
Name: .. School: ..

Dear student
There are significant efforts behind the completion of
this book, in the process of its preparation, review, and
development, and there are funds spent to print it and
deliver it to you, to support your learning and your
scientific and moral advancement, so, try to be faithful
to this effort, appreciating it by preserving your book.

Third year - Secondary st
age - Pathw

ays Syst
em

A
rtificial Intelligence

1444 - 2023 Edition

Artificial Intelligence
Deposit number: 1444/10749
ISBN: 978-603-511-481-3

1444 - 2023 Edition
Third year

Secondary stage - Pathways system

المملكة العربية السعودية

Quranic verses

Hadiths
Of the Prophet

National information
and knowledge

I don’t throw it away

I preserve it

I hand it over to
school after exams

 #Respect-the-textbook

Preserving your book is evidence of your awareness

قـــــررت وزارة الـــتــعلـيــــم تــدريـــ�سالمملكة العربية السعودية
نفقـتـها عــلــى وطــبــعــه الــكــتــاب هـــذا

Secondary stage - Pathways system

Second year

The book is distributed freely and cannot be sold. 1444 - 2023 Edition

Artificial Intelligence

Publisher: Tatweer Company for Educational Services

Published under a special agreement between Binary Logic SA and Tatweer Education Services Company
(Contract No. 0003/2022) for use only in the Kingdom of Saudi Arabia

Copyright © 2023 Binary Logic SA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without permission in writing from the publishers.

Please note: This book contains links to websites that are not maintained by Binary Logic. Although
we make every effort to ensure these links are accurate, up-to-date and appropriate, Binary Logic
cannot take responsibility for the content of any external websites.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. Binary
Logic disclaims any affiliation, sponsorship, or endorsement by the respective trademark owners.
Tinkercad is a registered trademark of Autodesk Inc. “Python” and the Python logos are registered
trademarks of Python Software Foundation. Jupyter is a registered trademark of Project Jupyter.
CupCarbon is a registered trademark of CupCarbon. Arduino is a registered trademark of Arduino SA.

The above companies or organizations do not sponsor, authorize, or endorse this book.

The publisher has made every effort to trace all copyright holders, but if they have inadvertently
overlooked any they will be pleased to make the necessary arrangements at the first opportunity.

©Ministry of Education, 2023

L.D. no.: 1444/10749

ISBN: 978-603-511-481-3

King Fahd National Library Cataloging-in-Publication Data

Ministry of Education

Artificial Intelligence / Ministry of Education

Riyadh, 2023

346p.; 210*25.5cm

ISBN:

1- Artificial Intelligence 2- Curriculum I-Title

006.3 dc 1444/10749

Dear students, parents and anyone interested in education, we welcome your
communication to improve our textbooks. Your suggestions are our top priorities.

Dear teachers and educational supervisors, we appreciate your participation in developing
the new textbooks. Your input will have a definite impact on supporting and improving the

educational process for our students.

Educational Support Materials at “iEN Ethraia Platform”

ien.edu.sa

fb.ien.edu.sa

fb.ien.edu.sa/BE

Introduction:
The progress and development of countries is measured by the ability to invest in education, and the
extent to which their educational system responds to the requirements and changes of the generations.
In the interest of the Ministry of Education sustaining the development of its educational systems, and
in response to the vision of the Kingdom of Saudi Arabia 2030, the Ministry of education has taken
the initiative to adopt the “Secondary Education Pathways” system to bring about an effective and
comprehensive change in high school.

The secondary education pathways system provides a distinguished and modern educational model
for high school in the Kingdom of Saudi Arabia, which efficiently contributes to:

• Strengthening the values of belonging to our homeland “the Kingdom of Saudi Arabia” and loyalty
to its wise leadership “may God protect him” based on a pure belief supported by the tolerant
teachings of Islam.

• Strengthening the values of citizenship by focusing on them in school subjects and activities, in line
with the demands of sustainable development, and the development plans in the Kingdom of Saudi
Arabia that emphasize the consolidation of both values and identity, based on the teachings of
Islam and its moderation.

• Qualifying students in line with future specializations in universities or the required jobs; ensuring
the consistency of education outputs with the labor market requirements.

• Enabling students to pursue education in their preferred path at early stages, according to their
interests and abilities.

• Enabling students to join specific scientific and administrative disciplines related to the labor market
and future jobs.

• Participation of students in an enjoyable and encouraging learning environment in school based on
a constructive philosophy and applied practices within an active learning environment.

• Delivering students through an integrated educational journey from the primary level to the end
of the high school level and facilitating their transition process to post-general education.

• Providing students with technical and personal skills that help them deal with life and respond to
the requirements of their level.

• Expanding opportunities for graduate students through various options in addition to universities,
such as: obtaining professional certificates, joining applied faculties, and earning job diplomas.

The pathways system consists of nine semesters that are taught over three years, including a common
first year in which students receive lessons in various scientific and humanities fields, followed by two
specialized years, in which students study a general path and four specialized paths consistent with their
interests and abilities, which are: the Rightful path, Business Administration path, Computer Science
and Engineering path, Health and Life path, which makes this system the best for students in terms of:

• The existence of new study subjects that match the requirements of the Fourth Industrial Revolution
and development plans, and the Kingdom’s Vision 2030, which aims to develop higher-order thinking,
problem-solving, and research skills.

• Elective field programs that are consistent with the needs of the labor market and students› interests,
as they enable students to join a specific elective field according to a specific job skill.

• Scale as it ensures the achievement of students› efficiency and effectiveness, and helps them identify
their tendencies and interests, and reveal their strengths, which enhances their chances of success
in the future.

• Volunteer work designed specifically for students in line with the philosophy of activities in schools,
and is one of the graduation requirements; which helps to promote human values, and build society
(its development and cohesion).

4

• Bridging which enables students to move from one path to another according to specific
mechanisms.

• Proficiency classes through which skills are developed and the achievement level improved,
by providing enrichment and remedial mastery classes.

• The options of integrated learning and distance learning, which are built in the paths system
based on flexibility, convenience, interaction and effectiveness.

• The graduation project that helps students integrate theoretical experiences with applied
practices.

• Professional and skill certificates granted to students after completing specific tasks, and
certain tests compatible with specialized organizations.

Accordingly, the computer science and engineering path as one of the updated paths at the
secondary level contributes to achieving best practices by investing in human capital, and
transforming the student into a participating and productive individual for science and knowledge,
while providing him with the skills and experience necessary to complete his studies in fields that
meet his interests and abilities, or to join the labor market.

Artificial Intelligence is one of the main subjects in the Computer science and Engineering Pathway
as it contributes to clarifying the concepts of Artificial Intelligence and the technologies associated
with it, which are employed in several areas, such as smart cities, education, agriculture, medicine,
and other economic fields. This course aims to introduce the student to the importance of Artificial
Intelligence and its role in Industry 4.0. It focuses first on the basic building blocks of Artificial
Intelligence technologies and after that, there is a deep dive into advanced applications for rule-
based systems and Natural Language Processing systems. This course also includes projects and
practical exercises for what the student learns. There are also realistic exercises for the student
to solve that stimulate his cognitive levels under the guidance and supervision of the teacher.

The Artificial Intelligence book is characterized by modern engagement methods, which make
students can learn and interact with it through the various exercises and activities it provides.
This book also emphasizes important aspects of artificial intelligence education and learning,
which are:

• The connection between the content and real-life problems.

• Diversity of ways to display engaging content.

• Highlights the role of the learner in the teaching and learning processes.

• Attention to the contents› structure and coherence.

• The skill of employing appropriate techniques in different situations.

• The ability to employ various methods in evaluating students in proportion to their individual
differences.

To be on pace with global developments in this field, the Artificial Intelligence book will provide
the teacher with an integrated set of diverse educational materials that take into account the
individual differences between students, in addition to educational software and websites, which
provide students with the opportunity to employ modern technologies and practice-based
communication; This solidifies its role in the teaching and learning process.

As we present this book to our dear students, we hope it will capture their interest, meet their
requirements, and make learning this material more enjoyable and useful.

God grants success

Contents

Part 1

1. Basics of Artificial Intelligence 10

Lesson 1 Introduction to Artificial Intelligence . . 11

 Exercises . 21

Lesson 2 Data Structures in AI . 23

 Exercises . 50

Lesson 3 Non-Linear Data Structures 53

 Exercises . 63

Project . 68

2. Artificial Intelligence Algorithms . . 70

Lesson 1 Recursion . 71

 Exercises . 77

Lesson 2 DFS/BFS Algorithms . 79

 Exercises . 86

Lesson 3 Rule-based Decision Making 89

 Exercises . 105

Lesson 4 Informed Search Algorithms 107

 Exercises . 128

Project . 130

3. Natural Language
Processing (NPL) . 132

Lesson 1 Supervised Learning 133

 Exercises . 152

Lesson 2 Unsupervised Learning 154

 Exercises . 170

Lesson 3 Generating Text . 172

 Exercises . 189

Project . 192

Part 2

4. Image Recognition . 196

Lesson 1 Supervised Learning
for Image Analysis . 197

 Exercises . 218

Lesson 2 Unsupervised Learning
for Image Analysis . 220

 Exercises . 234

Lesson 3 Generating Visual Data 236

 Exercises . 246

Project . 248

5. Optimization & Decision-making
Algorithms . 250

Lesson 1 Resource Allocation Problem 251

 Exercises . 264

Lesson 2 Resource Scheduling Problem 267

 Exercises . 279

Lesson 3 Route Optimization Problem 283

 Exercises . 294

Project . 298

6. AI and Society . 300

Lesson 1 Introduction to AI Ethics 301

 Exercises . 310

Lesson 2 Applications of Robotics I 312

 Exercises . 326

Lesson 3 Applications of Robotics II 328

 Exercises . 336

Project . 338

6

Part 1
Unit 1
Basics of Artificial Intelligence

Unit 2
Artificial Intelligence Algorithms

Unit 3
Natural Language Processing (NPL)

10

In this unit, you will learn about the history and the applications of Artificial
Intelligence (AI). You will also learn more advanced data structures such as
queues, stacks, linked lists, graphs and binary trees. These are the structures
that you will use later to create AI projects.

Learning Objectives
In this unit, you will learn to:
> List the milestones of AI history.
> Cite examples of AI applications.
> Describe the operations of the stack data structure.
> Describe the operations of the queue data structure.
> Determine the differences between the stack and the queue

data structure.
> Describe the main operations on the data of a linked list.
> Explain the use of tree data structure.
> Determine the differences between the tree and the graph data

structure.
> Use Python programming language to explore complex data

structures.

Tools
> Jupyter Notebook

1. Basics of Artificial
Intelligence

11

What is Artificial Intelligence (AI)?
AI is the field of Computer Science that deals with the design and
implementation of programs that are capable of imitating human
cognitive abilities. These programs display characteristics that we
usually attribute to human behavior, such as problem solving, learning,
decision making, reasoning, planning, taking actions, etc.

AI agents

An AI agent is a software
program that acts on a user's
or system's behalf by
perceiving its environment,
making decisions, and taking
actions based on those
decisions. An agent can be
simple or complex,
autonomous or
semiautonomous, and can
operate in various
environments, such as web-
based, physical, or virtual.

Figure 1.1: Some AI fields

Neural networks

Neural networks are a type of
computer program that are
designed to simulate the way
the human brain works. They
are made up of interconnected
"neurons and layers" that can
process and transmit
information.

AI Agents

Deep
Learning

Neural
Networks

Natural
Language
Processing

Machine
Learning

Robotics

Computer
Vision

Artificial
Intelligence

Link to digital lesson

Lesson 1

Introduction to Artificial
Intelligence

12

AI and Other Fields
AI also has strong connections to multiple other fields including:
Philosophy: Philosophy is the ancestor of modern science. Philosophy studied fundamental problems
that are central to AI, such as the origin and representation of knowledge, logical and rule-based
reasoning, goal-based analysis, and the connection between knowledge and action.

Mathematics: Mathematics as a field serves as the core of AI and provides it with fundamental building
blocks such as logic, computation, and probability theory.

Decision Theory: Decision theory studies logical and mathematical properties of the decision-making
process. It analyzes how decisions are made in a system where the decision environment is uncertain.
Theoretical frameworks and methods from this field have been consistently applied to AI problems.
Neuroscience: Neuroscience is defined as the scientific study of the human nervous system. The key
neuroscience finding that a collection of simple cells can lead to complex outcomes such as thought,
action, and consciousness has been a guiding principle for AI. In fact, artificial neural networks often
emulate actual neural architectures found in the human brain.

Cognitive Psychology: Cognitive Psychology is a branch of psychology, which is dedicated to studying
how people think. Advances in this field have consistently informed breakthroughs in AI, by providing
insight that can help computers emulate human thinking.

Computer Science and Engineering: The field of Computer Science and Engineering has provided AI
with the necessary software and hardware platform it requires to go from theoretical concepts to
practical applications. Advances in AI have been consistently supported by breakthroughs in operating
systems, programming languages, storage, memory, and processing power.

Cybernetics: Cybernetics is defined as the study of systems that achieve a desired state by receiving
information from their environment and modifying their behavior accordingly. The key difference is
that Cybernetics uses mathematics to model closed systems that can be fully described by specific
variables, while AI uses logical inference and computation to overcome such limitations and study
complex problems such as the comprehension and generation of language and visual information.

Linguistics: Linguistics is the scientific study of human language. The comprehension and generation
of human language have been a key application area for AI, leading to the creation of subfields like
Natural Language Processing (NLP) and Computational Linguistics.

Vision Science: Vision Science is defined as the scientific study of visual perception. Teaching computers
how to understand and generate images, animations and videos are one of the most exciting
applications of AI and specifically in the Deep Learning and Computer Vision subfields.

The term "Artificial Intelligence" was
formally introduced in 1956, making AI one

of the youngest disciplines.

INFORMATION

13

Turing Test
Perhaps the most famous method for defining AI,
which was proposed in 1950 is the Turing Test: an
experiment for determining whether a computer
is intelligent or not.
During the test, the computer has to answer some
written questions provided by a human interrogator.
The test is considered successful if the interrogator
cannot tell whether the written response came
from a person or from a computer.
To successfully pass the test, the computer needs
to have the capabilities shown in the following
table:

Turing Test

Turing Test tests the ability of a machine to
exhibit intelligent behavior equivalent to or
indistinguishable from that of a human.

Respondent 1 Respondent 2

Human interrogator

Human
respondent

Figure 1.2: Representation of Turing test

Computer
respondent

14

The above capabilities cover a large part of the broad field of Intelligence.
Let's define some of these capabilities.

Table 1.1: Computer capabilities to pass the Turing test

1 Natural Language Processing to enable it to understand and answer questions.

2 Knowledge Representation to organize, store and retrieve information during test performance.

3 Automated reasoning to use the stored information to answer the questions.

4 Machine Learning to adapt to new language constructs (e.g. different syntax or vocabulary) that
it has not seen before and is not in its stored information.

5 Computer Vision, so that the computer can respond to visual signals provided by the interrogator
via image and video feed.

6 Robotics, so that the computer can receive and process objects passed by the interrogator via a
hatch.

Natural Language Processing (NLP), is a branch of AI which gives computers the ability to understand human
and natural language.
Knowledge representation in AI refers to the process of encoding human knowledge into a machine-readable
form that can be processed and used by AI based systems. This knowledge can take many forms, including
facts, rules, concepts, relationships, and processes.
Automated reasoning refers to the ability of an AI-based system to automatically deduce new knowledge
and make logical inferences based on a set of given rules and premises.
Computer vision is a field of AI that enables computers to interpret and understand visual information from
the world, such as images and videos.
Robotics is a branch of AI that deals with robot design, construction, and use. It involves the integration of
various technologies, such as machine learning, computer vision, and control systems, to create intelligent
machines that can perform tasks autonomously or with minimal human supervision.

15

Artificial Intelligence: 9 Decades of History
Despite being less than 100 years old, AI has had a rich history spanning from the 1940s until today.
Let's look at a timeline of the main AI milestones in each decade.

1940s Early days and the first artificial neurons

1943: The first model based on artificial neurons is
proposed. Each neuron could be in an active ("on") or
inactive ("off") state, depending on the stimulation that
it received from other neighboring neurons that it was
connected to.

1948: Elmer and Elsie, two autonomous robots, can
navigate their way around obstacles using light and
touch.

1950s The founding of Artificial Intelligence

1950: The Turing Test is introduced: a test of a machine's
ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of a human. A plethora of
key AI concepts is also introduced such as machine
learning, genetic algorithms, and reinforcement learning.

1951: Stochastic Neural Analog Reinforcement Computer
(SNARC), the first neural network computer is built.

1958: Lisp is developed, a programming language designed
specifically for AI. In the same year, a paper is published
for a hypothetical Advice Taker, an AI system capable of
learning from experience just like a human.

1960s & 1970s The First AI Winter

1964: ELIZA is the first NLP program and the ancestor
of today’s chatbots.

1974-1980: This period is referred to as the "First AI
Winter''. Funding for AI projects was reduced during
this time, due to the lack of progress and impact in
real-world applications. One major criticism was the
inability of AI techniques to address the combinatorial
explosion problem, which limited their applicability to
only very small problems and datasets.

1980s & 1990s Expert Systems and the Second AI Winter

1980: The first successful commercial expert system
designed to emulate the decision-making ability of a
human expert is released.

1987-1993: This period is referred to as the "Second AI
Winter". The rule-based nature of early AI systems
limits their applicability and makes them unable to
solve key real-life problems.

1997: The Deep Blue supercomputer beats world chess
champion Gary Kasparov. The first win of an AI program
over a world chess champion.

2000s Mainstream popularity, supported by Hardware
and Software breakthroughs

2005: Stanford University creates STANLEY, a self-driving
car that wins an autonomous vehicle challenge. The
U.S. military begins investing in autonomous robots.

2009: Deep-learning neural networks were trained with
graphics processing units (GPUs) for the first time. The
use of this specialized hardware rapidly accelerated the
training of complex networks on very large datasets,
ushering in a new age for deep learning and Artificial
Intelligence.

2010s & 2020s Golden Age

2011: The question-answering system Watson defeats
the world’s two greatest Jeopardy! players. Watson was
able to understand and successfully answer the questions,
marking a breakthrough in using artificial intelligence to
understand natural language.

2012: An AI system instantaneously translates spoken
English to spoken Chinese.

2021: A full self-driving system uses a neural network
trained on the behavior of hundreds of thousands of
drivers.

2022: ChatGPT (Generative Pre-trained Transformer) is a
chatbot built on top of large language models. The models
are fine-tuned with both supervised and reinforcement
learning techniques to mimic a human conversation.

16

Applications of AI
AI is a rapidly evolving technology that has the potential to transform a wide range of fields and industries.
In this unit, you will explore the various applications of AI and how it is being used to lead to improvements
and innovations in a wide range of domains and industries.

Virtual Assistants
One of the most popular applications of AI has been in the area of virtual
assistants, that can communicate with users through voice or text-based
interactions. They are often accessed through devices such as smartphones,
tablets, or smart speakers, and can be used for a wide range of tasks such
as setting reminders, answering questions, playing music, and placing
orders for products and services. One of the most well-known examples
of an AI-powered virtual assistant is Apple's Siri. Other companies have
also developed their own virtual assistants, including Amazon's Alexa,
Google's Assistant, and Microsoft's Cortana. These assistants have become
increasingly sophisticated over time, with the ability to understand and
respond to a growing number of commands and queries. For example
they can be used to control a wide range of smart home devices, such as
thermostats, lights, and appliances. Virtual assistants also come in the
form of specialized chatbots, typically designed to provide information
and answer questions in a particular domain.
An example of such a domain is customer service, where AI-powered
chatbots are used to answer questions about products or services,
troubleshoot issues, and provide information about orders and accounts.
Chatbots can be accessed through a variety of channels, such as websites,
messaging apps, and social media, and can provide assistance 24/7. You
can see an example of a chatbot application in figure 1.3.

Robotics
AI has historically been linked to robotics. While a robot can be seen as the physical manifestation of an artificial
being, AI represents the robot’s software brain, providing it with the ability to sense its environment, make
decisions, and adapt to changing conditions. Intelligent robots can then apply these abilities to perform a wide
range of tasks without human intervention. These tasks can include manufacturing, exploration, search and
rescue, and many others. In figure 1.4, you can see a robot assembly line in a car factory

Figure 1.4: Robot assembly line in a car factory

Figure 1.3: Conversation
with chatbot

17

One of the earliest examples of AI in robotics was the development of factory robots which were used
to perform tasks like welding, painting, and assembly. Since then, the use of AI in robotics has become
increasingly sophisticated, with the development of more advanced algorithms and the use of machine
learning to improve robot performance. One milestone in the use of AI in robotics was the development
of humanoid robots, like Honda's Advanced Step in Innovative Mobility (ASIMO), which was introduced
in 2000 and was capable of walking and performing basic tasks.

Self-Driving Cars
Another milestone was the development of self-driving
cars (figure 1.6), which use AI to navigate roads and make
decisions about how to safely interact with other vehicles
and pedestrians. One of the key requirements of such
applications is the ability to process and understand visual
data, such as photos and videos, commonly referred to
as "Computer Vision". Computer Vision Algorithms can
be used to identify objects, people, and other features
in images and videos, as well as to understand the context
and meaning of the content. This has a wide range of
applications beyond robotics, including facial recognition,
content moderation, and media analysis. A key milestone
in the use of AI in image and video analysis was the
development of deep learning algorithms, which can
analyze large amounts of data and identify complex
patterns in images and videos.

Humanlike Robots
Pepper and Nao are humanoid robots developed by Aldebaran
Robotics. Both robots are designed for human-robot interaction
and are widely used in research, education, and entertainment.
Pepper is a social robot designed to interact with people
naturally, using its cameras, microphones, and touch sensors
to perceive its environment and respond to people's actions
and emotions. Pepper has many features that allow it to
recognize faces, understand speech, and respond to gestures.
You can see the Pepper robot in figure 1.5.
Nao is a smaller, more compact robot designed for human
interaction. Like Pepper, Nao has a range of sensors that allow
it to perceive its environment, as well as cameras and
microphones for speech and facial recognition. Nao is highly
customizable and programmable, making it an attractive choice
for researchers and educators who want to study and develop
new applications for humanoid robots.

