
Testing

Penetration tests focus on the security of a program or system. It checks how
to protect the program from attacks and intrusions.

Stress Testing
Stress testing is a testing technique that focuses on evaluating the
performance of a software system under extreme conditions. The goal of
stress testing is to identify the breaking point of the system and to determine
how it behaves when it is under maximum stress.

187

Test Documentation

The testing process needs to be carefully documented to benefit from it in the tests of the following

versions, and the testing documents include the following:

• Testing Policy - Describe the principles, methods, and objectives of testing.
• Test Plan - Description of the software, its functions, parts to be tested, and scope of tests.
• Test Specifications - Details of each test scenario and its evaluation criteria.
• Test Description - Test data and procedures for each test case.
• Test Analysis Report - The results of each test scenario.
• Bug Report - A report of any software bug, error, or problem.
• Test Summary Report - The final report that summarizes the completed testing process.

Testing Visit Saudi Tourism Application

After you have created your application, it is important to distribute your app for testing. The testers

should vary in their profiles. This variety gives the developer more information on what to fix in the

application and which features to implement. For example, in the current state of the application,

users with difficulty in their vision or hearing impairments, will have trouble getting the correct

information. In a later lesson, you will implement accessibility features for the mobile application you

have created.

Packaging and Distributing an Application

After you have developed and tested your application, you need to package it into a file format that can be

downloaded and installed on Android mobile devices. Then it can be distributed with two methods.

Versioning your Application

Whichever method you choose for distributing your application, the first step in packaging is versioning.

Each application does not stay the same forever. Fixes and updates are being implemented continuously.

You have the same application name, but there may be changes to the UI or the code functionality.

So there needs to be a way to differentiate those apps. Versioning is an identifier code that indicates

which version of the application the user has currently installed on their mobile device. On applications

that are meant for android, versioning is defined by the following properties:

• Downloading a package on your phone: Downloading the package from your computer or

from a website link and installing the application directly on your physical mobile phone.
• Publishing to a store application: Uploading the package to a store application so users can

find it from wherever they are.

• A test scenario validates a specific part of a program's functionality and may contain a set of test cases.
• Strictly defined acceptance criteria in each test scenario.
The test case should be distinct from the use case. As we saw earlier, the use case defines how the program

or system is used to perform a specific task. It is usually a diagram showing the sequence of actions the user

will follow when interacting with the program. The goal of testing is intentionally creating error states with

valid and invalid data. Test scenarios and cases are often planned before the actual programming is done.

188

In MIT App Inventor, many general application properties including the

versioning of the application are modified from the Properties section of

Screen1. This is the reason why Screen1 cannot be removed as a screen from

the application.

Application Appearance

There is also other information that is presented

to the user when they want to download your

application from the store. These are the following:

• Application Name:
This is the name that appears on the store and

on your phone in your list of applications.
• Application Description:

Text that gives a brief overview of the application.
• Application Logo:

The logo icon that appears on the store and on

your phone.

This information is defined in the Properties

section of Screen1. The properties that must be

defined are the following:

• VersionCode: An identifier number that is defaulted to 1. It should be incremented every
time that you upload a new version to a store application.

• VersionName: A string that can be set to any value but is defaulted to "1.0". The industry-
standard convention is to increment the first digit every time that you make a major update
to the app and increment the second digit every time that you make a minor update to the
app. For example, an app that starts with the VersionName "1.0" and makes a minor update

gets the VersionName "1.1". When a major update is implemented, then the VersionName

becomes "2.0".

Packaging your Application

In order to install your application on a physical mobile phone, you need to convert what you have

created in the browser of the App Inventor into a file that can be installed by Android devices. For

Android mobile applications there are two package types.

Standard Android package format that has been used since the creation

of the Android operating system. It is the simplest way to distribute an

Android application. APKs can be downloaded directly from a website

link or can be uploaded to the Google Play store.

Android App Bundles (AABs) are a newer file format that is used to

package Android applications. They contain an APK and metadata that

allows the application to run smoothly on a wide range of devices. They

can only be distributed through the Google Play store.