Figure 1.5: Pepper robot

In 2017 the robot Sophia was the first robot to receive
Saudi citizenship and in 2023 Saudi Arabia's first interactive

robot Sarah was introduced.

Figure 1.6: Self-driving car

18

Education
Over the past few decades, there have been several key milestones
in the use of AI in education. Early examples include the development
of AI-powered tutoring systems, which used NLP to interact with
students and provide feedback on their work. Then, adaptive learning
platforms emerged, using machine learning algorithms to personalize
learning for each student based on their strengths and weaknesses.
Next, AI-powered grading systems were developed, which used NLP
and machine learning algorithms to grade written assignments and
provide feedback.
More recently, virtual assistants and chatbots have been integrated
into education to provide personalized support to students and
answer their questions in real-time. AI can be used to analyze data
about student performance, learning preferences, and other factors
to create personalized learning plans and recommend materials or
activities that are most likely to be effective for each student.

AI benefits in education

• Time-saving for teachers/
professors.

• AI tutors can assist
students.

• Help teachers to become
learning motivators

• AI-driven functionality can
give feedback to students
and educators

Industries Affected by AI

Healthcare
Healthcare is another field that has consistently enjoyed innovation thanks to advances in AI. The
first innovations came in the form of AI-powered diagnostic systems and the use of AI in drug discovery.
Next, AI was integrated into electronic health records to extract relevant information, and in the
2010s, AI-powered telemedicine systems were developed. Today, modern AI is used to create
personalized treatment plans and power wearable devices that track a person's health. AI has played
a significant role in the healthcare industry, enabling doctors and other healthcare professionals to
analyze large amounts of data and make more informed decisions about patient care. Such data can
come from diverse sources including medical records, lab tests, and even images such as X-rays and
CT scans. Modern computer vision algorithms are nowadays routinely used to detect abnormalities
and assist with diagnosis.

Figure 1.7: Analyzing health data

19

Agriculture and Climate Modeling
In agriculture, AI is used to optimize crop yields and improve the efficiency of farming practices. This
is achieved by continuously analyzing data about soil conditions, weather patterns, and other factors
to predict the best time to plant, irrigate, and harvest crops. AI can also be used to monitor crops in
real time and identify problems, such as pests or diseases, allowing farmers to take corrective action
before yields are significantly impacted. One of the earliest examples of AI in agriculture was the use
of simple decision-making algorithms to optimize irrigation schedules. Another key milestone was
the use of sensor networks to monitor crops and automatically calibrate the application of key
treatments such as fertilizers and pesticides. More recently, the use of drones and satellite imagery
has been used to analyze crops at a larger scale.In figure 1.8, you can see an autonomous drone to
fertilize a field.

Another area that is closely related to agriculture and has also been significantly influenced by AI is
climate modeling. Applications in this area started early, with the development of AI-powered weather
forecasting systems. Later, AI was used to analyze large amounts of data on climate change and make
predictions about future trends. Such data can come from various sources, including satellite imagery,
weather station observations, and computer simulations. Today, AI is being used in a wide range of
climate modeling applications, including predicting the impacts of climate change on specific regions,
understanding the causes of extreme weather events, and identifying the most effective strategies
for mitigating or adapting to climate change.

Figure 1.8: Fertilizing with autonomous drone

20

Energy
AI has had a significant impact on the energy industry, enabling companies to optimize energy use, reduce
waste, and improve efficiency. One of the earliest examples was the use of machine learning algorithms to
analyze data on energy use and identify ways to reduce waste and optimize consumption. In the 1990s, AI
was used to predict the potential output of renewable energy sources and optimize their use. This was an
important development as it allowed energy companies to better plan for the integration of renewable
energy sources into their operations.

The 2000s saw the integration of AI into smart grids, which used machine learning algorithms to analyze
data on energy use and adjust supply and demand in real-time. This helped to improve the efficiency of
energy distribution and reduce waste. In the 2010s, AI was used to develop energy storage systems that
could store excess energy and release it when needed. This was an important development as it allowed
energy companies to better manage the intermittent nature of renewable energy sources, such as solar and
wind. Figure 1.9 shows solar photovoltaic panels. In recent years, AI has been used to increase energy
efficiency by analyzing data on energy use and identifying ways to reduce waste. This has included the
development of AI-powered systems that can optimize the energy use of buildings, factories, and other
large energy consumers. AI has also been used in the oil and gas industry to analyze data on drilling and
production and optimize operations.

Law Enforcement
In law enforcement, AI is actively used to help predict and
prevent crimes. Specifically, AI can be used to analyze data
from sources such as crime records, social media, and
surveillance cameras to identify and predict patterns and
trends in criminal activity. Early examples include the
development and the use of AI in facial recognition
(figure 1.10). Later, AI was integrated into police dispatch
systems and used to monitor social media platforms for
potential threats. More recently, AI has been used to
develop drones for surveillance and to analyze footage
from body-worn cameras worn by law enforcement
officers. AI has played a significant role in law enforcement,
enabling agencies to analyze large amounts of data,
identify patterns and trends, and make more informed
decisions about how to prevent and respond to crime.

Figure 1.9: Clean electrical energy from solar photovoltaic panels

Figure 1.10: Face recognition and
personal identification technologies

21

2 What is Artificial Intelligence (AI)?

1

Read the sentences and tick True or False. True False

1. Mathematicians set the groundwork for understanding computation and
reasoning about algorithms.

2. The Turing Test determines whether a computer has humanlike behavior.

3. Elmer and Elsie were the first robots to navigate obstacles using light and
touch.

4. AI has only been used in the manufacturing industry for robots.

5. AI has not had any impact on the energy industry.

Exercises

3 Briefly explain some applications that AI is used for in real life.

22

4 Provide the key historical events that influenced the evolution of AI during the 1940s
and 1950s.

5 Outline how, in the 2010s, commercial applications of AI technologies were introduced.

6 Summarize how AI applications can combat climate change through climate modelling
and enhancements in the energy industry.

23

Lesson 2

Data Structures in AI

The Importance of Data Structures in AI
Data is critical in AI as it is the foundation for training machine learning models.
The quality and quantity of data available determine the accuracy and
effectiveness of AI models. Without sufficient relevant data, AI algorithms
cannot learn patterns, make predictions or perform tasks effectively. Hence,
data plays a crucial role in shaping AI systems' decision-making abilities and
capabilities.
Data structures are important in AI because they provide an efficient way to
organize and store data that allows for efficient retrieval and manipulation.
They determine the complexity and efficiency of algorithms used to process
data and thus directly impact the performance of AI systems. For instance,
using an appropriate data structure can improve the speed and scalability of
AI algorithms, making them more suitable for real-world applications.
Additionally, well-designed data structures can help reduce memory usage
and make algorithms more memory-efficient, enabling the processing of
larger datasets.

Data Structure

A Data Structure is a
technique to store and
organize data in the
memory so that it can
be used efficiently.

Computers store and process data with extraordinary speed and accuracy. So, it is highly essential that the
data is stored efficiently and can be accessed in a fast way.
Data Structures can be classified as follows:

• Primitive Data Structures.
• Non-Primitive Data Structures.
The diagram in figure 1.11 visualizes the classification of data structures.

Simple data is also
called primitive,

raw, or basic data.

Figure 1.11: Data structures diagram

Primitive Data Structures

Non-Linear Data Structures

Non-Primitive Data Structures

Boolean Character Float Integer

Linear Data Structures

Data Structures

Linked List Queue Stack Dictionary Tuple Array List

Graphs Trees

Link to digital lesson

24

• Numbers (Numbers are used to represent numeric data)
- Integers
- Floating point number

• Strings (Strings are collections of characters and words)
• Boolean (A Boolean data type takes one of two values True or False)

• Linear or sequential data structures.
The linear data structures store the data elements in a sequence

• Non-linear data structures.
Non-linear data structures do not have a sequential linking between
data elements. Any pair or group of data elements can be linked to
each other and can be accessed without a strict sequence

Primitive Data Structures
Primitive Data Structures are also referred to as basic data structures in Python.
This type of structure contains simple values of data. Simple data types tell
the compiler which type of data to store in it.
The basic data structures in Python are:

Different types of data
structures are used for

different computer
applications and tasks, based
on the requirements of the
project and the restrictions

on memory.

Non-Primitive Data Structures
Non-Primitive Data Structures are specialized structures which store a group
of values. They are created by the programmer and they are not defined by
Python like the primitives.
Non-primitive data structures can also be divided into two categories:

Linear Data Structures
Linear data structures store the data elements in a sequence. In this lesson,
you will learn about some linear data structures such as stack and queue.
These are two of the most common structures you will come across in
your daily life.

Stack

A stack can actually be represented by a group of books stacked on top
of each other, as shown in figure 1.12. To group a stack, you have to put
the books one on top of another. When you want to use a book, you
have to pick up the book at the top of the stack. To access the other
books in the stack, you will have to remove the books from the top of
the stack.

Last In First Out (LIFO) rule

The element which is
added last, is accessed first.

A stack can either have a fixed size or it can have a sense of dynamic
resizing. Python implements stacks using lists.

Figure 1.12: A stack of
books as a real-life example

25

Operations on the stack
There are two main operations on the stack:

• Push: This operation is used to add an element to the top of the stack.
• Pop: This operation is used to remove an element from the top of the stack.

Α

B

C

D

E

Stack Underflow
If you want to remove an element from the stack, you must
check first that the stack contains at least one element; If
the stack is empty, you will cause a stack underflow.

Pop Operation

The operation of removing an element from the stack is called a
pop.
When removing an element from the stack:

• The element at the top of the stack is removed.
• The value of the top pointer is decreased by one to show the

element on the top of the stack.

Initial Stack

Pop element

Final Stack

Α

B

C

A

B

C

DD

E

Top element

Top element

Stack Overflow
The stack has a specific capacity that depends on the
computer's memory. If that capacity is full, adding a new
element will cause the stack overflow. The stack should be
checked for fullness before adding any element.

Push Operation

The operation of adding a new element on the stack is called a
push.
The stack uses a pointer called Top. The pointer points to the
element on the top of the stack. When a new element is added
to the stack:

• The value of the top pointer is increased by one to show the
new position the element will be placed in.

• The new element is added to the top of the stack.

Figure 1.13: Push operation

Initial Stack

Push element

Final Stack

A

B

C

Α

B

C

Α

B

C

DD D

EE
Top element

Top element

Figure 1.14: Pop operation

26

Table 1.2: Stack operations

Stack in Python
Stacks are represented in Python using Lists which in turn provide some ready-to-use operations with stacks.

Let's see an example of the implementation of a stack in Python.
1 Create a stack to store a set of numbers (1, 21, 32, 45).
2 Use the pop operation twice to remove the last two elements

(45, 32) from the stack.
3 Use the push operation to add a new element (78) to the stack.

Operation Description

listName.append(x) Adds the x element to the end of the list.

listName.pop() Removes the last element from the list.

The push operation of the stack is
implemented in Python by using the

append function.

Figure 1.15: Stack Example

1

21

32

45

1

21

78

1

2 3

1

21

78

Push element

1

21

32

45

1 1

21

32

1

21

32

45

1

21
Push element

Push element

Push element

Push element

1

21

32

45

Pop element

1

21

32

Pop element

Top
element

27

To open Jupyter Notebook:

 > Click Start 1 , click Anaconda3. 2

 > Select Jupyter Notebook. 3

 > The Jupyter Notebook home page opens in the browser.

Figure 1.16: Jupyter Notebook's home page

Jupyter Notebook
home page

Jupyter Notebook
In this unit, you will write a Python code using Jupyter Notebook.
Jupyter Notebook is an online web application to create and
share computational documents. Each document, called a
notebook, includes your code, comments, raw and processed
data, and data visualizations. You will use the offline version
of Jupyter Notebook.
The easiest way to install it locally is through Anaconda, an
open-source distribution platform, which is free for students
and hobbyists. Download and install Anaconda from here:
https://www.anaconda.com/products/distribution.
Python and Jupyter Notebook will be installed automatically.

1

2

3

28

To create a new Jupyter Notebook:

 > At the top right corner of your screen, click New. 1

 > Select Python 3 (ipykernel). 2

 > Your Notebook opens in a new tab in your browser. 3

Figure 1.17: Create a new Jupyter Notebook

You can Upload
a notebook from
your computer.

Code cell. You can type text, a math
expression or a Python command.

Notebook
toolbar.

The default name of the
notebook is Untitled.

3

1

2

29

To save your Notebook:

 > Click File. 1

 > Select Save as. 2

 > Type a name for your Notebook. 3

 > Press Save. 4

To create a program in Jupyter Notebook:

 > Type the commands inside the code cell. 1

 > Click the Run button. 2

 > The result is displayed under the commands. 3

Now that your notebook is ready, it's time to
write and run your first program in Jupyter
Notebook.

You can run your program by pressing Shift + Enter .

You can have as many different cells as you
need in the same Notebook. Each cell contains

its own code.

Figure 1.18: Create a program in Jupyter Notebook

When you run your
program, a new code cell
is automatically added.

It's time to save your Notebook.

Figure 1.19: Save your Notebook

When you are working, the Notebook is autosaved.

The name of the
notebook has changed.

4

1

2

3

2

3
1

30

Initial stack: [1, 21, 32, 45]
45
32
The new stack after pop: [1, 21]
The new stack after push: [1, 21, 78]

Initial stack: [1, 21, 32, 45]
size of stack 4
[]
--
IndexError Traceback (most recent call last)
Input In [3], in <cell line: 9>()
 7 myStack.pop()
 8 print(myStack)
----> 9 myStack.pop()

IndexError: pop from empty list

myStack=[1,21,32,45]
print("Initial stack: ", myStack)
print(myStack.pop())
print(myStack.pop())
print("The new stack after pop: ", myStack)
myStack.append(78)
print("The new stack after push: ", myStack)

myStack=[1,21,32,45]
print("Initial stack:", myStack)
a=len(myStack)
print("size of stack",a)
empty the stack
for i in range(a):

myStack.pop()
print(myStack)
myStack.pop()

Let's see the example of figure 1.15 in Jupyter.
1. Create a stack to store a set of numbers (1, 21, 32, 45).
2. Use the pop operation twice to remove the last two elements from the stack.
3. Use the push operation to add a new element to the stack.

IndexError
You will notice that an error appears. You typed a command to delete an element from the empty
stack and this caused underflow to the stack. You should always check that there are elements in
the stack before trying to delete an element from it.

The print(myStack.pop())
function is used to display
the value returned by the
myStack.Pop() function.

The error appeared because the stack
is empty and you typed a command to

delete an element from the empty stack

This statement is
used to delete all

elements of the stack.

The len function returns
the length of the stack.

31

def push(stack,element):
 stack.append(element)
def pop(stack):
 return stack.pop()
def isEmpty(stack):
 return len(stack)==0
def createStack():
 return []

newStack=createStack()
while True:
 print("The stack so far is:",newStack)
 print("-----------------------------")
 print("Choose 1 for push")
 print("Choose 2 for pop")
 print("Choose 3 for end")
 print("-----------------------------")
 choice=int(input("Enter your choice: "))
 while choice!=1 and choice!=2 and choice!=3:
 print ("Error")
 choice=int(input("Enter your choice: "))
 if choice==1:
 x=int(input("Enter element for push: "))
 push(newStack,x)
 elif choice==2:
 if not isEmpty(newStack):
 print("The pop element is:",pop(newStack))
 else:
 print("The stack is empty")
 else:
 print("End of program")
 break;

In the following program, you will create a stack and you will add or remove elements from it.
The program displays a menu which asks you about the action you want to do each time.

• To add an element to the stack, you have to press the number 1 in the program menu.
• To remove an element from the stack, you have to press the number 2 in the program

menu.
• To exit the program, you have to press the number 3 in the program menu.

32

Execute the previous program as follows:

• Create a stack of three numbers, and
• Add elements to the stack.

Now, you will remove two elements from
the stack and then exit the program. Choose 1 for push

Choose 2 for pop
Choose 3 for end

Enter your choice: 2
The pop element is: 23
The stack so far is: [26, 18]

Choose 1 for push
Choose 2 for pop
Choose 3 for end

Enter your choice: 2
The pop element is: 18
The stack so far is: [26]

Choose 1 for push
Choose 2 for pop
Choose 3 for end

Enter your choice: 3
End of program

The stack so far is: []

Choose 1 for push
Choose 2 for pop
Choose 3 for end

Enter your choice: 1
Enter element for push: 26
The stack so far is: [26]

Choose 1 for push
Choose 2 for pop
Choose 3 for end

Enter your choice: 1
Enter element for push: 18
The stack so far is: [26, 18]

Choose 1 for push
Choose 2 for pop
Choose 3 for end

Enter your choice: 1
Enter element for push: 23
The stack so far is: [26, 18, 23]

26

18

26

23

26

18
Push

element

Push
element

Push
element

18

23

26 26

23

Pop
element

18

18

Pop
element

26

Figure 1.20: Pushing elements

Figure 1.21: Popping elements

33

Pointer

The pointer is a variable which
stores or points to the address
of another variable. The
pointer is like a page number
in the index of a book that
drives the reader to the
required content.

The difference between the stack
and the queue is that in the
stack, the addition and the

deletion of an element are done
from the same side. In the

queue, the addition is done on
one side and the deletion is done

on the other side. So, in the
stack, when deleting, the last

added element is deleted, while
in the queue, the first added

element is deleted.

Operations on the Queue:
There are two main operations on the queue:

• Enqueue: This operation is used to add an element to the rear of
the queue.

• Dequeue: This operation is used to remove an element from the
front of the queue.

First In First Out (FIFO) rule

The first element added in the
list is processed first and the
newest element is processed
last.

Index

Index is a number that
describes the position of an
element in a data structure.

Figure 1.22: Operations on the Queue

Queue

The next data structure you are going to explore is the queue. We often
come across queues in our everyday life. The most common queue is the
queue of cars waiting at a traffic light. When the traffic light turns green,
the car that entered first in the queue will be the one which exits first. A
queue is a data structure that follows the First In First Out (FIFO) rule,
meaning that each element in the queue is served in the order it reaches
the queue.

Q u e u e
Dequeue Enqueue

7 14 3121 443 2317 569 12
4 9 103 82 71 60 5

Rear pointerFront pointer

Index

Queue Pointers
The queue has two pointers:

• Front pointer: Points to the first element of the queue.
• Rear: points to the last element of the queue.

First In First Out rule

34

Enqueue

Dequeue

Enqueue Operation

The operation of adding a new element in the queue is called Enqueue.
To insert a new element into the queue:

• the value of the rear pointer is increased by one and points to the
position of the new element to be entered.

• the element is inserted.

Dequeue Operation

The operation of removing an element of a queue is called dequeue.
To remove an element from the queue:

• the element indicated by the front pointer is removed.
• the value of the front pointer is increased by one to point to the

next available element of the queue.

You cannot add or
remove an element from
the middle of the queue.

Before any action you must
check if there is free space in

the queue to add a new
element and if there is at

least one element for export.

Before

Before

After

After

Figure 1.23: Enqueue operation

Figure 1.24: Dequeue operation

CBA
3210

D

CBA
3210

D

BA
210

C DBA
210

C

Front

Front

Rear

Rear

Front RearFront Rear

CB
210

D

Front Rear

CB
321

DA

Front Rear

0

35

The listName.pop() method can be used for both stack and queue data structures. When it is
used with a stack, the method has no arguments. When it is used with a queue, the method
needs a zero to be added in the arguments: listName.pop(0). The difference between the two
functions is presented in table 1.4 below.

Let's see an example of the implementation of a queue in Python.

• Create a queue to store the set of numbers (1, 21, 32, 45).
• Use the dequeue operation twice to remove the first two elements from the queue.
• Use the enqueue operation to add a new element to the queue.

Queue in Python
In Python, the queue can be represented in several ways, including lists. This is due to the fact that a
list represents a group of linear elements and also to the possibility of adding an element at the end of
the list and the possibility of deleting an element from its beginning.
Below you will learn the general formulas for some of the operations that can be performed on a queue:

Figure 1.25: Queue graphical example

Table 1.3: Queue methods

Table 1.4: listName.pop() vs listName.pop(0) method

Method Description
listName.append(x) Enqueue the element x to the list representing the queue.
listName.pop(0) Dequeue the first element from the list.

Method Description
listName.pop() If the function argument is empty, the last element is removed from the

end of the list that represents the stack.
listName.pop(0) If the function argument is zero, the first element of the list representing

the queue is removed.

32211
3210

45

Front Rear

3221
210

45

Front Rear

1

Dequeue

32
10

4521

Front Rear

Dequeue

32
10

45

Front Rear

78

Enqueue

4532
210

78

Front Rear

Final queue

36

To program the above steps in Python, you will use a Python list to implement the queue structure,
as you did with the stack.

Let's see what happens if you try to remove an element from an empty queue. First you have to empty
the queue.

myQueue=[1,21,32,45]
print("Initial queue: ", myQueue)
myQueue.pop(0)
myQueue.pop(0)
print("The new queue after pop: ", myQueue)
myQueue.append(78)
print("The new queue after push: ", myQueue)

Initial queue: [1, 21, 32, 45]
The new queue after pop: [32, 45]
The new queue after push: [32, 45, 78]

myQueue=[1,21,32,45]
print("Initial queue: ", myQueue)
a=len(myQueue)
print("size of queue ",a)
empty the queue
for i in range(a):

myQueue.pop(0)
print(myQueue)
myQueue.pop(0)

You should always check that there are elements
in the queue before trying to delete an element.

Initial queue: [1, 21, 32, 45]
size of queue 4
[]
--
IndexError Traceback (most recent call last)
Input In [6], in <cell line: 9>()
 7 myQueue.pop()
 8 print(myQueue)
----> 9 myQueue.pop()

IndexError: pop from empty list

The error appeared because you tried to
delete an element from an empty queue.

37

Queue Applications
One example of a queue in Computer Science is the printing queue. For example, you have a computer lab
with 30 computers connected to one printer. When students want to print, their print jobs create a queue.
The tasks are queued to be processed using a First In First Out (FIFO) method. Tasks will be printed in the
chronological order they were submitted. The task that was submitted first will be printed before the one
that was submitted after. The task at the end of the queue will not be printed until all tasks before it have
been printed. When the printer completes a job it will look in the queue to see if there are any jobs left to
process.

Stack and Queue Using Queue Module
A list in Python can act as a queue and a stack as well. Python offers the Queue module which is another
way to implement these two data structures. The Queue module includes some ready-to-use functions that
can be used with both stack and queue.

Table 1.5: Queue module methods
Methods Description

queueName=queue.Queue() Creates a new queue named queueName.
queueName.put(x) Adds the element x to the queue.
queueName.qsize() Returns the size of the queue.
queueName.get() Gets and removes the first element from the queue and the last

element from the stack.
queueName.full() Returns True if the queue is full and False if the queue is empty.

Can be applied to the stack as well.
queueName.empty() Returns True if the queue is empty and False if the queue is full.

Can be applied to the stack as well.

The methods of the Queue library can be used
with both the stack and the queue.

from queue import *

myQueue = Queue()
add the elements in the queue
myQueue.put("a")
myQueue.put("b")
myQueue.put("c")
myQueue.put("d")
myQueue.put("e")

print the elements of the queue
for element in list(myQueue.queue):

print(element)

You will use the Queue module to create a queue.
In this example you should:

• Import the queue library to use the queue's
methods.

• Create an empty queue named myQueue.
• Add the elements a, b, c, d, e to myQueue

queue.
• Print queue elements.

a
b
c
d
e

You import the Queue module
at the beginning of your code.

38

Create a queue in which five values are entered by the user during program execution,
and then print these values and finally print the size of the queue.

from queue import *

myQueue = Queue()

the user enters the elements of the queue for i in range(5):
for i in range(5):

element=input("enter queue element: ")
myQueue.put(element)

print the elements of the queue
for element in list(myQueue.queue):

print(element)

print ("Queue size is: ",myQueue.qsize())

enter queue element: 5
enter queue element: f
enter queue element: 12
enter queue element: b
enter queue element: 23
5
f
12
b
23
Queue size is: 5

Create a program to check if the queue is empty or full.

from queue import *

myQueue = Queue()

myQueue.put("a")
myQueue.put("b")
myQueue.put("c")
myQueue.put("d")
myQueue.put("e")

checkFull=myQueue.full()
print("Is the queue full? ", checkFull)
checkEmpty= myQueue.empty()
print("Is the queue empty? ", checkEmpty)

Is the queue full? False
Is the queue empty? False

39

from queue import *

myStack = LifoQueue()

myStack.put("a")
myStack.put("b")
myStack.put("c")
myStack.put("d")
myStack.put("e")

for i in range(5):

k=myStack.get()
print(k)

empty the stack
checkEmpty= myStack.empty()
print("Is the stack empty?", checkEmpty)

As mentioned before, the Queue module includes some ready-to-use methods that can be used with
a stack or a queue. The table 1.6 shows the module methods that can be used with the stack data
structure.

Remember that operations in
the stack operate according

to the LIFO rule.

When using the get function
with a queue, the fetching

and printing operations will
be based on the FIFO rule.

Let's use the Queue module to create an empty stack.

Example: Print
In the following example, you will see a simulation of the printer's print queue. When users send print
jobs, they are added to the print queue. The printer uses this queue to find out what file to print next.

• Suppose the capacity of the printer is only 7 files, but at the same time you need to print 10 files
from file A to file J.

• Write a program that captures the print queue from the start of the first print job A until all print
jobs are completed.

• Add the block that confirms that the print job queue is empty.

e
d
c
b
a
Is the stack empty? True

Table 1.6: Queue module methods used for the stack
Method Description

stackName=queue.LifoQueue() Creates a new stack named stackName.
stackName.get() Pops the last element from the stack.

40

You can use the following algorithm:

1 Create a print job queue

2 Insert files from A to G into the print
job queue

A
0

C
2

F
5

B
1

E
4

D
3

G
6

3 Output file A and insert file H
A B

0

D
2

G
5

C
1

F
4

E
3

H
6

Printed

4 Output file B and insert file I
B C

0

E
2

H
5

D
1

G
4

F
3

I
6

Printed

5 Output file C and insert file J
C D

0

F
2

I
5

E
1

H
4

G
3

J
6

Printed

6 Output files that have been printed
(D-E-F-G-H-I-J) one by one.

D
0

F
2

I
5

E
1

H
4

G
3

J
6

import the queue library
from queue import *
import the time library to use the sleep function
import time
initialize the variables and the queue
printDocument = " "
printQueueSize = 0
printQueueMaxSize = 7
printQueue = Queue(printQueueMaxSize)
add a document to print the queue
def addDocument(document):
 printQueueSize = printQueue.qsize()
 if printQueueSize == printQueueMaxSize:
 print("!! ", document, " was not sent to print queue.")
 print("The print queue is full.")
 print()
 return
 printQueue.put(document)
 time.sleep(0.5) #Wait 5.0 seconds
 print(document, " sent to print queue.")
 printQueueSizeMessage()
print a document from the print queue
def printDocument():
 printQueueSize = printQueue.qsize()
 if printQueueSize == 0:
 print("!! The print queue is empty.")

41

Document A sent to print queue.
There is 1 document waiting for printing.

Document B sent to print queue.
There are 2 documents waiting for printing.

Document C sent to print queue.
There are 3 documents waiting for printing.

 print()
 return
 printDocument = printQueue.get()
 time.sleep(1) # wait one second
 print ("OK - ", printDocument, " is printed.")
 printQueueSizeMessage()
print a message with the size of the queue
def printQueueSizeMessage():
 printQueueSize = printQueue.qsize()
 if printQueueSize == 0:
 print ("There are no documents waiting for printing.")
 elif printQueueSize == 1:
 print ("There is 1 document waiting for printing.")
 else:
 print ("There are ", printQueueSize, " documents waiting for printing.")
 print()
the main program
send documents to the print queue for printing
addDocument("Document A")
addDocument("Document B")
addDocument("Document C")
addDocument("Document D")
addDocument("Document E")
addDocument("Document F")
addDocument("Document G")
printDocument()
addDocument("Document H")
printDocument()
addDocument("Document I")
printDocument()
addDocument("Document J")
addDocument("Document K")
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()

42

Document D sent to print queue.
There are 4 documents waiting for printing.

Document E sent to print queue.
There are 5 documents waiting for printing.

Document F sent to print queue.
There are 6 documents waiting for printing.

Document G sent to print queue.
There are 7 documents waiting for printing.

OK - Document A is printed.
There are 6 documents waiting for printing.

Document H sent to print queue.
There are 7 documents waiting for printing.

OK - Document B is printed.
There are 6 documents waiting for printing.

Document I sent to print queue.
There are 7 documents waiting for printing.

OK - Document C is printed.
There are 6 documents waiting for printing.

Document J sent to print queue.
There are 7 documents waiting for printing.

!! Document K was not sent to print queue.
The print queue is full.

OK - Document D is printed.
There are 6 documents waiting for printing.

OK - Document E is printed.
There are 5 documents waiting for printing.

OK - Document F is printed.
There are 4 documents waiting for printing.

OK - Document G is printed.
There are 3 documents waiting for printing.

OK - Document H is printed.
There are 2 documents waiting for printing.

OK - Document I is printed.
There is 1 document waiting for printing.

OK - Document J is printed.
There are no documents waiting for printing.

!! The print queue is empty.

43

Table 1.7: Static Data Structures vs Dynamic Data Structures

Static and Dynamic Data Structures
As mentioned before, a data structure is a way to efficiently store and organize data. You also learned
about the classification of data structures into primitive and non-primitive.
Data structures can also be classified into Static and Dynamic.

Static Data Structure
In a static data structure, the size of the structure is fixed. The elements of the data are allocated to
contiguous memory location. The most representative example of a static data structure is the Array.

Dynamic Data Structure
In a dynamic data structure, the size is not fixed and it can be modified during the execution of the
program, depending on the operations performed on it. The dynamic data structures are designed
to facilitate the change in size of the data structures during run time. The most representative example
of a dynamic data structure is the Linked List.

Static Dynamic

Memory size Fixed memory size. The size can be changed during
run time.

Types of memory storage The elements are stored in contiguous
locations in the main memory.

The elements are stored in random
places in the main memory.

Data access speed Faster to access. Slower to access.

Memory Allocation
Linked lists belong to dynamic data structures. This means that the nodes of the linked list are not stored
in contiguous memory locations like the data of arrays. This is the reason you need to store the pointer from
one node to another.

Arrays need a contiguous block of memory. Linked lists don't need to be contiguous
in memory, they can grow dynamically.

Figure 1.26: Example of static and dynamic memory allocations.

54321

3

4

1

2

5

Static Dynamic
 = one byte of used memory = one byte of used memory

44

Linked List
A Linked List is a linear data structure, and it is one of the most popular data
structures in programming. A linked list is like a chain of nodes. Each node
contains two fields: the data field where the data are stored and a field containing
the pointer to the next node. This excludes the last node in which the address
field does not carry any data.
One of the advantages of the linked list is that it can dynamically increase or
decrease its size by adding or deleting nodes.

Node
Each node in the linked list consists of two parts.

• The first section contains the data.
• The second part contains a pointer pointing

to the next node.

Linked List

A Linked List is a linear
data structure, which is
like a chain of nodes.

Node

Node is an individual
block of a data structure
which contains data and
one or more links to
other nodes

Figure 1.27: Graphical representation of a linked list

5 7.2 -2 ABC

A Linked List
Head Null

12

Here you can see an example of an integer linked list.
The linked list consists of five nodes. Null means having no

value, not defined or
empty. Although

sometimes we use the
number 0 to symbolize

null, 0 is a specific number
and can be a real value.

To read the content of a specific node, you
must pass through all previous nodes.

The nodes in a list do not have names. What you know about the node is the address (memory
location) at which it is stored. To access any node of the list, you only need to know the address of
the first node. Then you follow the chain of nodes to reach the node you need.

A pointer to the next nodeData field

Null3 12 1 95 21

Head

Figure 1.28: Graphical representation of node

Figure 1.29: Graphical representation of an integer linked list

45

Table 1.8: Differences between list and linked list

Differences List Linked List

Memory storage
method

Contiguous locations in the memory. Random locations in the memory.

Τhe structure Each element can be accessed by
the index number.

Its elements can be accessed through the
pointer.

Size Each element is stored one after the
other.

Objects are stored as nodes containing
the data and the address of the next
element.

Memory usage Only data is stored in memory. Data and pointers are stored in memory.

Data access type Random access to any list element. Sequential access to elements.

The speed of
addition and

removal

Adding and removing elements is
slower.

Faster addition and removal.

For example, if you want to access the third node of the
list, to process the data it contains, you have to start from
the first node of the list. From the first node to access the
second, and from the second to reach the third.

• The address of the first node is stored in a special
(independent) variable that is usually called the Head.

• The pointer of the last node of the list is null and is
represented with the symbol .

• When the list is empty, the head pointer points to a
null value.

Figure 1.30: Access the third node of the linked list

Let's see a graphic example of a linked list in figure 1.31. As mentioned earlier, each node consists of data
and a pointer pointing to the next node. Each node is also stored in memory at a specific address.

Specific node example:

• The node data is number 15.
• The address of the node in memory is 10.
• The next node will be at address 20.

Let's connect the previous node with the next node
with data value 42, which in turn points to the third
and last node at address 30 with data value 37.

15 25 30

Null

First Node Second Node Third Node

Head

Address/Head Data Next Address

15 20
10 15 20

10 42 30
20 37

30

Figure 1.31: Pointers in a linked list

46

Linked List in Python
Python does not provide a predefined data type for linked lists. You have
to create your own data type or use additional python libraries that provide
a representation of this data type. To create a linked list, you can use Python
classes. In the following example, figure 1.32, you will create a linked list
with three nodes each containing a day of the week.

Class

A class is a user defined data
structure that holds its own
data members (properties)
and methods (behavior).
Classes are used as a template
for creating objects.Monday Tuesday Wednesday

You will first create a node using Class.

single node
class Node:
 def __init__(self, data, next=None):
 self.data = data # node data
 self.next = next # Pointer to the next node

Create a single node
first = Node("Monday")
print(first.data)

Monday

The next step is to create a single-node linked list, this time
you will use the head pointer to point to the first node.

single node
class Node:
 def __init__(self, data = None, next=None):
 self.data = data
 self.next = next

linked list with one head node
class LinkedList:
 def __init__(self):
 self.head = None

list linked with a single node
Linkedlist1 = LinkedList()
Linkedlist1.head = Node("Monday")
print(Linkedlist1.head.data)

Monday

Figure 1.32: Linked list example

47

single node
class Node:
 def __init__(self, data = None, next=None):
 self.data = data
 self.next = next

an empty linked list with a head node.
class LinkedList:
 def __init__(self):
 self.head = None

the main program
linked_list = LinkedList()
the first node
linked_list.head = Node("Monday")
the second node
linked_list.head.next = Node("Tuesday")
the third node
linked_list.head.next.next = Node("Wednesday")

print the linked list
node = linked_list.head
while node:
 print (node.data)
 node = node.next

Now add more nodes to your linked list.

Monday
Tuesday
Wednesday

Add a Node to a Linked List
The actions required to add the new node are:

• The pointer of the first node must point to the address of the
new node, so that the new node becomes the second node.

• The pointer of the new (second) node must point to the
address of the third node.

In this way, you do not have to shift the elements if a new element
is added in the middle. The process is limited to changing the
address values in the node, that makes the addition faster in the
case of linked lists compared to the case of sequential lists.

Example:
You have a linked list of two elements: 12, 99. You want to insert
the element 37 as a second element. In the end, you will have a
list of three elements: 12, 37, 99.

12

12

99

9937

371. Create the
new node.

2. Link the 37 node to the 99 node.
3. Link the 12 node to the 37 (new

node created).

node

node

node.next

node.next.nextnode.next

1

23

The while statement is used to
move from one node to another.

48

single node
class Node:
 def __init__(self, data = None, next=None):
 self.data = data
 self.next = next

linked list with one head node
class LinkedList:
 def __init__(self):
 self.head = None

def insertAfter(new, prev):
 # create the new node
 new_node = Node(new)
 # make the next of the new node the same as the next of the previous node
 new_node.next = prev.next
 # make the next of the previous node the new node
 prev.next = new_node

create the linked list
L_list = LinkedList()

add the first two nodes
L_list.head = Node(12)
second = Node(99)
L_list.head.next = second

insert the new node after node 12 (the head of the list)
insertAfter(37, L_list.head)

print the linked list
node = L_list.head
while node:
 print (node.data)
 node = node.next

12
37
99

Delete a Node from a Linked List
To delete a node, you must change the pointer of its predecessor to
point to the node following the deleted node. The deleted (second)
node is "useless data" and the memory space it occupies is allocated
for other uses.

Example:
You have a linked list of three elements: 12, 37, 99. You want to delete
the element 37. In the end, you will have a list of two elements: 12, 99.

37

12

1. Link the 12 node pointer to 99 node.
2. Delete node 37

node

99

node.next

node.next

1

2

12 9937

node node.next.nextnode.next

3. Final result

12 99

node node.next

3

49

single node
class Node:
 def __init__(self, data = None, next=None):
 self.data = data
 self.next = next

linked list with one head node
class LinkedList:
 def __init__(self):
 self.head = None

def deleteNode(key, follow):

 # store the head node
 temp = follow.head

 # find the key to be deleted,
 # the trace of the previous node to be changed
 while(temp is not None):
 if temp.data == key:
 break
 prev = temp
 temp = temp.next

 # unlink the node from the linked list
 prev.next = temp.next
 temp = None

create the linked list
L_list = LinkedList()

add the first three nodes
L_list.head = Node(12)
second = Node(37)
third = Node(99)
L_list.head.next = second
second.next = third

delete node 37
deleteNode(37,L_list)

print the linked list
node = L_list.head
while node:
 print (node.data)
 node = node.next

12
99

If you want to delete
the first node of a linked
list, you must move the

head to the second
node of the list.

50

2 State the differences between static and dynamic data structures.

 Static data structures Dynamic data structures

3 Write two examples of uses for linked lists.

1

Read the sentences and tick True or False. True False

1. Python defines non-Primitive Data Structures.

2. Linear Data Structures store data items exclusively in random order.

3. Adding and removing items in a linked list is slower than a list.

4. The items in a list can only be accessed through their index number.

5. The size of a static data structure can be modified during the execution of
a program.

Exercises

51

4 You have a stack with six empty spaces.

• You will add the following letters C, E, B, A and D in
positions 0 to 4.

• Fill the stack indicating the position of the top cursor.
• Execute the following operations:

 pop pop push X push K pop

 Show the final output after performing the above
operations, indicating the position of the top cursor.

 Write a program that creates the stack shown above,
and then perform the above operations using the
standard queue library.

Final Output

5

4

3

2

1

0

Stack

5

4

3

2

1

0

5 You have the following number sequence: 4, 8, 2, 5, 9, 13.

• What is the process used to add the above elements into the queue?

• Complete the queue after adding the elements.

0 1 2 3 4 5

• What is the process used to remove elements from the queue?

• How many times should the above operation be performed to remove the element
with value 5?

• Write Python code to create the previous queue.

52

6 Given the following nodes, draw the linked list and then write the values in the list in
the correct order.

 Head = 3
9 25 0 43 1 54 -32

7 Create a list with the following numbers: 5, 20, 45, 8, 1.

• Draw the nodes of the linked list.

• Describe the process of adding the number 7 after the number 45.

• Draw the new list.

• Describe the process required to delete the second node of the list.

• Draw the final linked list.

53

In the previous lessons, you learned about some linear data structures. In linear data structures, each
element follows the other element in a linear manner. Can you think of any case in which things do
not proceed linearly? For example, can an element be followed by more than one element?

Non-Linear Data Structures
A data structure can be characterized by the possibility of linking an element to more than one other
element at the same time. An element of a non-linear data structure could be connected to more
than one element. Representive examples of non-linear data structures are trees and graphs. Figure
1.33 illustrates the linear and the non-linear data structures.

Figure 1.33: Graphical representation of linear and non-linear data structures

Lesson 3

Non-Linear Data Structures

Table 1.9: Differences between Linear and Non-linear Data Structures
Linear Non-linear

Data elements are arranged in a linear order where
each element is attached to its previous and its next
elements.

Data elements can be attached to many other
elements.

Data elements can be traversed in a single pass. Data elements cannot be traversed in a single pass.

The implementation is easier. The implementation is more complicated.

Linear data structure Non-linear data structure

Link to digital lesson

54

Trees
Trees are non-linear data structures. A tree consists of a collection of nodes
that are arranged in a hierarchical order. Each node can associate with one
or more nodes. Nodes are connected with edges in a form of parent-child
relationship. Trees are used in many areas of Computer Science, including
operating systems, graphics, database systems, games, AI, and computer
networks.

Figure 1.34: Relationships of a tree

Tree

A tree is a non-linear data
structure. It is a collection
of nodes arranged
hierarchically.

Edge

An Edge connects nodes
in a tree data structure.

Tree Terminology Used in the Tree Data Structure
Root: The first and only node in the tree that does not have a parent and is at the first level of the tree.

(A node in figure 1.35)
Child: A node directly connected to a node at a higher level. (Node H is the child of node D and nodes B and

C are the children of node A)
Parent: A node that has one or more children at a lower level. (Node B is the parent of nodes D and E)
Leaf: A node that does not have any child nodes. (Node F is a leaf node)
Siblings: All child nodes that have the same parent node. (Nodes D and E are siblings)
Edges: The links that connect tree nodes.
Sub-Tree: Smaller trees that can be found within a larger tree. (A tree with node D as a parent and node H

and I as children)

You can have a simple tree,
which consists of a single

node. This node is also the
root of this simple tree,

because it has no parent.

Node

Edge

Figure 1.35: Tree data structure

A

D

H I J

E F G

CB

First level

Second level

Third level

Fourth level

Root

Parent Node Siblings

Edges

Child Node

Leaf Node

Sub-tree

55

Here is an example of a tree data structure.

Figure 1.36: Example of a tree data structure

A node can be both a
child and a parent: a child
of the previous node and
a parent of the next node.

This PC

Desktop3D Objects Documents Downloads Music Pictures

Alice Python Projects

HelloWorld.py infinite.py

Tree Data Structure Features

• They are used to represent a hierarchy.
• They are flexible, it is very easy to add or

remove an element from a tree.
• It is easy to search for an element in a tree.
• They reflect structural relationships

between the data.

Example
The organization of files in the operating system is a
practical example of a tree. As you can see in figure 1.37,
inside the "Documents" folder is another folder called
"Python Projects" which contains two other files.

Figure 1.37: Organization of files in the operating system

Animals

Root

Vertebrates Invertebrates

Ιnsects ΑrachnidsMammalsFishBirds

TigerHorseCamel

Parent Node

Child Node Leaf Node

Siblings

56

Tree Data Structure in Python
Python does not provide a predefined data type for the tree
data structure. However, trees are easily built out of lists and
dictionaries. A very simple implementation of a tree using a
dictionary is shown in figure 1.38.

In this example, you will create a tree using a Python dictionary.
The keys of the dictionary are the nodes of the tree. For each
key, the corresponding value is a list containing the nodes that
are connected by a direct edge from this node.