189

190

2 Classify the common types of testing strategies.

1 Describe the difference between testing and debugging application software.

Exercises

191

3 Outline the main components of testing documentation.

4 State the two methods of distributing an application for Android phones.

5 Describe the differences between the two main types of Android packages.

What is the Digital Divide?

The digital or technological divide is a social problem that refers to the disparity in the amount of information and

skills between those with and without access to computers. The availability of high-speed Internet access at an
affordable cost and quality is one of the most discussed issues these days. The term digital divide was popularized

in the late nineties of the last century, and this gap was supposed to shrink in our time, but things have gotten worse.

Lesson 2

Digital Inclusion

This problem must be discussed in an international context, as many countries are more prepared than developing

countries to benefit from the increasing growth in technology development. Appropriate use and access to

technology and communications are vital to improving quality of life. In society, groups vary in their ability to

benefit from the available technology. Research and studies have shown that the differences may be due to the

presence of low-performance or low-quality computers, the poor quality or high cost of communication networks,
or the difficulty of obtaining training or accessing high-quality content via the Internet. Also, having access to
technical support is very important.

The Kingdom of Saudi Arabia aims to become one of the leading countries in digital transformation.

A very important step in this process is bridging the digital divide as much as possible. So, legislation

and policies like the following are passed to aid the Kingdom's citizens and from that.

• E-Learning: The Saudi government has made significant investments in e-learning initiatives to
provide access to quality education for all citizens, regardless of their location. The goal is to use
technology to reach students in remote and underserved areas and to provide them with equal

access to quality education.
• National Broadband Plan: The National Broadband Plan aims to increase broadband access across

the country and reduce the digital divide. The plan includes providing subsidies for broadband

services, increasing investment in digital infrastructure, and improving broadband access in rural

and underserved areas.

• Digital Inclusion Programs: There are several digital inclusion programs aimed at providing digital

skills training and access to digital devices for marginalized and low-income communities in Saudi
Arabia. These programs aim to improve access to digital services and bridge the digital divide.

Figure 4.1: The digital divide affecting elderly people

192

Factors Affecting the Digital Divide

Many factors contribute to the increase in the digital divide. These difficulties are not limited to a specific country

but extend to entire continents, making the digital divide a global issue. The following is a list of common factors

affecting the digital divide.

Education

Studies show that those with a university degree can access the Internet at

work ten times more than those with secondary education. Literacy also plays

a major role in facilitating dealing with a computer and accessing the Internet.

Access to more resources and information speeds up the individual's learning

process.

Users Age

Most of the elderly are far from technology compared to the younger

generations. They also need some training and rehabilitation through family

members and using tools that make it easier for them to deal with modern

technologies.

Geographical Location

Households in urban and suburban areas have more than ten times more

computers available in their homes than households in rural areas. Telecom

companies prefer to build infrastructure in urban areas to serve many customers

at a lower cost than in vast rural areas with a limited population. Companies

and governments can overcome this issue through alternative solutions such

as internet connection power lines and satellite communications.

Economic Level

Wealthier societies have better chances of adopting new technologies than

poorer ones. It is common for richer public areas to have free internet access,

unlike in more impoverished areas where the need is higher.

Language Differences

Language directly affects the user's experience with the Internet, as it governs

the amount and quality of information he can access and the communities he

can communicate with. For example, a Google search may give you ten times

more specific information in one particular language than when searching in

another language. And if your language isn't popular, it's likely that not enough

content will be available in this language on the Internet.

Special Needs

Modern technology may be available to some people. However, the presence

of a disability, such as a hand and a limb disability, and audio-visual impairments,
prevents them from using technology, like interacting with screens or

smartphones. According to research, about 15% of the world's population lives

with some disability, and 2% to 4% have difficulty performing their daily activities

independently.

193

What is Digital Inclusion?