{'a': ['b', 'c'], 'b': ['d', 'e'], 'c': [None, 'f'],
'd': [None, None], 'e': [None, None], 'f': [None, None]}

myTree = {
 "a": ["b", "c"], # node
 "b": ["d", "e"],
 "c": [None, "f"],
 "d": [None, None],
 "e": [None, None],
 "f": [None, None],
}
print(myTree)

Figure 1.38: Python dictionary tree

In the following example, you will create
a tree like the one in figure 1.39.

Data structures has 2 nodes
 Linear
 Non-linear
Linear has 3 nodes
 Stack
 Queue
 Linked List
Non-linear has 2 nodes
 Tree
 Graph

myTree = {"Data Structures":["Linear","Non-linear"],
 "Linear":["Stack","Queue","Linked List"],
 "Non-linear":["Tree", "Graph"]}

for parent in myTree:
 print(parent, "has",len(myTree[parent]),"nodes")
 for children in myTree[parent]:
 print(" ",children)

Parent Children

Figure 1.39: Data structures tree

Data Structures

Linear Non-linear

Tree

Stack Queue Linked List

Graph

a

fd e

cb

57

Table 1.10: Types of binary tree data structures

Type Description Structure drawing

Full binary tree Each node, other than "leaves", has
either 0 or 2 "children". 1

3 4

2
0

Complete Binary
Tree

Every level of the tree is fully filled,
except for possibly the last level. All
the nodes in the last level are filled
from left to right.

1

3 4 5

2
0

Perfect Binary
Tree

All internal nodes have two children
and all leaves are at the same level. 1

3 4 5

2
0

6

Binary Tree
There is a special category of trees called binary trees. A binary tree is a tree where each node has two children
at most, called Right Child and Left Child. In figure 1.40 you can see an example of a tree and a binary tree.

Figure 1.40: Tree and Binary tree

b

a

d

gk

f j

m

e h i

c

l

b

h i

d e f

c

a

g

Tree Binary Tree

Right ChildLeft Child

Examples of Applications of Tree Data Structures:

• Store hierarchical data, such as folder structures.
• Define data in HTML.
• Implementation of indexing in databases.

58

Decision Tree
The decision statement (if a: else b) is one of the most frequently
used statements in Python. By nesting and combining these code
statements, you can build a decision tree.
Decision trees are used in AI through a machine learning technique,
called decision tree learning. The end nodes of the trees in this
technique, also known as leaves, contain possible solutions to a
problem. Each node, with the exception of the leaves, is associated
with a logical condition from which the possibilities of answering
yes or no branch out. Decision trees are easy to understand, use,
visualize, and verify. For example, figure 1.41 shows a decision tree
that determines whether to apply for a certain university or not
based on two criteria: courses provided by the university and
meeting admission requirements. Figure 1.41: Decision tree example

Graphs
The most important feature of non-linear data structures is that like arrays
and linked lists, their data does not follow a sequence, and its elements
can each be associated with more than one element. A rooted tree starts
with a root node, which can be connected to other nodes. Trees follow
certain rules: the tree nodes must be connected, and the tree must be free
of loops and self loops.
But what will happen if you don't follow the rules of trees? Then, you are
not talking about trees but about a new dynamic data structure called
Graphs. In fact, trees are actually a type of graph. The graph is the most
general data structure, in the sense that all previous structures presented
can be considered special cases of graphs. figure 1.42 illustrates a graph
with six nodes and ten edges.

A tree is a graph but the reverse is
not true as not all graphs are trees.

Figure 1.42: An example graph with six nodes
and ten edges

Graph

A graph is a data structure that
consists of a set of nodes and a
set of lines, that connect all or
some of the nodes.

Table 1.11: Differences between Trees and Graphs

Trees Graphs

Nodes attached in
hierarchical model.

Nodes attached in
network model.

There is a unique node
called the root (in rooted

trees).

There is not a unique or
root node.

Nodes are connected with
a parent-child relationship.

There is no parent-child
relationship between

the nodes.

Trees are simpler structures
compared to graphs.

Graphs are more
complex structures.

Cycles are not allowed. Can contain cycles.

1
2

3

4

6

5

Does the university
provide the course I want?

Do my scores meet
the admission
requirements?

Discard

Discard Apply

No

No

Yes

Yes

59

Types of Graphs

• Directed Graph: In a directed graph, nodes are connected by directed edges – they only go in one
direction.

• Undirected graphs: In undirected graphs, the connections have no direction. This means that the
edges indicate a two-way relationship where each edge can be traversed in both directions.

Figure 1.43 shows a simple directed and undirected graph with six nodes and six edges.

Graphs in Everyday Life
World Wide Web
The most representative example of graphs is the World Wide Web. The World Wide Web can be considered
as a directed graph, in which the vertices represent web pages, and the directed edges the hyperlinks. Web
structure mining is the discovery of useful knowledge from the structure of the World Wide Web represented
though hyperlinks. A person can form a graph structure of such hyperlinks and the relationships they create
between different web pages. You can see a graphical representation of the World Wide Web in figure 1.44.
By accessing such graphs, someone can calculate the relative importance of a web page.

A

B C

D

C

D

D
B

Directed Graph Undirected Graph

Figure 1.43: Directed and Undirected Graph

The Google search engine uses a similar approach to find the relative importance of a web page
and orders the search result according to this importance. This algorithm used by Google is
known as the PageRank algorithm, and was invented by the Google founders.

Figure 1.44: World Wide Web

60

Figure 1.45: Google maps

Neural Network
A neural network is a machine learning graph that imitates the human brain. A neural network can
be directed and undirected based on the learning objective. It consists of neurons and weights,
distributed in different layers. The neurons are represented by nodes and the weights are represented
by edges. Signal flows are computed and optimized throughout the neural network structure to
minimize the error. It is used in many intelligent applications such as machine translation, image
classification, object detection, and object recognition. Figure 1.47 shows an example of a neural
network structure.

Facebook
Facebook is another example of an undirected graph. As you can
see in figure 1.46, the nodes represent Facebook users, while the
edges represent friendship relationships. When you want to add
a friend, he has to accept your request; that person cannot be
your friend on the network without accepting your friend request.
The relationship here between two users (two nodes) is a two-
way relationship. The Facebook's friend suggestion algorithm uses
graph theory. Social network analysis studies social relationships
using graphs or network theory from Computer Science.

Google Maps

Google maps and all other similar applications use graphs for showing transportation systems to
calculate the shortest path between two locations. These applications use graphs that contain a very
large number of nodes and edges that cannot be distinguished by the human eye.

Figure 1.46: Facebook's undirected graph

User

Friendship
Relationship

Figure 1.47: Neural Network Structure

input layer output layerhidden layers

61

Graphs in Python
Since Python does not provide a predefined data type for trees,
it does not provide a predefined data type for graphs (remember
that trees are a special case of graphs). However, graphs can also
be built out of lists and dictionaries.

{'a': ['b', 'c'], 'b': ['c', 'd'], 'c': ['d', 'e'],
 'd': [], 'e': []}

In the following example, you will do the following:
1. Create a directed graph like the one shown in figure 1.48.
2. Create a function to add a node to the graph.
3. Create a function containing all paths of the graph.

Then the main program will:
1. Create the graph.
2. Print the graph.
3. Call the add function.
4. Print all the graph's paths.
You will use a dictionary whose keys are the nodes of the graph. For each key, the corresponding value
will be a list containing nodes connected by a direct edge of this node.

myGraph = { "a" : ["b","c"],
 "b" : ["c", "d"],
 "c" : ["d", "e"],
 "d" : [],
 "e" : [],
 }
print(myGraph)

Figure 1.48: Graph example

function for adding an edge to a graph
def addEdge(graph,u,v):
 graph[u].append(v)

function for generating the edges of a graph
def generate_edges(graph):
 edges = []

 # for each node in graph
 for node in graph:

 # for each neighbouring node of a single node
 for neighbour in graph[node]:

b

a

c

ed

62

The graph contents
[('a', 'b'), ('a', 'c'), ('b', 'c'), ('b', 'd'), ('c', 'd'), ('c', 'e')]
The new graph after adding new edges
[('a', 'b'), ('a', 'c'), ('a', 'e'), ('b', 'c'), ('b', 'd'), ('c', 'd'),
('c', 'e'), ('c', 'f')]

 # if edge exists then append to the list
 edges.append((node, neighbour))
 return edges

main program
initialisation of graph as dictionary
myGraph = {"a" : ["b","c"],
 "b" : ["c", "d"],
 "c" : ["d", "e"],
 "d" : [],
 "e" : [],
 }

print the graph contents
print("The graph contents")
print(generate_edges(myGraph))

add more edges to the graph
addEdge(myGraph,'a','e')
addEdge(myGraph,'c','f')

print the graph after adding new edges
print("The new graph after adding new edges")
print(generate_edges(myGraph))

63

3 Describe how graph algorithms are utilized in commercial applications.

2 State the difference between trees and graphs.

 Trees Graphs

1

Read the sentences and tick True or False. True False

1. An item of a nonlinear data structure could be connected to more than one
item.

2. The implementation of linear data structures is more complicated than the
implementation of nonlinear data structures.

3. The leaves in a decision tree learning contain the answers to a problem.

4. The Google PageRank algorithm calculates the relative importance of a web
page on the World Wide Web.

5. Neural networks are a graph used to visualize other problems.

Exercises

64

4 Fill in the blanks with the correct names of the parts of the tree.

b

a

e

g

d h

k

c i

f

j

65

5 In the following image, you can see the book's contents page.

• Complete its tree representation.

• Is it a binary tree? Justify your answer.

Book
 C1
 C1.1
 C1.2
 C2
 C2.1
 C2.1.1
 C2.1.2
 C2.2
 C2.3
 C3

C1

Book

C2

C1.1

66

6 Draw the tree that will result from the following information:

• Node A has children B and C.
• Node D and E have the same parent which is node B.
• Node F has a sibling which is node G, and they have the same parent which is node C.
• Node H has two child nodes, I and J, and has a parent, node F.

 What type of tree is described above?

67

 Using the dictionary in Python, write the appropriate program to represent this tree
and print the parents and children.

68

Service is provided to bank customers based on
their time of arrival at the branch. The bank has
one cashier and the average service time per
customer is 2 minutes.
The queue cannot exceed 40 people in the bank.

Create a Python program which will get one of
the import values: "ENTRY" or "NEXT".

• If you enter the value "ENTRY", it will read
the name of the customer and immediately
after that will show the number of people
waiting in front of him. If the queue is full,
then the message "The branch is full. Come
another day." will be displayed.

• If you enter the value "NEXT", the name of
the next customer to be served should be
displayed.

1

Finally the program will display on the screen:

• The number of people served.
• The average customer waiting time.

3

Repeat the above process until there are no
customers waiting for service.

2

Project

69

Now you have learned to:
> Define what AI is.
> Categorize the applications of AI.
> Classify data structures.
> Identify the difference between stack and queue data structures.
> Identify the difference between list and linked list data structures.
> Identify the difference between tree and graph data structures.
> Implement complex data structures using Python programming

language.

Binary Tree

Child

Data Structure

 Decision Tree

Dequeue

Directed Graph

Dynamic

Front

Graph

Head

Index

Leaf

Linear

Linked List

Non-Linear

Non-Primitive

Null

Pointer

Pop

Primitive

Push

Rear

Root

Siblings

Stack

Sub-Tree

Top

Underflow

Undirected Graph

KEY TERMS

Wrap up

70

In this unit, you will learn about some fundamental algorithms used in AI. You
will also create a simple rule-based medical diagnosis system with multiple
programming approaches and compare their results. Finally, you will learn
about search algorithms and how to solve maze puzzles when taking multiple
parameters into account.

Learning Objectives
In this unit, you will learn to:
> Create recursive code.
> Differentiate between the Breadth-first search and Depth-first

search algorithms.
> Describe search algorithms and their application.
> Compare search algorithms.
> Describe what a rule-based system is.
> Train artificial intelligence models so they can learn to solve

complex problems.
> Evaluate the results of your code and the efficiency of your program.
> Develop programs to solve simulations of real-life problems.
> Compare search algorithms.

Tools
> Jupyter Notebook

2. Artificial Intelligence
Algorithms

Lesson 1

Recursion

Link to digital lesson

Figure 2.1: An example of recursion.

Dividing the Problem
In this lesson, you will use recursive functions to make your program more intuitive and efficient.
If your parents brought you a gift and you were eager to know what it was, but when you opened
the box you found a new box inside that box, and thereafter there were boxes inside boxes, you
would not know in which of those boxes the gift was.

Recursion
Recursion is one of the ways to solve problems in computer science, by dividing
a problem into a group of small problems similar to the original problem so that
you can use the same algorithm to solve those problems. Recursion is used by the
operating system and by other applications, and most programming languages
support it as well.

Recursion occurs when the same
instructions are repeated but with
different data and less complexity.

Open the box

You have found the
gift and finished the

recursion

Is there a box
inside?

No

Yes

71

recursive function
def recurseFunction():
 if (condition): # base case
 statement
 else:
 #recursive call
 recurseFunction()

main program
.......

normal function call
recurseFunction()
.........

def mySumGrade (gradesList):
 sumGrade=0
 l=len(gradesList)
 for i in range(l):
 sumGrade=sumGrade+gradesList[i]
 return sumGrade

def avgFunc (gradesList):
 s=mySumGrade(gradesList)
 l=len(gradesList)
 avg=s/l
 return avg

program section
grades=[89,88,98,95]
averageGrade=avgFunc(grades)
print ("The average grade is: ",averageGrade)

Recursive Function
In some cases, it is possible for a function to call itself,
and this property is called recursive calls.
The general syntax of the recursive function:

Let's look at an example of a function that calls another.

A recursive call is the process
by which a function calls itself.

The len() function takes a list
as an input argument, which

counts and returns the
number of items in the list.

The average grade is: 92.5

The mySumGrade
function is called.

Figure 2.2: Representation of a recursive call

recurseFunction()

Main program

statement

condition

True

False

72

Table 2.1: Factorials from 0! to 5!

The recursive function consists of two states:

Base case
It is the state in which the function stops calling itself, and access to
the base case is verified through a conditional statement. Without
the base case, the self-recall process will be infinite.

Recursive case
It is the state in which the function calls itself when the stop condition
is not met, and the function remains in this self-recalling state until
it reaches the base state.

Recursion Common Examples
One of the most common examples of using recursion is the process of calculating the factorial
of a specific number. The factorial of a number is defined as the product of all natural numbers
smaller than or equal to that number. The factorial is expressed by the number followed by the
symbol "!". For example, the factorial of 5 is 5! and 5!=5*4*3*2*1.

You notice that the process of calculating
the factorial is based on the rule below0!=10!

1!= 0! *1or1!=1*1=11!

2!= 1! *2or2!=2*1=22!

3!= 2! *3or3!=3*2*1=63!

4!=3! * 4or4!=4*3*2*1=244!

5!=4! * 5or5!=5*4*3*2*1=1205!

if n=0,
if n>0

1
(n-1)! * nn! =

Let's create a factorial loop that calculates the factorial of the number using the for iteration.

calculate the factorial of an integer using iteration

def factorialLoop(n):
 result = 1
 for i in range(2,n+1):
 result = result * i

 return result

main program
num = int(input("Type a number: "))
f=factorialLoop(num)
print("The factorial of ", num, " is:", f)

Type a number: 3
The factorial of 3 is:6

Recursive case

Base case

Figure 2.3: The rule of calculating the factorial

73

Table 2.3: Recursion and Iteration

calculate the factorial of an integer using a
recursive function
def factorial(x):
 if x == 0:
 return 1
 else:
 return (x * factorial(x-1))

main program
num = int(input("Type a number: "))
f=factorial(num)
print("The factorial of ", num, " is: ", f)

Now let's calculate the factorial of a number using a factorial function.

Type a number: 3
The factorial of 3 is: 6

Table 2.2: Advantages and disadvantages of recursion

Advantages Disadvantages
• Recursive functions reduce the code segment to a

smaller number of instructions.
• A task can be broken down into a set of sub-problems

using recursion.
• Sometimes it's easy to use recursion to replace nested

duplicates.

• Sometimes it is difficult to follow the logic of
recursive functions.

• Recursion requires more memory and time.
• It is not easy to define cases in which recursive

functions can be used.

Recursion and Iteration
Recursion and iteration are both involved in executing a set of instructions a number of times, and
the main difference between recursion and iteration is the way in which a recursive function is
terminated. A recursive function calls itself and ends its execution when the base state is reached.
An iteration is executed repeatedly until a specific condition is met or a specific number of iterations
has elapsed.
Here some of the differences are reviewed between recursion and iteration in the following table.

Iteration Recursion
Fast execution. Slower execution compared to iteration.
It needs less memory. It needs more memory.
The size of the code is larger. The size of the code is smaller.
Ends by completing the specified number of iterations
or satisfying a condition. It expires upon reaching the base state.

Base case

Recursive
case

factorial(2) 3

factorial(3)

factorial(1) 2

factorial(0) 1

3! = 3*2*1 = 6 1

Figure 2.4: Recursion tree

74

When do you use recursion?

• In many cases it is considered as a more intuitive way of dealing with a problem.
• Some data structures are easy to explore using recursion.
• Some sort algorithms, such as quick sort, use recursion.

In the following example, you will extract the largest number in a list of numbers using a recursive
function. Also shown in the last line of the example is another function using iteration for the purpose
of comparison.

def findMaxRecursion(A,n):

 if n==1:
 m = A[n-1]
 else:
 m = max(A[n-1],findMaxRecursion(A,n-1))
 return m

def findMaxIteration(A,n):

 m = A[0]
 for i in range(1,n):
 m = max(m,A[i])
 return m

main program
myList = [3,73,-5,42]
l = len(myList)
myMaxRecursion = findMaxRecursion(myList,l)
print("Max with recursion is: ", myMaxRecursion)
myMaxIteration = findMaxIteration(myList,l)
print("Max with iteration is: ", myMaxIteration)

Max with recursion is: 73
Max with iteration is: 73

The max() function returns the
element with the highest values (the

largest valued element in myList).

Figure 2.5: The recursion tree of the function to extract the largest number in a list of numbers

max(A[2], findMaxRecursion(A, 2))42

max(A[3], findMaxRecursion(A, 3))

-5

73 3

>

>

>

max(A[1], findMaxRecursion(A, 1))

75

def powerFunRecursive(baseNum,expNum):
 if(expNum==1):
 return(baseNum)
 else:
 return(baseNum*powerFunRecursive(baseNum,expNum-1))

def powerFunIteration(baseNum,expNum):

 numPower = 1
 for i in range(exp):
 numPower = numPower*base
 return numPower

main program
base = int(input("Enter number: "))
exp = int(input("Enter exponent: "))
numPowerRecursion = powerFunRecursive(base,exp)
print("Recursion: ", base, " raised to ", exp, " = ",numPowerRecursion)
numPowerIteration = powerFunIteration(base,exp)
print("Iteration: ", base, " raised to ", exp, " = ",numPowerIteration)

Infinite Recursive Function
You have to be very careful when implementing a recursive call, you must provide a way to stop
repeating by finding a specific condition to avoid unlimited redundancy occurring. During infinite
recursion, the system stops responding due to too many function calls which leads to memory overflow
and application termination.

Enter number: 10
Enter exponent: 3
Recursion: 10 raised to 3 = 1000
Iteration: 10 raised to 3 = 1000

In the next program, you will create a recursive function to calculate the power of a number.
The program will accept a number (base) and an index (power) from the user, and you will use the
powerFunRecursive() recursive function which will use these two arguments to calculate the power
of the base number to the exponent. The same can also be achieved with iteration and an example
is included.

76

77

1

Read the sentences and tick True or False. True False

1. Recursive functions have two states.

2. A recursive function calls another function.

3. Recursive functions are faster to execute.

4. Calling functions makes the code block smaller.

5. Writing repetitive code requires less recursion.

Exercises

2 What are the differences between iteration and recursion?

3 When should recursion be used?

77

78

4 List the advantages and disadvantages of using recursion.

5 Write a Python recursive function to calculate the nth largest number in a list.

6 Write a Python recursive function to calculate the sum of all the even numbers in a list.

78

Searching in Graphs
There are cases in which you need to find a specific node in a graph (e.g. a person searching the
destination city they want to travel to) or visit every node in a graph to perform a certain operation
(e.g. printing the graph nodes). In order to achieve this, you need to visit every node in the graph
until you find the one you need. This procedure is called graph search or graph traversal, and there
are many search algorithms that help implement it, including:

• Breadth-first search (BFS) algorithm
• Depth-first search (DFS) algorithm

BFS example: Network broadcasting DFS example: Maze solving

Lesson 2

DFS/BFS Algorithms

Breadth-first search (BFS) algorithm

The Breadth-first search (BFS) explores the graph level by
level. You start from a root node (start node), then you visit
the nodes that are directly connected with it, one by one.
When all the nodes of the level have been visited, you move
on to the next level, following the same procedure as shown
in figure 2.6.
To keep track of the nodes you have visited, you use a queue.
When a node is explored, you enqueue its child. Then, you
dequeue the next node to be explored.

Level 0

Level 1

Level 2

A

CB

GD FE

Figure 2.6: BFS Algorithm

1

2

3

4 5 6

Broadcasting node

Other nodes
Broadcasting

node's neighbors

Link to digital lesson

79

You must traverse all the nodes
in layer 1 before you move on

to the nodes in layer 2

The following example shows how the BFS algorithm works. Using the
following diagram, determine which nodes to visit to get from root node
A to node F.
(note: use the appropriate data structure)

1 Starting from the root node
(node A). Add the root node
to the queue.

2 Remove the root node from
the queue and process it.
Next, add the children of
the this node to the queue
(nodes B and C).

3 Remove the node at the
front of the queue (node B)
from the queue and process
it. Next, add the children of
the this node to the queue
(nodes D and E).

A

B

D E F

C

QueueGraph

210

A

B

D E F

C

0

A

A

B

D E F

C

210

BA C
210

DC E

A

B

D E F

C

10

BA C
0

CB

Visited

80

The nodes visited using the BFS
algorithm are: A, B, C, D, E, F

4 Remove node C and
process it, then add
its children.

5 Remove node D
and process it.
(it has no children).

6 Remove node E
and process it.
(it has no children).

7 Remove node F and process it. The queue
is now empty and the search is terminated.

A

B

D E F

A

B

D E F

C

A

B

D E F

C

A

B

D E F

C

C

210

ED F

10

DC E
10

ED F
0

FE

F

Let's see how you can implement the BFS algorithm in Python.

graph = {
 "A" : ["B","C"],
 "B" : ["D","E"],
 "C" : ["F"],
 "D" : [],
 "E" : [],
 "F" : []
}

visitedBFS = [] # List to keep track of visited nodes
queue = [] # Initialize a queue

 # bfs function
def bfs(visited, graph, node):
 visited.append(node)

81

 queue.append(node)

 while queue:
 n = queue.pop(0)
 print (n, end = " ")

 for neighbor in graph[n]:
 if neighbor not in visited:
 visited.append(neighbor)
 queue.append(neighbor)

main program
bfs(visitedBFS, graph, "A")

A B C D E F

The (BFS) algorithm can be developed by defining the starting point (Initial State)
and the target point (Goal State) to determine the path between them.

INFORMATION

Practical Applications of the BFS Algorithm

BFS is used by peer-to-peer networks to find all neighbor nodes in order to
establish communication.

Social media use BFS to connect nodes of users that are related such as those
with similar interests or a common location.

GPS navigation systems use BFS to find neighboring places so they can create
routes for the user.

To achieve network broadcasting of some packets, BFS is used.

82

The first version of the Depth-First Search
(DFS) algorithm was developed in the 19th

century by a French mathematician as a
strategy for solving mazes.

HISTORY

Depth-first search (DFS) algorithm

In Depth-first search (DFS), you keep following the edges,
going deeper and deeper into the graph. DFS uses a recursive
procedure to traverse through the nodes. When you reach
a node that has no edges to any new node, you go back to
the previous node and continue the process. The DFS
algorithm uses a stack data structure to keep track of the
exploration trail. When a node is explored, it is pushed into
the stack. When you need to go back, you pop the node
from the stack as illustrated in figure 2.7.

The following example shows how the Depth-first
search (DFS) algorithm works. Using the following
diagram, trace the order of traversal followed by the
DFS algorithm. (note: use appropriate data structure)

Figure 2.7: DFS Algorithm

Level 0

Level 1

Level 2

A

CB

GD FE

A

B

D E F

C

StackGraph

A

B

D

A

B

E

A

E

1 Process root A and add it to the stack.

2 Process node B and add it to
the stack.

3 Process node D and add it to the stack. A
visited node that has no children is
removed from the stack. (remove node D).

4 Process node E and add it to the stack. A
visited node that has no children is removed
from the stack. (remove node E).

A

A

B

D E F

C

A

B

D E F

C

A

B

D E F

C
B

A

D

BA

B

A

B

D E F

C

Visited

1

3 4 5 62

83

AA

C

A

B

5 Remove node B. 6 Process node C and add it to the stack.

7 Process node F and add it to the stack. 8 The stack is empty and the DFS accordingly
terminates.

A

B

D E F

C

A

B

D E F

C

A

B

D E F

C

A

B

D E F

C

A

F

C

A

C

A

C

A

C

F

A

C

F

Let's see how you can implement the Depth-first search (DFS) algorithm in Python.

graph = {
 "A" : ["B","C"],
 "B" : ["D","E"],
 "C" : ["F"],
 "D" : [],
 "E" : [],
 "F" : []
}

visitedDFS = [] # list to keep track of visited nodes

dfs function
def dfs(visited, graph, node):
 if node not in visited:
 print(node, end = " ")
 visited.append(node)
 for neighbor in graph[node]:
 dfs(visited, graph, neighbor)

main program
dfs(visitedDFS, graph, "A")

A B D E C F

The nodes
visited using

the DFS
algorithm are:
A, B, D, E, C, F

A stack is used indirectly
through the runtime stack
for tracking recursive calls.

84

Table 2.4: Comparison of the BFS and DFS algorithms

Comparison criteria DFS BFS

Implementation
method Traverses according to tree depth. Traverses according to tree level.

Data structure
Uses the stack data structure to
keep track of the next location to
visit.

Uses queue data structure to keep
track of the next location to visit.

Use Better when the structure of the
graph is narrow and long.

Better when the structure of the
graph is wide and short.

Search method Goes to the bottom of a subtree,
then backtracks.

Finds the path to the destination
with the least number of edges.

First visited nodes Children are visited before siblings. Siblings are visited before children.

Practical Applications of the DFS Algorithm

DFS algorithm is used in Path finding to explore different paths in depth for maps
and roads and find the best.

DFS is used to solve mazes, by traversing all possible routes.

Cycles in a graph can be detected using DFS by the presence of a back edge,
that is passing through a node twice.

85

86

3 Compare the differences between the BFS and DFS algorithms.

1

Read the sentences and tick True or False. True False

1. The BFS and DFS are implemented with the use of recursion.

2. The BFS and DFS cannot be used on tree data structures.

3. The BFS algorithm is implemented with the help of a linked list data structure.

4. The DFS algorithm can be implemented with the help of a stack data
structure.

5. The BFS algorithm cannot be used in network broadcasting.

Exercises

2 Explain how the BFS algorithm and the DFS algorithm work.

86

87

4 In the diagram to the right, you want to go from
the start node (A) to the target node (G). Apply
BFS and DFS algorithms using the appropriate
data structure (stack/queue), indicating which
nodes are visited.

A

G

B C D

I

L

FE

M

H J

K

87

88

6 Write a Python function that uses DFS to find the shortest path in a graph.

5 Write a Python function that performs BFS on a graph to check if there is a path between
two given nodes.

88

Lesson 3

Rule-based Decision Making

Link to digital lesson

Rule-Based Systems
Rule-based AI systems focus on using a set of predefined rules to make decisions and solve problems.
Expert systems are the most well-known example of rule-based AI. They were one of the first forms of
Artificial Intelligence ever developed and were particularly popular in the 1980s and 1990s. They were
often used to automate tasks that would normally require human expertise, such as diagnosing medical
conditions or troubleshooting technical problems. Nowadays, rule-based systems are no longer considered
to be state-of-the-art and are often outperformed by more modern AI approaches. However, they maintain
their popularity in many application domains due to their ability to combine reasonable performance with
an intuitive and interpretable decision-making process.

Knowledge Base
One of the key components of any rule-based AI system is the knowledge
base, which is a collection of facts and rules that the system uses to
make decisions. These facts and rules are typically entered into the
system by human experts, who are responsible for identifying the most
important information and defining the rules that the system should
follow. To make a decision or solve a problem, the expert system begins
by examining the facts and rules in its knowledge base and applying
them to the situation at hand. If the system is unable to find a match
between the facts and rules in its knowledge base, it may ask the user
for additional information or refer the problem to a human expert for
further assistance. Some of the main advantages and disadvantages of
rule-based systems are shown in table 2.5:

Table 2.5: Main advantages and disadvantages of rule-based systems
Advantages Disadvantages

• They can make decisions and solve problems
more quickly and accurately than humans,
especially when it comes to tasks that require
a large amount of knowledge or data.

• They are able to operate consistently, without
the biases or errors that can sometimes
influence human decision-making.

• They are only as good as the knowledge and rules
that have been entered into their knowledge base,
and they may not be able to handle situations that
are outside of their area of expertise.

• They are not able to learn or adapt in the same way
that humans can and this makes them less applicable
to dynamic scenarios where both the input data
and logic can change significantly with time.

Expert systems

An expert system is a type
of AI that mimics the
decision-making ability of a
human expert. It uses a
knowledge base of rules and
facts and inference engines
to provide advice or solve
problems in a specific
domain of knowledge.

89

Patient 1
Symptoms

b d a j

Patient 2
Symptoms

f g e k

Rule-based AI System

Diagnoses

Disease
1

Disease
2

Disease
3

Disease 1
Symptoms a b c d

Disease 2
Symptoms e f g h

Disease 3
Symptoms i j k l

knowledge base

Figure 2.8: Medical diagnosis
by Rule-based AI System

In this lesson, you will be introduced to rule-based systems in the context of one
of their key applications: medical diagnosis. The system will provide a medical
diagnosis, based on the patient's symptoms, as seen in figure 2.8. Beginning
with a simple rule-based diagnostic system, you will then discover some more
intelligent systems and how each iteration leads to improved results.

import json # a library used to save and load JSON files

the file with the symptom mapping
symptom_mapping_file='symptom_mapping_v1.json'

open the mapping JSON file and load it into a dictionary
with open(symptom_mapping_file) as f:
 mapping=json.load(f)

print the JSON file
print(json.dumps(mapping, indent=2))

{
 "diseases": {
 "food poisoning": [
 "vomiting",
 "abdominal pain",
 "diarrhea",
 "fever"
],
 "kidney stones": [
 "lower back pain",
 "vomiting",
 "fever"
],
 "appendicitis": [
 "abdominal pain",
 "vomiting",
 "fever"
]
 }
}

Iteration 1

In this first iteration, you will build a simple rule-based system that can diagnose
three possible diseases: kidney stones, appendicitis, and food poisoning. The
input to your system will be a simple knowledge base that maps each disease
to a list of possible symptoms. This is provided in the format of a JSON file, which
you load and display below.

90

This first rule-based system will follow a simple rule: if the patient has at least 3 of all the possible
symptoms of a disease, then the disease should be added as a possible diagnosis. Below you can find
the Python function that uses this rule to make a diagnosis, given the above knowledge base and the
patient's symptoms.

def diagnose_v1(patient_symptoms:list):

 diagnosis=[] # the list of possible diseases

 if "vomiting" in patient_symptoms:

 if "abdominal pain" in patient_symptoms:

 if "diarrhea" in patient_symptoms:

 # 1:vomiting, 2:abdominal pain, 3:diarrhea
 diagnosis.append('food poisoning')

 elif 'fever' in patient_symptoms:

 # 1:vomiting, 2:abdominal pain, 3:fever
 diagnosis.append('food poisoning')
 diagnosis.append('appendicitis')

 elif "lower back pain" in patient_symptoms and 'fever' in patient_symptoms:

 # 1:vomiting, 2:lower back pain, 3:fever
 diagnosis.append('kidney stones')

 elif "abdominal pain" in patient_symptoms and\
 "diarrhea" in patient_symptoms and\
 "fever" in patient_symptoms:\
 # 1:abdominal pain, 2:diarrhea, 3:fever
 diagnosis.append('food poisoning')

 return diagnosis

In this case, the knowledge base is hard-coded inside the function in the form of IF statements. These
statements utilize the common symptoms among the three diseases to gradually arrive at a diagnosis
as quickly as possible. For instance, the "vomiting" symptom is shared by all diseases. Therefore, if
the first IF statement is True, then 1 of the three required symptoms for all diseases has already been
accounted for. Then, you will proceed to check for "abdominal pain", which is associated with two of
the diseases and continue in the same manner until all possible symptom combinations have been
considered.

91

You can then test this function with three different patients:

Patient 1
my_symptoms=['abdominal pain', 'fever', 'vomiting']
diagnosis=diagnose_v1(my_symptoms)
print('Most likely diagnosis:',diagnosis)

Patient 2
my_symptoms=['vomiting', 'lower back pain', 'fever']
diagnosis=diagnose_v1(my_symptoms)
print('Most likely diagnosis:',diagnosis)

Patient 3
my_symptoms=['fever', 'cough', 'vomiting']
diagnosis=diagnose_v1(my_symptoms)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: ['food poisoning', 'appendicitis']
Most likely diagnosis: ['kidney stones']
Most likely diagnosis: []

For Patient 1, both food poisoning and appendicitis are included in the diagnosis because the patient's
three symptoms are associated with both diseases. Patient 2 is diagnosed with kidney stones, which
is the only disease that matches the 3 symptoms. Finally, a diagnosis cannot be made for Patient 3,
as none of the three diseases have all the 3 of the patient's symptoms.
The benefits of this first rule-based version are that it is intuitive and explainable. It is also guaranteed
to consistently use its knowledge base and rules to provide a diagnosis, without bias or deviation
from the standard line. However, this version also has significant disadvantages. First, the "at least 3
symptoms" rule is an oversimplified representation of how a human expert would actually make a
medical diagnosis. Second, the knowledge base for this version is hard-coded in the function. Even
though it was easy to create simple IF statements for such a small knowledge base, this task would
become increasingly more complex and time-consuming for cases with many more diseases and
symptoms.

Food poisoning or Appendicitis Kidney stones ?

Patient 1

Symptoms
• abdominal pain
• fever
• vomiting

Patient 2

Symptoms
• vomiting
• lower back pain
• fever

Patient 3

Symptoms
• fever
• cough
• vomiting

Rule-based AI System Diagnosis | symptom_mapping_v1.json

Figure 2.9: Representation of the first iteration

92

symptom_mapping_file='symptom_mapping_v2.json'

with open(symptom_mapping_file) as f:
 mapping=json.load(f)

print(json.dumps(mapping, indent=2))

{
 "diseases": {
 "covid19": [
 "fever",
 "headache",
 "tiredness",
 "sore throat",
 "cough"
],
 "common cold": [
 "stuffy nose",
 "runny nose",
 "sneezing",
 "sore throat",
 "cough"
],
 "flu": [
 "fever",

 "headache",
 "tiredness",
 "stuffy nose",
 "sneezing",
 "sore throat",
 "cough",
 "runny nose"
],
 "allergies": [
 "headache",
 "tiredness",
 "stuffy nose",
 "sneezing",
 "cough",
 "runny nose"
]
 }
}

Iteration 2

In this second iteration, you will be enhancing the flexibility and applicability of your rule-based system by
making it capable of dynamically reading the knowledge base directly from a JSON file. This will eradicate
the process of manually engineering symptom-specific IF statements inside the function. This is a significant
improvement that will make your system applicable to larger knowledge bases with arbitrary numbers of
diseases and symptoms. An example of such a knowledge base can be found below.

This new knowledge base is only slightly larger than the previous one. However,
it is clear that trying to manually create IF statements in this case would be
significantly harder. For instance, the previous knowledge base had one disease
with four symptoms and two diseases with three symptoms. Given the "at least
3 symptoms" rule that you applied in version 1, this led to 6 possible symptom
triplets to consider. In the new knowledge base above, the four diseases have
5, 5, 8, and 6 symptoms. This leads to 96 possible triplets! In a case where you
would have to deal with hundreds or even thousands of diseases, it would be
impossible to create a system like the one in the first version.
In addition, there is no valid medical reason for being limited to symptom
triplets. Therefore, you will also make the diagnosis logic more versatile by
counting the number of matching symptoms for each disease and allowing the
user to specify the number of matching symptoms that a disease must have
to be included in the diagnosis.

Figure 2.10: The second
iteration has no hard-coded

IF statements

iteration 1

iteration 2

93

def diagnose_v2(patient_symptoms:list,
 symptom_mapping_file:str,
 matching_symptoms_lower_bound:int):

 diagnosis=[]

 with open(symptom_mapping_file) as f:
 mapping=json.load(f)

 # access the disease information
 disease_info=mapping['diseases']

 # for every disease
 for disease in disease_info:

 counter=0

 disease_symptoms=disease_info[disease]

 # for each patient symptom
 for symptom in patient_symptoms:

 # if this symptom is included in the known symptoms for the disease
 if symptom in disease_symptoms:

 counter+=1

 if counter>=matching_symptoms_lower_bound:
 diagnosis.append(disease)

 return diagnosis

This version has no hard-coded IF statements. After loading the symptom mapping from the JSON
file, it proceeds to consider every possible disease via the first FOR loop. The loop checks each of the
patient's symptoms with the known symptoms for the disease and increases a counter every time it
finds a match.

94

Patient 1
my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v2(my_symptoms,'symptom_mapping_v2.json' , 3)
print('Most likely diagnosis:',diagnosis)

Patient 2
my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v2(my_symptoms, 'symptom_mapping_v2.json' , 4)
print('Most likely diagnosis:',diagnosis)

Patient 3
my_symptoms=['fever', 'cough', 'vomiting']
diagnosis=diagnose_v2(my_symptoms, 'symptom_mapping_v2.json' , 3)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: ['common cold', 'flu', 'allergies']
Most likely diagnosis: ['common cold']
Most likely diagnosis: []

Observe that this second iteration is a generalized version of the first iteration. However, this iteration
is much more widely applicable, as it can be used as-is with any other knowledge base of the same
format, even if it includes thousands of diseases with an arbitrary number of symptoms. It also allows
the user to make the diagnosis more or less strict by tuning the matching_symptoms_lower_bound
parameter. This can be observed for Patients 1 and 2: even though they have the same symptoms,
tuning this parameter leads to a significantly different diagnosis.
Despite these improvements, this version is still far from perfect and is still not an accurate
representation of an actual medical diagnosis.

symptom_mapping_v2.json

Common cold or Flu or Allergies ?

Patient 1

Symptoms
• Stuffy nose
• Runny nose
• Sneezing
• Sore throat

Patient 2

Symptoms
• Stuffy nose
• Runny nose
• Sneezing
• Sore throat

Patient 3

Symptoms
• fever
• cough
• vomiting

Figure 2.11: Representation of the second iteration

Common cold

95

symptom_mapping_file='symptom_mapping_v3.json'

with open(symptom_mapping_file) as f:
 mapping=json.load(f)

print(json.dumps(mapping, indent=2))

{
 "diseases": {
 "covid19": {
 "very common": [
 "fever",
 "tiredness",
 "cough"
],
 "less common": [
 "headache",
 "sore throat"
]
 },
 "common cold": {
 "very common": [
 "stuffy nose",
 "runny nose",
 "sneezing",
 "sore throat"
],
 "less common": [
 "cough"
]
 },
 "flu": {
 "very common": [

 "fever",
 "headache",
 "tiredness",
 "sore throat",
 "cough"
],
 "less common": [
 "stuffy nose",
 "sneezing",
 "runny nose"
]
 },
 "allergies": {
 "very common": [
 "stuffy nose",
 "sneezing",
 "runny nose"
],
 "less common": [
 "headache",
 "tiredness",
 "cough"
]
 }
 }
}

Iteration 3

In this third iteration, you will increase the intelligence of our rule-based system by giving it access to a more
detailed type of knowledge base. This new type will take into account the medical fact that certain symptoms
are more common than others for each disease.

96

The threshold-based logic on the number of symptoms will be abandoned and replaced with a scoring
function that assigns custom weights to very common and less common symptoms. The user will also
be given the flexibility to specify whatever weights they think are appropriate. The disease or diseases
with the highest weighted sum will then be included in the diagnosis.

from collections import defaultdict

def diagnose_v3(patient_symptoms:list,
 symptom_mapping_file:str,
 very_common_weight:float=1,
 less_common_weight:float=0.5
):

 with open(symptom_mapping_file) as f:
 mapping=json.load(f)

 disease_info=mapping['diseases']

 # holds a symptom-based score for each potential disease
 disease_scores=defaultdict(int)

 for disease in disease_info:

 # get the very common symptoms of the disease
 very_common_symptoms=disease_info[disease]['very common']

 # get the less common symptoms for this disease
 less_common_symptoms=disease_info[disease]['less common']

 for symptom in patient_symptoms:

 if symptom in very_common_symptoms:
 disease_scores[disease]+=very_common_weight

 elif symptom in less_common_symptoms:
 disease_scores[disease]+=less_common_weight

 # find the max score all candidate diseases
 max_score=max(disease_scores.values())

 if max_score==0:
 return []

 else:
 # get all diseases that have the max score
 diagnosis=[disease for disease in disease_scores if disease_scores
[disease]==max_score]

 return diagnosis, max_score

97

For each possible disease included in the knowledge base, this new function identifies the very
common and less common symptoms exhibited by the patient. It then increases the disease's score
according to the respective weights. In the end, the diseases with the maximum score are included
in the diagnosis. You can now test this new implementation with a few examples:

Patient 1
my_symptoms=["headache", "tiredness", "cough"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json')
print('Most likely diagnosis:',diagnosis)

Patient 2
my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json')
print('Most likely diagnosis:',diagnosis)

Patient 3
my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json', 1, 1)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: (['flu'], 3)
Most likely diagnosis: (['common cold'], 4)
Most likely diagnosis: (['common cold', 'flu'], 4)

You may observe that, even though the 3 symptoms for Patient 1 ("headache", "tiredness", "cough")
are shared by the flu, covid19, and allergies, only the flu is included in the diagnosis. This is because
all three symptoms are listed as 'very common' in the knowledge base, leading to a maximum score
of 3. Similarly, while Patients 2 and 3 have the same symptoms, the different weights submitted for
very common and less common symptoms lead to different diagnoses. Specifically, using an equal
weight for the two symptom types leads to the addition of the flu in the diagnosis.

Common cold Common cold or FluFlu

Patient 1

Symptoms
• Headache
• Tiredness
• Cough

Patient 2

Symptoms
• Stuffy nose
• Runny nose
• Sneezing
• Sore throat

Patient 2

Symptoms
• Stuffy nose
• Runny nose
• Sneezing
• Sore throat

symptom_mapping_v3.json

Figure 2.12: Representation of the third iteration

98

import pandas as pd # import pandas to load and process spreadsheet-type data

medical_dataset=pd.read_csv('medical_data.csv') # load a medical dataset.

medical_dataset

The dataset consists of 2,000 patient cases. Each case has 8 possible symptoms: fever, cough, tiredness,
headache, stuffy nose, runny nose, sneezing, and sore throat. Each of these is encoded in a separate
binary column. A binary digit 1 means that the patient had the symptom, while a binary digit 0 means
that the patient did not have it.

Instead of a hand-crafted knowledge base and a scoring function, a machine learning algorithm expects
only one input: a historical dataset of patient cases. By learning directly from data, problems associated
with the acquisition and validity of background knowledge are prevented. Each case consists of a
patient's symptoms and a medical diagnosis made by a human expert. Given such a training dataset,
the algorithm can then automatically learn how to predict the most likely diagnosis for a new patient.