Digital inclusion ensures equitable access to and use of information and communication technology for social and

economic engagement, including education, social services, health, and social and community participation. Digital

inclusion includes inexpensive broadband Internet, Internet-enabled devices, digital literacy training, competent
technical support, and applications and online content that foster self-sufficiency, participation, and cooperation.
They are the solution to the gap created by the digital divide.

There are many solutions to this problem, but first, to reduce this gap, we must address the issues of weak

infrastructure and deal with the repercussions of low levels of education and poverty. The following are some

solutions in various aspects that can help reduce this gap.

The Cost of Technology

• Reducing the cost of users' devices and the costs of connecting to the Internet and using its services.
• Providing financing to help low-income people bear the burdens of modern technology and reducing

customs tariffs to encourage them to acquire digital tools.
• Lowering the cost of ancillary services (e.g. solar chargers rather than electricity chargers).

Convenience

• Develop content and applications in local languages to increase the ability of local people to
understand them easily.

• Address privacy and data security issues that make users suspicious of evolving technology.

• Adjusting workplaces to accommodate people with special needs and developing assistive software.
• Computers should be available to all persons, regardless of their physical or learning abilities.

Efficiency

• Training on ICT means and skills.

• Focusing on education and updating the curricula periodically.
• There is a need to have a certain level of information literacy to use computer technology, which

can pose serious challenges for people. These challenges include the exponential increase in
information and the ability to find and use information.

Infrastructure

• Expanding and upgrading the network to increase its capacity.

• Develop solutions for rural areas in terms of cost-effectiveness on a large scale.
• Develop stable infrastructures to support the digital economy, such as fourth and fifth-generation

mobile network operators.

• Using wireless technology to provide Internet service to those who own computers or devices

capable of connecting to the network in public places, cafes, and libraries, as is the case in some
cities that provide wireless connections.

194

Accessibility for People with Special Needs

Accessibility is the process of designing products, devices, services, or environments so that all people can use

them. This concept focuses on enabling or facilitating access for people with disabilities through assistive technology.

In the world of technology, accessibility is hardware and software designed to help people overcome their disabilities,

just like the equipment and supplies that help people overcome disabilities, such as wheelchairs, hearing aids,

ramps that facilitate entry to a building, and Braille.

The following areas should be accessible to people with special needs.

Advantages of Reducing the Digital Divide

• Increasing the percentage of segments of society accessing the automated services the state provides

to its citizens, such as government e-services.
• Allowing space for the participation of different parts of society in questionnaires and opinion polls

related to the services offered by various institutions.
• Expanding the reach of education to a larger number of community members through the use of

various educational resources available on the Internet.
• It allows entrepreneurs to market their products, introduce their projects, and create ideas for new

projects based on customers' use of technology.

Figure 4.2: The importance of reducing the digital divide

195

Hardware Accessibility

Providing accessibility accessories, such as large-character keyboards,
large mice, and keys that can be activated with a little force, as well as

other devices enables users with disabilities to use computers in

alternative ways. The following are guidelines for designing accessible

input and control devices.

• Switches and controls must be within reach, easily accessible,

identifiable by touch, and usable with one hand in an easy manner.
• The switches and controls in these devices are designed to be touched

and recognized without activating them.
• Allow alternative control methods using different senses for

touchscreen devices, such as voice commands.

• Control devices for people with special needs are designed to recognize

their status (opening/closing) and their response to commands using

different senses alternative to the sense of sight, such as touch or
hearing.

• Accessibility control devices should connect to computers and smart

devices using standard wires and ports available on common devices.

Knowledge of
accessibility

principles and tools
are essential for
developers and

organizations who
want to create

high-quality
websites and web
tools in a way that

ensures their

products and
services are

accessible to people

with disabilities.

The following is a list of alternate input devices for people with various disabilities.

• Braille computer keyboard: A Braille computer keyboard is a specialized keyboard that allows users

with visual impairments to input text and controls their computer. It typically consists of six or eight

raised dots representing Braille characters, and the user can enter text by pressing the dots with
their fingers. The keyboard is designed to be used with screen reader software that converts the
Braille input into text that can be displayed on the screen.