Iteration 4

The rule-based system could be further improved by increasing the sophistication of the knowledge base
and by experimenting with different scoring functions. Even though this would indeed lead to improvement,
it would still require a considerable amount of time and manual effort. Thankfully, there is a way to
automatically build a rule-based system that is intelligent enough to directly construct its own knowledge
base and scoring function: by using machine learning. Rule-based machine learning applies a learning
algorithm to automatically identify useful rules, rather than a human needing to apply prior domain knowledge
to manually construct rules and curate a rule set

99

The final column includes the diagnosis made by the human expert. There are four possible diagnoses:
covid19, flu, allergies, common cold.
You can easily validate this with Python code:

Even though there are dozens of possible machine learning algorithms that can be used with such a
dataset, you will use one that follows the logic-based approach: a decision tree. Specifically, you will
use the DecisionTreeClassifier class from the popular sklearn Python library.

set(medical_dataset['diagnosis'])

from sklearn.tree import DecisionTreeClassifier

def diagnose_v4(train_dataset:pd.DataFrame):

 # create a DecisionTreeClassifier
 model=DecisionTreeClassifier(random_state=1)

 # drop the diagnosis column to get only the symptoms
 train_patient_symptoms=train_dataset.drop(columns=['diagnosis'])

 # get the diagnosis column, to be used as the classification target
 train_diagnoses=train_dataset['diagnosis']

 # build a decision tree
 model.fit(train_patient_symptoms, train_diagnoses)

 # return the trained model
 return model

The Python implementation of this fourth version is considerably shorter and simpler than the previous
ones. It simply reads the training file, uses it to build a decision tree model based on the relations
between symptoms and diagnoses, and then returns the custom model. In order to properly test this
version, begin by splitting our dataset into two separate training and testing sets.

from sklearn.model_selection import train_test_split

use the function to split the data, get 30% for testing and 70% for training.
train_data, test_data = train_test_split(medical_dataset, test_size=0.3,
random_state=1)

#print the shapes (rows x columns) of the two datasets
print(train_data.shape)
print(test_data.shape)

(1400, 9)
(600, 9)

100

You now have 1,400 data points that will be used for training the model and 600 that will be used to
test it. Begin by training and visualizing the decision tree model.

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

my_tree=diagnose_v4(train_data) # train a model

print(my_tree.classes_) # print the possible target labels (diagnoses)

plt.figure(figsize=(12,6)) # size of the visualization, in inches

plot the tree
plot_tree(my_tree,
 max_depth=2,
 fontsize=10,
 feature_names=medical_dataset.columns[:-1]
)

['allergies' 'common cold' 'covid19' 'flu']

Figure 2.13: Decision tree model for the medical_data dataset, with two levels depth

101

Each node in the tree represents a subset of the patients. For example,
the root node represents the full population of the 1,400 patients in
the training set. Out of these, 354, 345, 358, and 343 patients were
diagnosed with allergies, the common cold, covid19 and the flu,
respectively.

The plot_tree() function is used to visualize a decision tree. For lack of space, only the first two levels
(plus the root) are visualized. This number can be easily tuned via the max_depth parameter.

The tree is built in a top-down fashion via binary splits. The first split is based on whether or not the
patient has a fever or not. Given that all symptom features are binary, a <=0.5 check is True if the
patient did not have the symptom. Those that did not have a fever (left path) are further split based
on whether or not they had a sore throat. Those that did not are then split based on whether or not
they had a runny nose. The node at this point includes 526 cases. Out of those, 354, 101, 58, and 13
were diagnosed with allergies, the common cold, covid19, and the flu, respectively.

The splitting continues until the algorithm determines that the cases
have been separated into sufficiently pure nodes. A perfectly pure
node is one that only includes cases with the same diagnosis. The
"gini" values marked on each node represent scores of the gini index,
a popular formula used to evaluate the purity of a given node.

plot the tree
plot_tree(my_tree,
 max_depth=2,
 fontsize=10

Depth of the
decision tree

The gini index measures a node's
impurity, namely the likelihood

of the node's contents being
classified in the wrong class. The

lower the gini index, the more
certain the algorithm can be

about the classification.

102

You will now use this decision tree to predict the most likely diagnosis for the patients in the testing set. The testing
set is used to evaluate the performance of the model. The exact evaluation method depends on whether the task is
one of regression or classification. In classification problems, like the one presented here, computing a model's
accuracy and confusion matrix is a common evaluation method.

• Accuracy is the proportion of correct predictions made by the classifier. A high accuracy (closer to 100%) means
that the classifier is making mostly correct predictions.

• A Confusion Matrix is a table that compares the true (actual) labels in a dataset with the predictions made by
the classifier. The table includes one row for each true label and one column for each predicted label. Each
entry in the matrix represents the number of instances that have the corresponding true and predicted labels.

functions used to evaluate a classifier
from sklearn.metrics import accuracy_score,confusion_matrix

drop the diagnosis column to get only the symptoms
test_patient_symptoms=test_data.drop(columns=['diagnosis'])

get the diagnosis column, to be used as the classification target
test_diagnoses=test_data['diagnosis']

guess the most likely diagnoses
pred=my_tree.predict(test_patient_symptoms)

print the achieved accuracy score
accuracy_score(test_diagnoses,pred)

0.8166666666666667

You will observe that the decision tree achieves an accuracy of 81.6%. This means that, out of all 600 test
cases, the tree correctly diagnoses 490 of them. You can also print the model's confusion matrix to get a
better view of the number of misclassified examples.

confusion_matrix(test_diagnoses,pred)

array([[143, 3, 0, 0],
 [48, 98, 5, 4],
 [2, 1, 127, 12],
 [1, 3, 31, 122]])

103

The numbers outside of the diagonal represent the model's mistakes.
For instance, given that the order of the four possible diagnoses is ['allergies', 'common cold', 'covid19',
'flu'], the matrix informs us that there were 48 cases of the common cold that were misclassified as
allergies and 31 cases of the flu that were misclassified as covid19.
Even though the model is not perfect, the fact that it can achieve such a high accuracy by learning its
own rule set and without the need for a manually-constructed knowledge base is impressive. Another
encouraging factor is that this accuracy is achieved without trying to tune the various performance
parameters of the DecisionTreeClassifier. It is thus very likely that we can improve the model even
further. Another obvious way to improve is to go beyond the limitation of the rule-based model and
experiment with different types of machine learning algorithms. You will explore some of these
methods in the following unit.

Predicted
allergies

Predicted
common cold

Predicted
covid19

Predicted
 flu

Actual allergies 143 3 0 0

Actual common
cold

48 98 5 4

Actual covid19 2 1 127 12

Actual flu 1 3 31 122

Figure 2.14: Confusion matrix of predicted and actual cases

104

105

1 What are some advantages and disadvantages of rule-based systems?

Exercises

2 What is an advantage and a disadvantage of the first iteration?

3 Add a patient to your code in the first iteration of the rule-based system with the
symptoms ["vomiting", "abdominal pain", "diarrhea", "fever", "lower back pain"]. What
is the diagnosis for this patient? Present your observations below.

105

106

4 In the second iteration, how many diseases does each patient's diagnosis contain, if
you change the parameter matching_symptoms_lower_bound to 2, 3 and 4? Modify
your code and present your observations.

5 In the third iteration, change both weights to 1 for patients 1 and 2, just like the third
patient's. Modify your code and present your observations.

6 Describe briefly how each iteration is enhanced from the previous one (first to second,
second to third, third to fourth).

106

Applications of Search Algorithms
Search algorithms are a key component of AI systems, as they
enable the exploration of different possibilities for finding good
solutions to complex problems with numerous mainstream
applications. Some examples of their applications include:

• Robotics: A robot might use a search algorithm to find its
way through a maze or to locate an object in its environment.

• E-commerce websites: Online shopping websites use
search algorithms to match customers' queries with
available products, filter results based on criteria such as
price, brand, and ratings, and suggest related products.

• Social media platforms: Social media platforms use search
algorithms to show users the most relevant posts, people,
and groups based on keywords and user interests.

• Enabling a machine to play games at a high level of skill:
A chess or Go-playing AI might use a search algorithm to
evaluate different moves and choose the one that is most
likely to lead to a win.

• GPS navigation systems: GPS navigation systems use search
algorithms to find the shortest and fastest route between
two locations, taking into account real-time traffic data.

• File management systems: Search algorithms are used in
file management systems to quickly locate specific files
based on their names, contents, or other attributes.

Types and Examples of Search Algorithms
There are two main types of search algorithms: uninformed and informed.

Uninformed Search Algorithms

Uninformed search algorithms, also known as blind search algorithms, have no additional information
about the states of a problem beyond those provided in the problem definition and perform an
exhaustive search of the search space by following a predetermined set of rules. The breadth-first
search (BFS) and depth-first search (DFS) techniques covered in lesson 2 are examples of uninformed
search algorithms.

Figure 2.15: A robot uses a
search algorithm to find its way

Initial state

Final state

Robot

Object

Lesson 4

Informed Search Algorithms

Link to digital lesson

107

Figure 2.16: A* Search and Dijkstra's algorithm solving the same maze

For instance, DFS begins at the root node of a tree or graph and always expands to the deepest
unvisited node. It proceeds in this manner until it has exhausted the entire search space by visiting
all available nodes. It then reports the best solution that was found during the search. The fact that
DFS always follows these rules and does not adjust its strategy regardless of what it discovers during
its search makes it an uninformed algorithm.
Another notable example in this family is Iterative Deepening Depth-First Search (IDDFS), which can
be viewed as a combination of the DFS and BFS algorithms, as it uses a depth-first strategy to iteratively
explore the full breadth of options up to a certain node.

 Informed Search Algorithms

In contrast to the uninformed search algorithms, informed
search algorithms use information about the problem and the
search space to guide their search. Examples of such algorithms
include:

• A* Search, which uses a heuristic function to estimate the
distance between each of the candidate nodes and the goal
node. It then expands the candidate node with the lowest
estimate. The A* Search algorithm is as good as its heuristic
function. For instance, if the heuristic is guaranteed never to
overestimate the actual distance to the goal, then the algorithm is guaranteed to find the optimal
solution. Otherwise, the returned solution might not be the best possible one.

• Dijkstra's algorithm, which expands the node with the actual lowest distance to the goal in every
step. Therefore, contrary to A* Search, Dijkstra actually computes the real distance and does not
use heuristic estimates. While this makes Dijkstra slower than A* Search, it also means that it is
always guaranteed to find the optimal solution (the shortest path from the start to the goal).

• Hill climbing, which starts by generating a random solution. It then tries to iteratively improve
this solution by making small changes that increase a specific heuristic function. Even though this
approach is not guaranteed to find the optimal solution, it is easy to implement and can be very
efficient for certain types of problems.

Heuristic function

A function that ranks alternatives in
search algorithms at each
branching stage depending on
available data to choose which
branch to pursue.

A* Search Dijkstra's algorithm

The purple cells are the
the visited cells, the
green cell is the start

location, the red cell is
the finish location and

the yellow cells
represent the found

route.

108

In this unit you will see some visual examples and Python implementations of BFS and A* Search
to demonstrate the differences between informed and uninformed search algorithms.

Creating Maze Puzzles in Python
Consider the following simple maze puzzle:

The maze is defined as a 3x3 grid. The starting position
is marked by a star in the lower left corner of the
maze. The goal is to reach the target cell marked by
the X. The player can move to any free cell that is
adjacent to their current position.

Starting position

Figure 2.17: Simple maze puzzle

A cell is considered free unless it is already occupied by a block. For instance, the example maze shown
above has 3 cells occupied by blocks. These blocks are colored dark grey and form an obstacle that the
player has to circumvent to get to the X. The player can move to any horizontally, vertically, or diagonally
adjacent free cell. For instance:

The objective is to find the shortest possible
path and find it with the smallest possible
number of cell visits. Even though a small
3x3 maze might seem trivial to a human
player, any intelligent algorithmic solution
has to work for arbitrarily large and complex
mazes. For instance, consider a massive
10.000x10.000 maze with millions of blocks
scattered in various complex shapes.
The following Python code can be used to
create a dataset that represents the example
shown in figure 2.18.

import numpy as np

create a numeric 3 x 3 matrix full of zeros.
small_maze=np.zeros((3,3))

coordinates of the cells occupied by blocks
blocks=[(1, 1), (2, 1), (2, 2)]

for block in blocks:
 # set the value of block-occupied cells to be equal to 1
 small_maze[block]=1

small_maze

array([[0., 0., 0.],
 [0., 1., 0.],
 [0., 1., 1.]])

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

Figure 2.18: The player can move to any horizontally, vertically, or diagonally adjacent free cell

Goal

Obstacle

109

In this numeric representation of a maze, free and occupied cells are represented by zeros and ones,
respectively. The same code can also be easily updated to create arbitrarily large and complex mazes.
For example:

import random

random_maze=np.zeros((10,10))

coordinates of 30 random cells occupied by blocks
blocks=[(random.randint(0,9),random.randint(0,9)) for i in range(30)]

for block in blocks:
 random_maze[block]=1

import matplotlib.pyplot as plt # library used for visualization

def plot_maze(maze):
 ax = plt.gca() # create a new figure
 ax.invert_yaxis() # invert the y-axis to match the matrix
 ax.axis('off') # hide the axis labels
 ax.set_aspect('equal') # make sure the cells are rectangular

 plt.pcolormesh(maze, edgecolors='black', linewidth=2,cmap='Accent')
 plt.show()

plot_maze(random_maze)

The following function can be used to visualize a maze:

Black squares
are occupied
by blocks and

cannot be
crossed through

Green squares
are not occupied

and can be
traversed

Figure 2.19: Visualization of a 10x10 maze with random blocks

110

Given any such maze, the following function can be used to return a list with all the adjacent accessible,
empties and neighbors of a specific cell:

def get_accessible_neighbors(maze:np.ndarray, cell:tuple):

 # list of accessible neighbors, initialized to empty
 neighbors=[]

 x,y=cell

 # for each adjacent cell position
 for i,j in [(x-1,y-1),(x-1,y),(x-1,y+1),(x,y-1),(x,y+1),(x+1,y-1),(x+1,y),
(x+1,y+1)]:

 # if the adjacent cell is within the bounds of the grid and is not occupied by a block
 if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and
maze[(i,j)]==0:

 neighbors.append(((i,j),1))

 return neighbors

This implementation assumes that all possible transitions from a cell to any horizontally, vertically, or
diagonally adjacent neighbor have the same cost of 1. This assumption will be revisited later in this
lesson, to allow for more complex scenarios with variable transition costs.
The get_accessible_neighbors() function is required by any search algorithm that attempts to solve
the maze. The following examples use the small 3x3 maze created above to verify that the function
indeed returns the correct neighbors for a given cell.

this cell is the northwest corner of the grid and has only 2 accessible neighbors
get_accessible_neighbors(small_maze, (0,0))

[((0, 1), 1), ((1, 0), 1)]

the starting cell (in the southwest corner) has only 1 accessible neighbor
get_accessible_neighbors(small_maze, (2,0))

[((1, 0), 1)]

Given the ability to create mazes and to also retrieve the neighbors of any cell
in a maze, the next step is to implement search algorithms that can solve a
maze by finding the shortest path from a given start cell to a given target cell.

0 1 2

0

1

2

0 1 2

0

1

2

Starting cell

Neighbor

x-1, y-1 x-1, y x-1, y+1

x, y-1 x, y x, y+1

x+1, y-1 x+1, y x+1, y+1

Figure 2.20: Neighbors of cells

111

Using BFS to Solve Maze Puzzles
The bfs_maze_solver() function described in this section uses Breadth-First-Search to solve maze puzzles
with a start and target cell. This implementation utilizes the get_accessible_neighbors() function defined
above to retrieve the neighboring cells that can be visited at any point during the search.
Once BFS has found the target cell, the reconstruct_shortest_path() function shown below is used to
reconstruct and return the shortest path, working backward from target to start:

def reconstruct_shortest_path(parent:dict, start_cell:tuple, target_cell:tuple):

 shortest_path = []

 my_parent=target_cell # start with the target_cell

 # keep going from parent to parent until the search cell has been reached
 while my_parent!=start_cell:

 shortest_path.append(my_parent) # append the parent

 my_parent=parent[my_parent] # get the parent of the current parent

 shortest_path.append(start_cell) # append the start cell to complete the path

 shortest_path.reverse() # reverse the shortest path

 return shortest_path

The same reconstruct_shortest_path() function will be used to reconstruct the solution for the
A* Search algorithm described later in this lesson. Given the definitions of the get_accessible_
neighbors() and reconstruct_shortest_path() helper functions, the bfs_maze_solver() function
can be implemented as follows:

from typing import Callable # used to call a function as an argument of another function

def bfs_maze_solver(start_cell:tuple,
 target_cell:tuple,
 maze:np.ndarray,
 get_neighbors: Callable,
 verbose:bool=False): # by default, suppresses descriptive output text

 cell_visits=0 # keeps track of the number of cells that were visited during the search
 visited = set() # keeps track of the cells that have already been visited
 to_expand = [] # keeps track of the cells that have to be expanded

 # add the start cell to the two lists
 visited.add(start_cell)
 to_expand.append(start_cell)
 # remembers the shortest distance from the start cell to each other cell
 shortest_distance = {}

112

 # the shortest distance from the start cell to itself, zero
 shortest_distance[start_cell] = 0

 # remembers the direct parent of each cell on the shortest path from the start_cell to the cell
 parent = {}
 #the parent of the start cell is itself
 parent[start_cell] = start_cell

 while len(to_expand)>0:

 next_cell = to_expand.pop(0) # get the next cell and remove it from the expansion list

 if verbose:
 print('\nExpanding cell', next_cell)

 # for each neighbor of this cell
 for neighbor,cost in get_neighbors(maze, next_cell):

 if verbose:
 print('\tVisiting neighbor cell',neighbor)

 cell_visits+=1

 if neighbor not in visited: # if this is the first time this neighbor is visited

 visited.add(neighbor)
 to_expand.append(neighbor)
 parent[neighbor]= next_cell
 shortest_distance[neighbor]=shortest_distance[next_cell]+cost

 # target reached
 if neighbor==target_cell:

 # get the shortest path to the target cell, reconstructed in reverse.
 shortest_path = reconstruct_shortest_path(parent,
 start_cell, target_cell)

 return shortest_path, shortest_distance[target_cell],cell_visits

 else: # this neighbor has been visited before

 # if the current shortest distance to the neighbor is longer than the shortest
 # distance to next_cell plus the cost of transitioning from next_cell to this neighbor
 if shortest_distance[neighbor]>shortest_distance[next_cell]
 +cost:

 parent[neighbor]=next_cell
 shortest_distance[neighbor]=shortest_distance[next_cell]+cost

 # search complete but the target was never reached, no path exists
 return None,None,None

113

The function follows the standard BFS approach of exploring all options at the current depth prior to
moving to the next depth level. This implementation uses a set called visited and a list called to_expand.
The first includes all cells that have been visited at least once by the algorithm. The second list includes
all the cells that have not yet been expanded, which means that their neighbors have not been visited
yet. The algorithm also uses two dictionaries shortest_distance and parent. The first one maintains
the length of the shortest path from the start cell to each other cell, while the second one remembers
the parent of the cell on this shortest path.
Once the target cell has been reached and the search is complete, shortest_distance[target_cell] will
include the length of the solution: the length of the shortest path from start to target.
The following code uses the bfs_maze_solver() function to solve the small 3x3 maze defined above:

start_cell=(2,0) # start cell, marked by a star in the 3x3 maze
target_cell=(1,2) # target cell, marked by an "X" in the 3x3 maze

solution, distance, cell_visits=bfs_maze_solver(start_cell,
 target_cell,
 small_maze,
 get_accessible_neighbors,
 verbose=True)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Expanding cell (2, 0)
 Visiting neighbor cell (1, 0)

Expanding cell (1, 0)
 Visiting neighbor cell (0, 0)
 Visiting neighbor cell (0, 1)
 Visiting neighbor cell (2, 0)

Expanding cell (0, 0)
 Visiting neighbor cell (0, 1)
 Visiting neighbor cell (1, 0)

Expanding cell (0, 1)
 Visiting neighbor cell (0, 0)
 Visiting neighbor cell (0, 2)
 Visiting neighbor cell (1, 0)
 Visiting neighbor cell (1, 2)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 3
Number of cell visits: 10

114

BFS successfully finds the shortest path after 10 cells visits. The search process followed by BFS can
be more easily visualized if one considers a graph-based representation of the maze. Consider the
following example of a simple 3x3 maze and its graph representation:

The graph representation includes one node for every non-occupied cell. The label on the nodes
includes the coordinates of the corresponding matrix cell. There is an undirected edge from one node
to another if their corresponding cells are accessible from each other.
One important observation about BFS is that, for unweighted graphs, the first path that it finds
between the start cell and any other cell is guaranteed to be the one that includes the smallest number
of visited cells. This means that, as long as all edges on the graph have the same weight (or, equivalently,
that all transitions from one cell to another have the same cost), then the first path found to a specific
node is guaranteed to be the shortest path to that node. This is why the bfs_maze_solver() stops the
search and returns the result the first time it visits the target node.
However, this approach does not work for weighted graphs. Consider the following weighted version
of the graph representation for the 3x3 maze:

In this example, all edges that correspond to vertical or horizontal moves (south, north, west, east)
have a weight equal to 1. However, all edges that correspond to diagonal moves (southwest, southeast,
northwest, northeast), have a weight equal to 3. In this weighted case, the shortest path is clearly
[(2,0), (1,0), (0,0), (0,1), (0,2), (1,2)], which has a total distance of 1+1+1+1+1=5.

This more complex scenario can be encoded via the weighted version of the get_accessible_neighbors()
function that is described below.

def get_accessible_neighbors_weighted(maze:np.ndarray,
 cell:tuple,
 horizontal_vertical_weight:float,
 diagonal_weight:float):

0 1 2

0

1

2 2,0 0,1 0,2

1,0 0,0 1,2

0 1 2

0

1

2 2,0 0,1 0,2

1,0 0,0 1,21

1 1 3 1

1

3

Figure 2.21: Maze and its weighted graph

115

 neighbors=[]
 x,y=cell

 for i,j in [(x-1,y-1), (x-1,y+1), (x+1,y-1), (x+1,y+1)]: # for diagonal neighbors

 # if the cell is within the bounds of the grid and it is not occupied by a block
 if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

 neighbors.append(((i,j), diagonal_weight))

 for i,j in [(x-1,y), (x,y-1), (x,y+1), (x+1,y)]: # for horizontal and vertical neighbors

 if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

 neighbors.append(((i,j), horizontal_vertical_weight))

 return neighbors

This function allows the user to assign a custom weight for horizontal and vertical moves, and a different
custom weight for diagonal moves. If this weighted version is then used by the BFS solver, the results are
as follows:

from functools import partial

start_cell=(2,0)
target_cell=(1,2)
horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell_visits=bfs_maze_solver(start_cell,
 target_cell,
 small_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 verbose=False)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 7
Number of cell visits: 6

116

As expected, the BFS solver mistakenly reports the exact same path as before, even though it has a
distance of 7 and is clearly not the shortest path. This is due to the uninformed nature of the BFS
algorithm, in which BFS does not take the weights into account when deciding which cell to expand
next. It simply applies the same breadth-first approach, which leads to the exact same solution that
the algorithm found for the unweighted version of the maze.
The next section describes how this weakness can be addressed via A* Search, an informed and more
intelligent search algorithm that adjusts its behavior based on the specified weights, and can therefore
solve mazes with both weighted and unweighted transitions.

Using A* Search to Solve Maze Puzzles
Similar to BFS, A* Search expands one cell at a time, by visiting each of its accessible neighbors. However,
while BFS uses a blind breadth-first approach to decide which cell to expand next, A* Search expands the
cell with the smallest estimated distance to the target cell, as computed by a heuristic function.
The exact definition of the heuristic function depends on the application. For maze puzzles, a good heuristic
would provide an accurate estimate of "how close" a candidate cell is to the target. As long as the employed
heuristic is guaranteed to never overestimate the actual distance to the target (i.e. provide an estimate that
is higher than the actual distance to the target), then the algorithm is guaranteed to find the shortest possible
path for both weighted and unweighted graphs. If a heuristic sometimes overestimates distances, then A*
Search will still return a solution, but it might not be the best one possible.
The simplest possible heuristic that is guaranteed to never lead to overestimation is a simple function that
always produces an estimated distance of 1:

def constant_heuristic(candidate_cell:tuple, target_cell:tuple):

 return 1

While this is clearly an overly optimistic heuristic, it will never produce
an estimate that is higher than the actual distance, and will therefore
lead to the best possible solution. A more sophisticated heuristic that
finds the best solution much faster will be introduced later in this section.

The following function uses a given heuristic function to find the cell
that should be expanded next:

def get_best_candidate(expansion_candidates:set,
 shortest_distance:dict,
 heuristic:Callable):

 winner = None
 # best (lowest) distance estimate found so far. Initialized to a very large number
 best_estimate= sys.maxsize

 for candidate in expansion_candidates:

 # distance estimate from start to target, if this candidate is expanded next
 candidate_estimate=shortest_distance[candidate]+heuristic(candidate,target_cell)
 if candidate_estimate < best_estimate:

0,1

1,0 0,01

1

Figure 2.22: Constant heuristic

117

 winner = candidate
 best_estimate=candidate_estimate

 return winner

The above implementation utilizes a for loop to iterate over all the candidates in the set and find the
best one. A more efficient implementation could use a priority queue that can produce the best
candidate without having to iterate over all candidates.
The get_best_candidate() function is used as a helper module by the astar_maze_solver() function
presented next. In addition to the heuristic function, this implementation also uses the get_accessible_
neighbors_weighted() and reconstruct_shortest_path() helper functions defined in the previous
section.

import sys

def astar_maze_solver(start_cell:tuple,
 target_cell:tuple,
 maze:np.ndarray,
 get_neighbors: Callable,
 heuristic:Callable,
 verbose:bool=False):

 cell_visits=0

 shortest_distance = {}
 shortest_distance[start_cell] = 0

 parent = {}
 parent[start_cell] = start_cell

 expansion_candidates = set([start_cell])

 fully_expanded = set()

 # while there are still cells to be expanded
 while len(expansion_candidates) > 0:

 best_cell = get_best_candidate(expansion_candidates,shortest_distance,heuristic)

 if best_cell == None: break

 if verbose: print('\nExpanding cell', best_cell)

 # if the target cell has been reached, reconstruct the shortest path and exit
 if best_cell == target_cell:

118

 shortest_path=reconstruct_shortest_path(parent,start_cell,target_cell)

 return shortest_path, shortest_distance[target_cell],cell_visits

 for neighbor,cost in get_neighbors(maze, best_cell):

 if verbose: print('\nVisiting neighbor cell', neighbor)

 cell_visits+=1

 # first time this neighbor is reached
 if neighbor not in expansion_candidates and neighbor not in fully_expanded:

 expansion_candidates.add(neighbor)

 parent[neighbor] = best_cell # mark the best_cell as this neighbor's parent

 # update the shortest distance for this neighbor
 shortest_distance[neighbor] = shortest_distance[best_cell] + cost

 # this neighbor has been visited before, but a better (shorter) path to it has just been found
 elif shortest_distance[neighbor] > shortest_distance[best_cell] + cost:

 shortest_distance[neighbor] = shortest_distance[best_cell] + cost

 parent[neighbor] = best_cell

 if neighbor in fully_expanded:

 fully_expanded.remove(neighbor)

 expansion_candidates.add(neighbor)

 # all neighbors of best_cell have been inspected at this point
 expansion_candidates.remove(best_cell)

 fully_expanded.add(best_cell)

 return None, None, None # no solution was found

Similar to bfs_maze_solver(), the above function also uses the same two dictionaries shortest_distance
and parent to keep the length of the shortest path from the start cell to each other cell and the parent
of the cell on this shortest path.
However, astar_maze_solver() follows a different approach to visiting and expanding cells. It uses the
expansion_candidates to keep track of all cells that could be expanded next. In every iteration, it uses
the get_best_candidate() function to select which of these candidates should be expanded next.
After the best_cell candidate has been selected, a for loop is used to visit all its neighbors. If a neighbor
is visited for the first time, then best_cell becomes the neighbor's parent on the shortest path.

119

The same happens if the neighbor has been visited before, but best_cell offers a shorter path than
the one previously found. If such a better path is indeed found, then the neighbor has to go back to
the expansion_candidates set, to reevaluate the shortest path to its own neighbors.
The code below utilizes astar_maze_solver() to solve the unweighted case of the 3x3 maze puzzle:

start_cell=(2,0)
target_cell=(1,2)

solution, distance, cell_visits=astar_maze_solver(start_cell,
 target_cell,
 small_maze,
 get_accessible_neighbors,
 constant_heuristic,
 verbose=False)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 3
Number of cell visits: 12

The A* Search solver finds the best possible shortest path after 12 cell visits. This is slightly higher
than the BFS solver, which managed to find the solution in only 10 visits. This is due to the simplicity
of the constant heuristic that was used to inform astar_maze_solver(). As shown later in this section,
a superior heuristic can be used to help the algorithm find the solution faster.
The next step is to evaluate whether A* Search can indeed solve the weighted maze, which BFS failed
to find the shortest path for:

start_cell=(2,0)
target_cell=(1,2)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell_visits=astar_maze_solver(start_cell,
 target_cell,
 small_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 constant_heuristic,
 verbose=False)

120

The results reveal that astar_maze_solver() manages to solve the weighted case by finding the shortest
possible path [(2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (1, 2)], with a total cost of 5. This demonstrates the
advantage of using an informed search algorithm, which manages to get the optimal solution even
when using the simplest possible heuristic.

big_maze=np.zeros((15,15))

coordinates of the cells occupied by blocks
blocks=[(2,8), (2,9), (2,10), (2,11), (2,12),
 (8,8), (8,9), (8,10), (8,11), (8,12),
 (3,8), (4,8), (5,8), (6,8), (7,8),
 (3,12), (4,12), (6,12), (7,12)]

for block in blocks:
 # set the value of block-occupied cells to be equal to 1
 big_maze[block]=1

This 15x15 maze has a C-shaped section of blocks that the player has to circumvent to reach the target
marked by the "X". Next, the BFS and A* Search solvers are used to solve both the weighted and
unweighted versions of this larger maze:

start_cell=(14,0)
target_cell=(5,10)

solution_bfs_unw, distance_bfs_unw, cell_visits_bfs_unw=bfs_maze_solver(start_cell,
 target_cell,
 big_maze,
 get_accessible_neighbors,

Shortest Path: [(2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (1, 2)]
Cells on the Shortest Path: 6
Shortest Path Distance: 5
Number of cell visits: 12

Algorithm Comparison
The next step is to compare BFS and A* Search on a larger and
more complex maze. The following Python code can be used to
create a numeric representation of such a maze:

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

unweighted version

target_cell

start_cell
Figure 2.23: The start and

target cells of the maze

121

 verbose=False)

print('\nBFS unweighted.')
print('\nShortest Path:', solution_bfs_unw)
print('Cells on the Shortest Path:', len(solution_bfs_unw))
print('Shortest Path Distance:', distance_bfs_unw)
print('Number of cell visits:', cell_visits_bfs_unw)

solution_astar_unw, distance_astar_unw, cell_visits_astar_unw=astar_maze_solver(
 start_cell,
 target_cell,
 big_maze,
 get_accessible_neighbors,
 constant_heuristic,
 verbose=False)

print('\nA* Search unweighted with a constant heuristic.')
print('\nShortest Path:', solution_astar_unw)
print('Cells on the Shortest Path:', len(solution_astar_unw))
print('Shortest Path Distance:', distance_astar_unw)
print('Number of cell visits:', cell_visits_astar_unw)

BFS unweighted.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8,
6), (8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (4, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 1237

A* Search unweighted with a constant heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (10, 5), (10,
6), (9, 7), (9, 8), (10, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (6, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 1272

start_cell=(14,0)
target_cell=(5,10)

horz_vert_w=1
diag_w=3

solution_bfs_w, distance_bfs_w, cell_visits_bfs_w=bfs_maze_solver(start_cell,
 target_cell,

weighted version

122

 big_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 verbose=False)

print('\nBFS weighted.')
print('\nShortest Path:', solution_bfs_w)
print('Cells on the Shortest Path:', len(solution_bfs_w))
print('Shortest Path Distance:', distance_bfs_w)
print('Number of cell visits:', cell_visits_bfs_w)

solution_astar_w, distance_astar_w, cell_visits_astar_w=astar_maze_solver(start_cell,
 target_cell,
 big_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 constant_heuristic,
 verbose=False)

print('\nA* Search weighted with constant heuristic.')
print('\nShortest Path:', solution_astar_w)
print('Cells on the Shortest Path:', len(solution_astar_w))
print('Shortest Path Distance:', distance_astar_w)
print('Number of cell visits:', cell_visits_astar_w)

BFS weighted.

Shortest Path: [(14, 0), (14, 1), (14, 2), (13, 2), (13, 3), (12, 3), (12,
4), (11, 4), (11, 5), (10, 5), (10, 6), (9, 6), (9, 7), (9, 8), (9, 9), (9,
10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (4, 11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 30
Number of cell visits: 1235

A* Search weighted with constant heuristic.

Shortest Path: [(14, 0), (13, 0), (12, 0), (11, 0), (10, 0), (9, 0), (9,
1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9), (9,
10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (5, 11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 25
Number of cell visits: 1245

123

The results are consistent with the ones reported for the small maze:

• Both BFS and A* Search find the shortest path for the unweighted version.
• BFS finds the solution in fewer visits (1237 vs. 1272 for A* Search).
• BFS fails to find the shortest path for the weighted version, as it reports a path with a distance of 30.
• A* Search finds the shortest path for the weighted version, reporting a path with a distance of 25.

maze_bfs_w=big_maze.copy()

for cell in solution_bfs_w:
 maze_bfs_w[cell]=2

plot_maze(maze_bfs_w)

maze_astar_w=big_maze.copy()

for cell in solution_astar_w:
 maze_astar_w[cell]=2

plot_maze(maze_astar_w)

The visualizations verify that the informed nature of A* Search allows it to avoid diagonal moves, as
they have a higher cost than horizontal and vertical ones. On the other hand, the uninformed BFS
ignores the cost of each move and reports a much more expensive solution. A general comparison
of uninformed and informed algorithms is seen in table 2.6:

The following code can be used to visualize the shortest path found by the BFS and A* Search algorithms
on the weighted version:

BFS A* Search

Figure 2.24: Comparison of BFS and A* Search solutions

124

Table 2.6: Comparison of uninformed and informed algorithms

Manhattan Distance

Manhattan (A, B) = |x1-x2| + |y1-y2|

A (x1, y1)

B (x2, y2)

Still, the results showed that BFS could find the optimal solution faster (with fewer cell visits) in the
unweighted case. This can be addressed by providing A* Search with a smarter heuristic. A popular
heuristic in distance-based applications is the Manhattan Distance, defined as the sum of the absolute
differences between the coordinates of the two given points. An example is shown in the figure below:

Comparison criteria Uninformed Informed

Computational
complexity

They are more computationally
complex. Their computational cost is lower.

Efficiency They are slower than informed
algorithms. They perform searches quicker.

Performance Impractical for solving large-scale
search problems.

Better at handling large-scale search
problems.

Effectiveness The optimal solution is achieved. Generally, adequate solutions are
accepted.

Figure 2.25: Manhattan distance 125

This can be easily implemented as a python function as follows:

def manhattan_heuristic(candidate_cell:tuple,target_cell:tuple):

 x1,y1=candidate_cell
 x2,y2=target_cell
 return abs(x1 - x2) + abs(y1 - y2)

start_cell=(14,0)
target_cell=(5,10)

solution_astar_unw_mn, distance_astar_unw_mn, cell_visits_astar_unw_mn=astar_
maze_solver(start_cell,
 target_cell,
 big_maze,
 get_accessible_neighbors,
 manhattan_heuristic,
 verbose=False)

print('\nA* Search unweighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_unw_mn)
print('Cells on the Shortest Path:', len(solution_astar_unw_mn))
print('Shortest Path Distance:', distance_astar_unw_mn)
print('Number of cell visits:', cell_visits_astar_unw_mn)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution_astar_w_mn, distance_astar_w_mn, cell_visits_astar_w_mn=astar_maze_
solver(start_cell,
 target_cell,
 big_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 manhattan_heuristic,
 verbose=False)

print('\nA* Search weighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_w_mn)
print('Cells on the Shortest Path:', len(solution_astar_w_mn))
print('Shortest Path Distance:', distance_astar_w_mn)
print('Number of cell visits:', cell_visits_astar_w_mn)

The following code can be used to test if this smarter heuristic can be used to help astar_maze_solver()
search the space much faster for both weighted and unweighted scenarios:

126

A* Search unweighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8,
6), (8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (5, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 865

A* Search weighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (14, 1), (13, 1), (12, 1), (12, 2), (12, 3), (12,
4), (12, 5), (12, 6), (12, 7), (11, 7), (11, 8), (10, 8), (9, 8), (9, 9),
(9, 10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (5, 11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 25
Number of cell visits: 1033

The results verify that the Manhattan Distance heuristic can indeed help A* Search find the shortest
possible paths with a significantly lower number of cell visits for both weighted and unweighted
scenarios. In fact, the use of this more intelligent heuristic led to a significantly lower visit number
than the one required for the BFS algorithm.
The table 2.7 summarizes the results for the different algorithm variants on the big maze:

Table 2.7: Comparison of algorithms performance

BFS A* Search with
Constant Heuristic

A* Search with
Manhattan Heuristic

weighted dist=30, 1235 visits dist=25, 1245 visits dist=25, 1033 visits

unweighted dist=18, 1237 visits dist=18, 1272 visits dist=18, 865 visits

The table demonstrates the advantages of using increasingly more intelligent algorithms to solve
search-based problems like the one presented in this lesson:

• Switching from an uninformed (BFS) to an informed (A* Search) search algorithm delivered better
results and allowed for the solution of more complex problems.

• The intelligence of informed search algorithms can be further increased by using better heuristics
that allow them to find the optimal solution significantly faster.

127

128

1 Identify two applications of search algorithms.

Exercises

2 Identify a difference between uninformed and informed search algorithms and mention
an example of each algorithm.

128

129

4 Modify your code by changing the diagonal weight from 3 to 1.5. What do you observe?
Does the shortest path change for the cases of BFS and A* Search?

5 Modify your code by swapping the starting cell with the target cell coordinates. What
do you observe? Is the path the same as before for the weighted cases of BFS and A*
Search?

3 Explain briefly how the A* algorithm works.

129

Project

Modify the code of the weighted BFS and A* Search algorithms
by changing the horizontal and vertical weights to 3 and the
diagonal weights to 5. Also change the starting point to (7, 2).

1

What is the new shortest distance path and the number of cell
visits of the unweighted versions of the BFS and A* Search
algorithms with the constant heuristic function? Find these values
and present your observations.

2

Follow the same steps for the weighted versions of the BFS and
A* Search algorithms with the constant heuristic function.

3

Repeat the process for the unweighted and weighted versions of
the A* Search algorithms with the manhattan heuristic function.

4

130

131

Wrap up

A* Search

Algorithm Performance

Breadth-First Search
(BFS)

Confusion Matrix

Depth-First Search (DFS)

Heuristic Function

Informed Search

Knowledge Base

Maze Solving

Model Training

Path Finding

Recursion

Rule-Based Systems

Scoring Function

Search Algorithms

Uninformed Search

Unweighted Graph

Weighted Graph

KEY TERMS

Now you have learned to:
> Employ recursion to solve problems.
> Apply advanced graph traversing algorithms.
> Implement both simple and advanced rule-based systems.
> Design an AI model.
> Measure the effectiveness of your AI model.
> Use search algorithms to solve simulations of real-life problems.

132

In this unit, you will learn an end-to-end process of training a supervised
and an unsupervised learning model for understanding the sentiment of a
given piece of text. At the end, you will learn how machine learning can be
used to support applications related to Natural Language Processing (NLP).

Learning Objectives
In this unit, you will learn to:
> Define supervised learning.
> Train a supervised learning model to understand text.
> Define unsupervised learning.
> Train an unsupervised learning model to understand text.
> Create a simple chatbot.
> Generate text using the Natural Language Processing

(NLP) techniques.

Tools
> Jupyter Notebook

3. Natural Language
Processing (NPL)

133

Lesson 1

Supervised Learning

Link to digital lesson

Using Supervised Learning to Understand Text
Natural Language Processing (NLP) is a field of AI that focuses on enabling computers to understand,
interpret, and generate human language. NLP is concerned with tasks such as text classification,
sentiment analysis, machine translation, and question-answering. This lesson will focus specifically
on how supervised learning, one of the main types of machine learning (ML), can be used to
automatically understand and make useful predictions about a text's properties.

Machine Learning
Machine learning is a subfield of AI that focuses on developing algorithms that enable computers to learn
from data, rather than following explicit programming instructions. It involves training computer models to
recognize patterns and make predictions based on input data, allowing the model to improve its accuracy
over time. This allows machines to perform tasks such as classification, regression, clustering, and
recommendation, without being explicitly programmed for each task.

Deep learning

Deep learning is a type of
machine learning that uses
deep neural networks to
automatically learn from large
amounts of data. It allows
computers to recognize patterns
and make decisions in a more
humanlike way, by building
complex models of the data.

Figure 3.1: Fields under the AI umbrella

Artificial
Intelligence

Machine Learning

Deep Learning

You already learned in unit 1 that AI is an umbrella term that includes Machine Learning and Deep Learning,
as you can see in figure 3.1. AI is a broad field of computer science that focuses on creating intelligent
machines, while machine learning is a subset of AI that focuses on building algorithms and models that
allow machines to learn from data without being explicitly programmed.

134

Machine learning can be broadly categorized into three main types:
 Supervised learning  a type of machine learning where the algorithm
learns from labeled training data, with the goal of making predictions
on new data, not present in the training or test sets, as shown in figure
3.2. Examples:
• Image classification (e.g. recognizing objects in photos)
• Fraud detection (e.g. identifying suspicious financial transactions)
• Spam filtering (e.g. identifying unwanted email messages)
 Unsupervised learning  a type of machine learning where the algorithm
works with unlabeled data, trying to find patterns and relationships in
the data. Examples:
• Anomaly detection (e.g. detecting unusual patterns in data)
• Clustering (e.g. grouping similar data points together)
• Dimensionality reduction (e.g. selecting the dimensions that reduce

data complexity)
 Reinforcement learning  a type of machine learning where an agent
interacts with its environment and learns by trial and error, receiving
rewards or punishments for its actions. Examples:
• Game playing (e.g. playing chess or Go)
• Robotics (e.g. teaching a robot to navigate its environment)
• Resource allocation (e.g. optimizing resource usage in a network)

Figure 3.2: Supervised
learning representation

Here is table 3.1 summarizing the advantages and disadvantages of each type of machine learning:

Table 3.1: Advantages and disadvantages of Machine Learning types
Advantages Disadvantages

Supervised Learning

• Well-established and widely used.
• Easy to understand and implement.
• Can handle both linear and non-linear data.

• Requires labeled data, which can be expensive to obtain.
• Limited to the task it was trained for, and may not

generalize well to new data.
• Difficult to adapt to other problems if the model is too

complex.
Unsupervised Learning

• Does not require labeled data, making it
more flexible.

• Can discover hidden patterns in data.
• Can handle high-dimensional and complex data.