• Head-mouse control: A head mouse control, also known as a head-tracking mouse, is a device that
allows people with physical disabilities to control the movements of a computer mouse using head
movements. It typically consists of a small camera that tracks the user's head movements and

translates them into mouse movements on the screen. The camera can be mounted on a headband,

a hat, or a pair of glasses, and it is connected to the computer via USB or Bluetooth.

• Foot-mouse control: A foot-mouse control, also known as a foot-operated mouse, is a device that
allows users with physical disabilities to control the movements of a computer mouse using their
feet. It typically consists of a small platform with two pedals that the user operates to control the
movement of the mouse cursor on the screen. The foot mouse control is connected to the computer

via USB or Bluetooth.

• Brain EEG control: Brain EEG control, also known as a brain-computer interface (BCI), is a technology
that enables users to control devices or applications using their brain activity. It typically involves
measuring the electrical signals generated by the brain, known as electroencephalography (EEG)

signals, and translating them into commands that the computer can understand.
• Eye tracking control: Eye tracking control, also known as eye gaze control, is a technology that allows

users to control devices or applications by tracking their eye movements. It works by using a
specialized camera or sensor to track the movements of the user's eyes and then translating those
movements into commands that the computer can understand.

196

Software Accessibility

Modern operating systems such as Windows and macOS provide display adjustment options, which

include tools such as the ability to enlarge screen contents and invert colors. These settings help those

with vision problems and the ability to enable text-to-speech and describe objects and text on the
screen more accurately, as well as the possibility of using voice commands to perform basic tasks.

Table 4.3: Accessibility settings in various operating systems

Operating
System

Setting

Windows Settings → Ease of Access

macOS System Preferences → Accessibility

iOS Settings → General → Accessibility

Android Settings → Accessibility

Web Accessibility

The web should be accessible to all people, regardless of their hardware, software, language, location,

or abilities, to be accessible to people of different hearing, motor, visual, or cognitive abilities.

Therefore, accessibility can overcome the impact of disability on the web because it removes the

barriers facing users in the real world. Accordingly, websites and their various applications should be

designed to take into account all groups (taking into account inclusiveness in design) and allow them

to use the web effectively.

What is Web Accessibility?
Sites, tools, and technologies are designed to enable people with disabilities to use these sites, and

specifically to enable these people to perceive, understand, navigate and interact with the web over

the Internet.

Web accessibility includes all disabilities that can affect a person's ability to access the web, including:

• Speech difficulties
• Physical disability

• Hearing disability

• Vision difficulties
• Cognitive difficulties

Figure 4.3: Web accessibility

197

Principles of Website Development for Accessibility

Web accessibility aims to meet the needs of each visitor to the site to choose a certain level of use, so the following

are some conditions to achieve this goal.

Clarify Vision through Careful Color Selection and Increased Contrast

People with visual impairments may find it difficult to read a text without a high-contrast background,
whether it is a plain background or text embedded within an image.

Not Relying Only on Colors to Clarify Information

Using designs that rely only on color discrimination is not enough for people who cannot distinguish

color differences. The correct position of the active light in the traffic light is appropriate to provide

the necessary information regarding stopping or moving forward to individuals with color blindness.

Therefore, designers should use more than one method to express the meaning intended by design.

Browse Using the Keyboard

We usually use the mouse to browse the web, but sometimes using the mouse is difficult. Hence, the

keyboard provides us with options to navigate the web page to suit users with limited mobility. For

navigation using the keyboard, special methods are used in designing links, such as highlighting them

in color and defining designs for different cases, such as pressing, scrolling, and others.

Provide the Correct Naming of the Fields

A descriptive label is provided for all form fields. It is important to note that some users with cognitive

disabilities may not be able to understand the meaning of form fields.

Variety of Feedback for Errors

To enable users to correct their errors as they interact with your website quickly, alert them to errors

using text, icons, and colors. Designers can use color to provide appropriate feedback to the user.

Web access is essential for groups other than those with special needs, such as
the elderly with diminished capabilities due to age and those who suffer from

permanent disabilities or temporary disabilities due to certain accidents, such as
arm fractures and others.

Figure 4.4: Types of disabilities

COGNITIVE VISION HEARING MOTOR SPEECH

198

Providing Several Alternatives for the Media Used

The variety of media used, including images, audio, text, and video, provides equal access to information

for users with different disabilities. Composite picture texts and audio and text versions make the

content more attractive to users with hearing or vision impairments. It is good to provide a text version

with audio information, which helps people. People who are deaf or hard of hearing cannot understand

the content, and this also applies to search engines and other technologies that are not audio logically

available.

Write Useful Alt Text for Images and Other Non-Text Content

People with low vision often benefit from screen readers to obtain information on web pages audibly,

as these tools convert text into speech that enables the person to hear the words on the website.

When image alt texts are available, the Auto Reader will describe the image using the alt text rather

than just indicating the picture's existence to search engines and other technologies that are not

audio logically available.

Usability-Focused Design

Usability-Focused design incorporates a user-centered design approach, where the user's needs,
behaviors, and expectations are central to the design process. This approach involves close collaboration

between designers, developers, and stakeholders to ensure that the software meets the needs of its

intended audience. The usability-focused design process includes user research, prototyping, testing,
and iteration. User research may involve surveys, focus groups, or usability tests to better understand

the user's needs, goals, and pain points.

Examples of Accessible Applications

Various applications have been created with certain standards to be friendly to users with different types of

permanent or temporary disabilities, and the following are some examples.

AccessNow

AccessNow shares accessibility information about places around the world. You can search for specific

businesses like a restaurant, hotel, or store or browse a map to see accessibility features nearby that

a person needs. For example, a person using a wheelchair can get a list of restaurants available for

wheelchair users in a specific area. If the information is not already on the map, the application allows

users to add it and contribute to community service worldwide.

RogerVoice

RogerVoice is designed to help deaf people communicate over the phone. Usually, voice messages

are with a person who is deaf on one side. This app allows deaf people to participate in a discussion

using voice recognition technology and convert it into written text that a deaf person can read.

Envision AI

The Envision AI application uses the camera to describe what is happening around the person. For

example, you can point your phone at your companion sitting in front of you, and the program will

notify you that a person is sitting there and will describe things to you. The application can also read

documents, recognize handwriting, and scan barcodes, and the program supports 60 languages. You

can also have Envision AI recognize photos of your family members, and it will remember them in

the future.

199

200

1

Read the sentences and tick True or False. True False

1. The digital divide is exclusively an economic problem.

2. Geographical restrictions do not contribute to the digital divide.

3. The digital divide affects both illiterate people and people with disabilities.

4. All technological applications have been appropriated to local languages.

5. The rising cost of hardware components contributes to the digital divide.

6. Providing fast Internet access to remote areas helps combat the digital

divide.

7. Reducing the digital divide helps create more markets for businesses.

8. Only software accessibility is needed to reduce the digital divide for people

with disabilities.

9. There are no standard guidelines for designing accessible websites.

10. Usability-focused design is used only for people with vision disabilities.

Exercises

201

2 Describe what the digital divide is.

3 Illustrate how reducing the cost of technological components helps bridge the digital

divide.

4 Classify the main societal advantages of reducing the digital divide.

202

6 Describe three principles of website development for accessibility.

5 Explain how hardware products can be modified to be accessible to people with
disabilities.

Lesson 3

Accessibility Features
in an Application

Link to digital lesson

The Suitability of the Application for People with Special Needs

Not all users have the same needs, that's why applications must take into account these differences and modify

their user interface and functionality based on them.

You are going to improve the application you created in the previous unit to help elderly people navigate through

the screen so that they can read information about the different tourist spots that they can visit in Saudi Arabia,

as well.

Specifically, because elderly people have vision problems, they will have the ability to adjust the size of the text

so that they can read it easily. Others may have problems stabilizing hand movements, so it will be difficult for

them to press a button on the screen, and that's why you have to give them access to adjust the size of the app

buttons to their liking.

Making your mobile app accessible to people with poor vision and visual difficulties does not necessarily require

a huge amount of work. The most important thing here is to remember that users have different needs. To adapt

to the needs of a user who has difficulty seeing, it is important to improve the initial application by adding the

following features:

Zoom In and Out Function

You can add the Zoom In and Zoom Out feature so that the user can adjust the text size according to

his needs.

Colored Interface

You can add the option to change between colored interfaces or those that display in black and white

only in order to facilitate reading for older users or people with disabilities, as well as for general

users, especially on mobile devices.

Text to Speech

It is important that the application supports as much interaction with the human senses as possible,

so that users are able to understand and assimilate information contained in various media such as

images, audio, video, animation and presentations. We will modify our application to support a sense

other than sight, by adding the option for the user to listen to information if they are unable to read

it for any reason.

203

Adjusting the Prototype to Improve the Accessibility of the App

Before starting to make the appropriate changes to the mobile app in App Inventor, you must make the changes

in the prototype you created with Pencil Project.

Open Pencil Project and redesign the last screen of the app.

You will add four images as you have already learned and make the screen that displays Al Masmak as shown

below:

Figure 4.5: Design modifications to improve the accessibility in Pencil Project

204

Enhancing the UI with Accessibility Features

You will now enhance the screen with the Al Masmak highlight with accessibility features. You will add buttons

to enlarge or minimize the text size, a button to change the color theme of the screen and a button to add text-
to-speech functionality on the screen. You will first add the components on the Designer page and then you will

program their functionality on the Blocks page.

Adding a Zoom In Button to the Application

You will now add a button that will enlarge the font size of all the text components every time you

click on it.

To add a zoom in button:

> From the User Interface group, add a Button component to the screen 1 and rename it

zoomin_button. 2

> In the zoomin_button component, set the BackgroundColor property to None, 3 clear

the Text property 4 and set the Image property to an icon of a plus sign. 5

1

2

3

5

4

Figure 4.6: Adding a zoom-in button

205

To program the zoom in button:

> Select the Click event for the zoomin_button component. 1

> Select the Set FontSize command of the discover_label component. 2

> Select an addition codeblock from the Math command group. 3

> Add the value of 1 to the existing FontSize property of the discover_label component. 4

> Repeat the same process for the remaining text components of the screen. 5

Programming the Zoom In Button

This button will increment the existing value of the FontSize property of all the text components by

1 point each time that it is clicked.

1

2

206

3

4

207

5

Adding a Zoom Out Button to the Application

You will now add a button that will reduce the font size of all the text components every time you

click on it.

To add a zoom out button:

> From the User Interface group, add a Button component to the screen 1 and rename it

zoomout_button. 2

> In the zoomout_button component set the BackgroundColor property to None, 3 clear

the Text property 4 and set the Image property to an icon of a minus sign. 5

1

2

3

4

5

Figure 4.7: Programming the zoom-in button

Figure 4.8: Adding a zoom-out button

208

To program the zoom out button:

> Select the Click event for the zoomout_button component. 1

> Repeat the same process you followed for the zoomin_button component, changing only

the mathematical operation from an addition to a subtraction. 2

Programming the Zoom Out Button

This button will reduce the existing value of the FontSize property of all the text components

by 1 point each time that it is clicked.

1

2

Figure 4.9: Programming the zoom-out button

209

Adding a Text-To-Speech Button to the Application

You will now add a button that will activate a TextToSpeech component that uses the mobile device's

sound system to read a specified text aloud.

To add a text-to-speech button:

> From the User Interface group, add a Button component to the screen 1 and rename it

text_to_speech_button. 2

> In the text_to_speech_button component, set the BackgroundColor property to None, 3

clear the Text property 4 and set the Image property to an icon of a speaker. 5

1

2

3

4

5

Figure 4.10: Adding a text-to-speech button

210

To add a TextToSpeech component:

> From the Media group, add a TextToSpeech component to the screen 1

and rename it text_to_speech. 2

> In the text_to_speech component set the Language property to en, 3

and set the SpeechRate property to 0.5. 4

1

2

3

4

The SpeechRate

property determines

the speed at which

the text is spoken.

Figure 4.11: Adding a text-to-speech component

211

To program the text-to-speech button:

> Select the Click event for the text_to_speech_button component. 1

> Select the Speak message command for the text_to_speech component. 2

> Select the join command from the Text group in order to join texts. 3

> Add the Text property of the discover_label component to the first input of the join command. 4

> Repeat the above process for the remaining text components. 5

Programming the Text-To-Speech Button

This button will create a text from the contents of all the text components on the screen which will

be provided to the TextToSpeech component to produce the spoken message.

1

2

212

3

4

5

Figure 4.12: Programming the text-to-speech functionality

213

Adding a Button to Change the Color Theme of the Application

You will now add a button that will change the theme of the screen between a light theme

and a green theme.

To add a color theme button:

> From the User Interface group, add a Button component to the screen 1 and rename it

color_button. 2

> In the color_button component, set the BackgroundColor property to None, 3 clear the

Text property 4 and set the Image property to an icon of a half circle. 5

1

2

3

4

5

Figure 4.13: Adding a color theme button

214

To program the color theme button:

> Select the Click event for the color_button component. 1

> Set the BackgroundColor property of the VerticalArrangement1 component to White. 2

> Set the BackgroundColor property of the discover_label component to Light Grey. 3

> Set the TextColor property of the discover_label component to Black. 4

> Repeat the above process for the remaining text components. 5

> Select the Long Click event for the color_button component. 6

> Set the appropriate colors for the components as in the above process. 7

Programming the Color Theme Button

When this button is clicked, the background of the screen will become white and the text color will

become black. Whereas, when the button is long clicked, the background of the screen will become

dark green and the text color will become white.

2

1

215

3

5

4

216

6

7

Figure 4.14: Programming the color theme button

The Complete Code for the Accessibility Features on the Third Screen (Al Masmak)

217

The software is ready and you have to test it. Run the application using the Android Emulator or scan

the QR code with the Android device to preview. The images below show how the accessibility features

will appear on a mobile device.

All the text on the

screen will be spoken.

Figure 4.15: The accessibility features in the Emulator

218

219

1 Describe how each accessibility feature added will help people with various disabilities
use the application.

Exercises

2 Add the zoom in and zoom out buttons on the remaining screens of the application.

3 Extend the zoom in and zoom out button functionality to enlarge the Button and

ListPicker components of each screen.

4 Add the color theme button on the remaining screens of the application.

5 Add the text-to-speech button on the remaining screens of the application.

6 Extend the speaker button functionality to add predefined messages on every screen
to introduce each component before speaking the content of each component.

People with disabilities need to have access to the information concerning
the Kingdom's newest megacity projects. You will implement the necessary

features to make your application more inclusive to people with various
disabilities.

2

More specifically, you will implement features to accommodate users with
color blindness, vision difficulties and general blindness.

3

1 In a previous Unit you built the mobile application for the tourism in KSA
part of Vision 2030 and now you will enhance it to make it more accessible.

Think which features need to be implemented in order to help

the above users and add them to the existing application.

4

Project

220

221

Now you have learned to:
> Demonstrate the processes and methodologies of testing

software applications.
> Build, deploy and test a mobile application in MIT App

Inventor.
> Examine how the digital divide affects society.
> Outline how the digital divide can be combated through

digital divide solutions.
> Distinguish the solutions for providing accessibility features

in both hardware and software.
> Develop an application with accessibility features in mind.

Android App Bundle

Android Package

Application Versioning

Automated Testing

Debugging

Digital Divide

Digital Inclusion

Hardware Accessibility

Software Accessibility

Software Quality

Testing

Text-To-Speech

Usability-Focused

Design

Web Accessibility

KEY TERMS

Wrap up

Notes

222

Notes

223

Notes

224