• Harder to understand and interpret than supervised learning.
• Limited to exploratory analysis, and may not be suitable

for decision-making tasks.
• Difficult to adapt to other problems if the model is too

complex.
Reinforcement Learning

• Flexible, and can handle complex and dynamic
environments.

• Can learn from experience and improve
over time.

• Suitable for decision-making tasks, such as
game playing and robotics.

• More complex than supervised or unsupervised learning.
• Challenging to design reward functions that accurately

capture the desired behavior.
• May require large amounts of training data and computational

resources.

Algorithm

Supervisor

Training
Data Set

Desired
Output

Testing
Data Set

Model

Predicted Output

135

Supervised Learning
Supervised Learning is a type of ML that involves the use of labeled data
to train an algorithm to make predictions. The algorithm is trained on a
labeled dataset and then tested on an unseen dataset. Supervised
learning is commonly used in NLP for tasks such as text classification,
sentiment analysis, and named entity recognition. In these tasks, the
algorithm is trained on a labeled dataset where each example is labeled
with the correct category or sentiment. If the labels are numeric, then
the supervised learning task is referred to as "regression". If the labels
are discrete, the task is referred to as "classification".

Classification
Classification, on the other hand, can be used in applications such as diagnosing a medical condition
based on symptoms and test results. When it comes to understanding text, supervised learning can
be used to classify or predict categories or labels based on the words and phrases within a document.
For example, a supervised learning model might be trained to classify an email as spam or not spam
based on the words and phrases used in the email. Another popular application is sentiment
classification, which focuses on predicting whether the overall sentiment of a given document is
negative or positive. This application is used as a working example in this unit, to demonstrate all the
steps in the end-to-end process of building and using a supervised learning model.

Regression
For instance, regression can focus on predicting the sale price of a house based on its size, location,
and number of bedrooms. It can also be used to predict the demand for a product based on historical
sales data and advertising expenditure. In an NLP context, regression can use the available text to
predict the sentiment score of a movie review or the popularity of a social media post.

Supervised Learning

In supervised learning, you
use manually curated and
labeled datasets to train
computer algorithms to
predict new values.

%%capture # capture is used to suppress the installation output.

install the pandas library, if it is missing.
!pip install pandas
import pandas as pd

In this unit you will use a dataset of movie reviews from the popular website IMDb.com. The dataset has
already been split into two parts, one to be used for training the model and one to be used for testing. To
load the data into a DataFrame, you will use the Pandas Python library that you have used before. The
Pandas library is a popular tool for manipulating spreadsheet data. The following code is used to import the
library into your program and then load the two datasets:

Pandas is a popular library used to read
and process spreadsheet-like data.

136

load the train and testing data.
imdb_train_reviews=pd.read_csv('imdb_data/imdb_train.csv')
imdb_test_reviews=pd.read_csv('imdb_data/imdb_test.csv')

imdb_train_reviews

As you can see in figure 3.3,
the DataFrame dataset has
two columns:

• text review.
• label.

A "0" label represents the negative
review, while a "1" label represents
the positive one.

Figure 3.3: Labelled training dataset

Figure 3.4: Snapshot of the training examples (X_train_text) from the DataFrame dataset.

extract the text from the 'text' column for both training and testing.
X_train_text=imdb_train_reviews['text']
X_test_text=imdb_test_reviews['text']

extract the labels from the 'label' column for both training and testing.
Y_train=imdb_train_reviews['label']
Y_test=imdb_test_reviews['label']
X_train_text # training data in text format

The next step is to assign the text and label columns to separate variables,
from the training and testing examples in the DataFrame dataset:

The X, Y notations are typically
used in supervised learning to
represent the input data used
to make the prediction (X) and

the target labels (Y).

positive review

negative review

137

Data Preparation and Pre-Processing
Even though this raw text format as in figure 3.5 is intuitive to the human reader, it is unusable by supervised
learning algorithms. Instead, algorithms require such documents to be converted into a numeric vector
format. The vectorization process can be implemented in multiple different methods, and it has a great
impact on the performance of the trained model.

Sklearn Library
The supervised model will be built with sklearn (also known as "scikit-learn"), a popular Python library
for machine learning. It provides a range of tools and algorithms for tasks such as classification,
regression, clustering, and dimensionality reduction. One useful tool within sklearn is the CountVectorizer,
which can be used to preprocess and vectorize text data.

Figure 3.5: "bag-of-words" (BoW) representation

Vectorization

Vectorization is the process
of converting strings of
words or phrases (text) to a
corresponding vector of
real numbers, that is used
to encode properties of the
text using a format that ML
algorithms can understand.

CountVectorizer
The CountVectorizer converts a collection of text documents into a
matrix of token counts, where each row represents a document and
each column represents a particular token. Tokens can be individual
words, phrases or even more complex constructs that capture various
patterns in the underlying text data. The entries in the matrix indicate
the number of times each token appears in each document. This is also
known as "bag-of-words" (BoW) representation, as the order of the
words is not preserved and only the counts of the words are retained.
Even though the BoW representation is an oversimplification of human
language, it can achieve very competitive results in practice.

from sklearn.feature_extraction.text import CountVectorizer

the min_df parameter is used to ignore terms that appear in less than 10 reviews.
vectorizer_v1 = CountVectorizer(min_df=10)

vectorizer_v1.fit(X_train_text) # fit the vectorizer on the training data.
use the fitted vectorizer to vectorize the data.
X_train_v1 = vectorizer_v1.transform(X_train_text)

X_train_v1

<40000x23392 sparse matrix of type '<class 'numpy.int64'>'
 with 5301561 stored elements in Compressed Sparse Row format>

The following code uses the CountVectorizer tool to vectorize the IMDb training dataset:

0 apples
1 do
1 I
2 like
2 oranges
1 you

"I like oranges, do you like oranges?"

BoW text vector

138

expand the sparse data into a sparse matrix format, where each column represents a different word.
X_train_v1_dense=pd.DataFrame(X_train_v1.toarray(),
 columns=vectorizer_v1.get_feature_names_out())
X_train_v1_dense

from sys import getsizeof
print('\nMegaBytes of RAM memory used by the raw text format:',
 getsizeof(X_train_text)/1000000)
print('\nMegaBytes of RAM memory used by the dense matrix format:',
 getsizeof(X_train_v1_dense)/1000000)
print('\nMegaBytes of RAM memory used by the sparse format:',
 getsizeof(X_train_v1)/1000000)

MegaBytes of RAM memory used by the raw text format: 54.864133

MegaBytes of RAM memory used by the dense matrix format: 7485.440144

MegaBytes of RAM memory used by the sparse format: 4.8e-05

This "dense" matrix format represents the 40,000 reviews in the training data. It also has a column for
each of the words that appear in at least 10 reviews (enforced via the min_df parameter). As can be
seen above, this creates a total of 23,392 columns, sorted in alphanumeric order. The matrix entry in
position [i,j] represents the number of times that the j_th word appears in the i_th review.
Even though this matrix could directly be used by a supervised learning algorithm, it is highly inefficient
in terms of memory usage. This is due to the fact that the vast majority of the entries in this matrix
are equal to 0. This happens because only a very small percentage of the 23,392 possible words will
actually appear in each review. To address this inefficiency, the CountVectorizer tool stores the
vectorized data in a sparse format, which only remembers the non-zero entries in each column.

The code below uses the getsizeof() function, which returns the size of a Python object in
bytes, to demonstrate the memory savings of the sparse format for the IMDb data:

Figure 3.6: Vectorizing the training dataset

139

delete the dense matrix.
del X_train_v1_dense

from sklearn.naive_bayes import MultinomialNB

model_v1=MultinomialNB() # a Naive Bayes Classifier

model_v1.fit(X_train_v1, Y_train) # fit the classifier on the vectorized training data.

from sklearn.pipeline import make_pipeline

create a prediction pipeline: first vectorize using vectorizer_v1, then use model_v1 to predict.
prediction_pipeline_v1 = make_pipeline(vectorizer_v1, model_v1)

Build a Prediction Pipeline
Now that the training data has been vectorized, the next step is to build a first
prediction pipeline. One example of a classifiers to use for document prediction
is a Naive Bayes classifier. The Naive Bayes classifier uses the probabilities of
certain words or phrases occurring in a document to predict the likelihood of
the document belonging to a certain class. The "naive" part of the name comes
from the assumption that the presence of a particular word in a document is
independent of the presence of any other word. This is a strong assumption,
but it allows the algorithm to be trained very quickly and effectively.

The following code uses the implementation of the Naive Bayes Classifier
(MultinomialNB) from the sklearn library to train a supervised learning
model on the vectorized IMDb training data:

As expected, the sparse format requires far less memory, more specifically 0.000048
megabytes. The dense matrix occupies 7 gigabytes. This matrix will not be used again and
can thus be deleted to free up this significant amount of memory:

Classifier

In ML, a classifier is a model
that is used to distinguish
data points into different
categories or classes. The
goal of a classifier is to
learn from labeled training
data, and then make
predictions about the class
label for new data.

For example, this code will produce a result array with the first element being "1" for a positive review
and "0" for a negative review:

prediction_pipeline_v1.predict(['One of the best movies of the year. Excellent
 cast and very interesting plot.',
 'I was very disappointed with his film. I
 lost all interest after 30 minutes'])

array([1, 0], dtype=int64)

140

The pipeline correctly predicts a positive and negative label for first and second review, respectively.
The built-in function predict_proba() can be used to obtain the probabilities that the pipeline assigns
to each of the two possible labels. The first element is the probability that "0" will be assigned and
the second element is the probability that "1" will be assigned:

The next step is to test the accuracy of this new pipeline on the reviews in the IMDb testing set. The
output is an array all the result labels for the review given in the test data:

Python provides multiple tools to analyze and visualize the results of classification pipelines. Examples
include the accuracy_score() function from sklearn and the "confusion matrix" visualization from the
scikit-plot library. There are also other evaluation metrics such as precision, recall, specificity, sensitivity,
F1 score, depending on the use case, which can be computed from the confusion matrix. The following
output is an approximation of how accurate the prediction was:

prediction_pipeline_v1.predict_proba(['One of the best movies of the year. Ex
 cellent cast and very interesting plot.',
 'I was very disappointed with his film.
 I lost all interest after 30 minutes'])

from sklearn.metrics import accuracy_score
accuracy_score(Y_test, predictions_v1) # get the achieved accuracy.

0.8468

array([[0.08310769, 0.91689231],
 [0.83173475, 0.16826525]])

use the pipeline to predict the labels of the testing data.
predictions_v1 = prediction_pipeline_v1.predict(X_test_text) # vectorize the text
data, then predict.

predictions_v1

array([0, 0, 0, ..., 0, 0, 0], dtype=int64)

The model is 8.3% certain the first review
is negative and 91.6% certain it is positive.

Likewise, it is 83.1% certain the second review
is negative and 16.8% certain it is positive.

91.6% 83.1%

8.3% 16.8%
First

review
Second
review

Positive Negative
Figure 3.7: Pie charts showing the review percentages

141

%%capture
!pip install scikit-plot; # install the scikit-plot library, if it is missing.
import scikitplot; # import the library

class_names=['neg','pos'] # pick intuitive names for the 0 and 1 labels.

plot the confusion matrix.
scikitplot.metrics.plot_confusion_matrix(
 [class_names[i] for i in Y_test],
 [class_names[i] for i in predictions_v1],
 title="Confusion Matrix", # title to use
 cmap="Purples", # color palette to use
 figsize=(5,5) # figure size
);

predicted labels

Figure 3.8: Confusion matrix results of the Naive Bayes classifier on the testing data using the IMDb dataset.

The confusion matrix contains the counts of actual vs. predicted classifications. In a binary classification
task (i.e.a problem with two labels, such as the IMDb task), the confusion matrix will have four cells:

The results reveal that even though this first pipeline achieves a
competitive accuracy of 84.68%, it still misclassifies hundreds of
reviews. You have 331 incorrect predictions in the upper right
quarter and 435 incorrect predictions in the lower left corner. This
totals 766 incorrect predictions. The first step toward improving
performance is to study the behavior of the prediction pipeline,
in order to reveal how it processes and understands text.

actual labels

True Negatives (upper left):
the number of times the classifier correctly
predicted the negative class.

False Negatives (upper right):
the number of times the classifier incorrectly
predicted the negative class.

False Positives (lower left):
the number of times the classifier incorrectly
predicted the positive clas.

True Positives (lower right):
the number of times the classifier correctly
predicted the positive class.

Accuracy

Accuracy is the ratio of correct predictions to
the total number of prediction.

Accuracy = (True Positives + True Negatives)
(True Positives + True Negatives +
False Positives + False Negatives).

142

Explaining Black-Box Predictors
The Naive Bayes Classifier uses simple mathematical formulas to combine the probabilities of thousands of
words and deliver its predictions. Despite its simplicity, it is still unable to deliver an intuitive, user-friendly
explanation of exactly how it predicts a positive or negative label for a specific piece of text.
Compare that to decision tree classifiers which are more intuitive, as they represent the learned decision
rules in a tree like structure, making it easier for people to understand how the classifier arrived at its
predictions. The tree structure also allows for a visual representation of the decisions being made at each
branch, which can be useful in understanding the relationships between input features and the target
variable.

The lack of explainability is an even bigger challenge for more complex algorithms, such as those
based on ensembles (combinations of multiple algorithms) or neural networks. Without explainability,
supervised learning algorithms are reduced to black-box predictors: even though they understand
the text well enough to predict its label, they are unable to communicate how they make their
decisions.
A significant amount of research has been devoted to addressing this challenge by designing
explainability methods that can interpret black-box models. One of the most popular methods is LIME
(Local Interpretable Model-Agnostic Explanations).

LIME (Local Interpretable Model-Agnostic Explanations)
LIME is a method for explaining the predictions made by black-box models. It does this by looking at
one data point at a time and making small changes to it to see how it affects the model's prediction.
LIME then uses this information to train a simple and understandable model, such as a linear regression,
to explain the prediction. For text data, LIME identifies the words or phrases that have the biggest
impact on the prediction. A Python implementation is shown below:

%%capture

!pip install lime # install the lime library, if it is missing
from lime.lime_text import LimeTextExplainer

create a local explainer for explaining individual predictions
explainer_v1 = LimeTextExplainer(class_names=class_names)

an example of an obviously negative review
easy_example='This movie was horrible. The actors were terrible and the plot
was very boring.'

use the prediction pipeline to get the prediction probabilities for this example
print(prediction_pipeline_v1.predict_proba([easy_example]))

[[0.99874831 0.00125169]]

143

[('terrible', -0.07046118794796816),
 ('horrible', -0.06841672591649835),
 ('boring', -0.05909016205135171),
 ('plot', -0.024063095577996376),
 ('was', -0.014436071624747861),
 ('movie', -0.011956911011210977),
 ('actors', -0.011682594571408675),
 ('this', -0.009712387273986628),
 ('very', 0.008956707731803237),
 ('were', -0.008897098392433257)]

As expected, the predictor delivers a very confident negative prediction for this easy example.

A more visual representation can be obtained as follows:

explain the prediction for this example.
exp = explainer_v1.explain_instance(easy_example.lower(),
 prediction_pipeline_v1.predict_proba,
 num_features=10)
print the words with the strongest influence on the prediction.
exp.as_list()

visualize the impact of the most influential words.
fig = exp.as_pyplot_figure()

Figure 3.9: The words with the highest influence on the prediction

The score of each word represents a coefficient
in the simple linear regression model that was

used to deliver the explanation.

Focus the explainer on
the 10 most influential

features.

144

A negative coefficient increases the probability of the negative class, while a positive coefficient
decreases it. For instance, the words 'horrible', 'terrible', and 'boring' had the strongest impact on
the model's decision to predict a negative label. The word 'very' slightly pushed the model in a different
(positive) direction, but it was not nearly enough to change the decision. To a human observer, it
might look strange that sentiment-free words such as 'plot' or 'was' seem to have relatively high
coefficients. However, it is important to remember that machine learning does not always follow
human common sense. These high coefficients may indeed reveal flaws in the algorithm's logic and
could be responsible for some of the predictor's mistakes. Alternatively, the coefficients may be
indicative of latent but informative predictive patterns. For instance, it may indeed be the case that
human reviewers are more likely to use the word 'plot' or use past tense ('was') when speaking in a
negative context. The LIME Python library can also visualize the explanations in other ways.
For example:

The review used in the previous example was obviously negative and easy to predict. Consider the
following more challenging review which can confuse the algorithm, taken from the testing set of the
IMDb data:

an example of a positive review that is mis-classified as negative by prediction_pipeline_v1
mistake_example= X_test_text[4600]
mistake_example

"I personally thought the movie was pretty good, very good acting by
Tadanobu Asano of Ichi the Killer fame. I really can't say much about the
story, but there were parts that confused me a little too much, and overall
I thought the movie was just too lengthy. Other than that however, the
movie contained superb acting great fighting and a lot of the locations
were beautifully shot, great effects, and a lot of sword play. Another
solid effort by Tadanobu Asano in my opinion. Well I really can't say
anymore about the movie, but if you're only outlook on Asian cinema is
Crouching Tiger Hidden Dragon or House of Flying Daggers, I would suggest
you trying to rent it, but if you're a die-hard Asian cinema fan I would
say this has to be in your collection very good Japanese film."

exp.show_in_notebook()

Figure 3.10: Other visual representations

145

Even though this is clearly a positive review, the pipeline reported a very confident negative prediction
with a probability of 83%. The explainer can now be used to provide insight into why the predictor
made this erroneous decision:

Even though the predictor correctly captures the positive influence of certain words such as
'beautifully', 'great', and 'superb', it ultimately makes a negative decision based on multiple words
that seem to have no obvious negative sentiment (e.g. 'Asano', 'Asian', 'movie', 'acting').
This demonstrates significant flaws in the logic that the predictor utilizes to classify the vocabulary
in the text of the given reviews. The next section demonstrates how improving this logic can significantly
boost the predictor's performance.

explain the prediction for this example.
exp = explainer_v1.explain_instance(mistake_example, prediction_pipeline_
v1.predict_proba, num_features=10)

visualize the explanation.
fig = exp.as_pyplot_figure()

get the correct labels of this example.
print('Correct Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example.
print('Prediction Probabilities for neg, pos:',
 prediction_pipeline_v1.predict_proba([mistake_example]))

Correct Label: pos
Prediction Probabilities for neg, pos: [[0.8367931 0.1632069]]

Figure 3.11: Words that influenced the erroneous decision

146

Improving Text Vectorization
The first version of the prediction pipeline used the CountVectorizer tool to
simply count the number of times that each word appears in each review.
This approach ignores two important facts about human language:

• The meaning and importance of a word can change based on the words
that surround it.

• The frequency of a word within a document is not always an accurate
representation of its importance. For instance, even though two occurrences
of the word 'great' may be a strong positive indicator in a document with
100 words, it is far less important in a larger document with 1000 words.

This section will demonstrate how text vectorization can be improved to take these two facts into
account. The following code imports three different Python libraries that will be used to achieve this:

• nltk and gensim: two popular libraries used for various Natural Language Processing (NLP) tasks.
• re: a library used to search and process text using regular expressions.

The sent_tokenize() function from the nltk library splits the document into a list of sentences. Each
sentence is then lowercased and fed to the findall() function of the re library, which locates occurrences
of the '\b\w+\b' regular expression. You will test it on the string provided on the raw_text variable.
In this expression:

%%capture

!pip install nltk # install nltk
!pip install gensim # install gensim

import nltk # import nltk
nltk.download('punkt') # install nltk's tokenization tool, used to split a text into sentences.

import re # import re

from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS # import tools
from the gensim library.

Detecting Phrases
The following function can be used to split a given
document into a list of tokenized sentences,
where each tokenized sentence is represented
as a list of words:

convert a given doc to a list of tokenized sentences.
def tokenize_doc(doc:str):
 return [re.findall(r'\b\w+\b',
 sent.lower()) for sent in nltk.sent_tokenize(doc)]

The sent_tokenize() function splits
the doc into a list of sentences.

Regular expression

A regular expression is a
pattern of text used for
matching and manipulating
strings and provides a
concise and flexible way to
specify text patterns and is
widely used in text
processing and data analysis.

Tokenization

The process of breaking up textual data
into pieces such as words, sentences,
symbols and other elements called tokens.

147

• \w matches all alphanumeric characters (a-z, A-Z, 0-9) and the underscore character.
• \w+ is used to capture "one or more" \w characters. So, in the string "hello123_world", the pattern

\w+ would match the words "hello", "123", and "world".
• \b represents the boundary between a \w character and a non-\w character, as well as at the start

or end of the given string. For example, the pattern \bcat\b would match the word "cat" in the string
"The cat is cute", but it would not match the word "cat" in the string "The category is pets".

Let's see an example of tokenization using the tokenize_doc() function.

The tokenize_doc() function can now be combined with the Phrases tool from the gensim library to
create a phrase model, a model that can identify multi-word phrases in a given sentence. The following
code utilizes the IMDB training data (X_train_text) to build such a model:

As shown above, the Phrases() function accepts four parameters:
1 The list of tokenized sentences from the given document collection.
2 A list of common english words that appear frequently in phrases (e.g. 'of', 'the'), that do not have

any positive or negative value, but can add sentiment depending on the context, so they are
treated differently.

3 A scoring function is used to determine if a sequence of words should be included in the same
phrase. The code above uses the popular Normalized Pointwise Mutual Information (NPMI) measure
for this purpose. NPMI is based on the co-occurrence frequency of the words in a candidate phrase
and takes a value between -1 (complete independence) and +1 (complete co-occurrence).

4 A threshold for the scoring function. Phrases with a lower score are ignored. In practice, this
threshold can be tuned to identify the value that yields the best results for a downstream
application (e.g. predictive modeling).

The freeze() suffix converts the phrase model into an unchangeable ("frozen") but much faster format.

sentences=[] # list of all the tokenized sentences across all the docs in this dataset

for doc in X_train_text: # for each doc in this dataset
 sentences+=tokenize_doc(doc) # get the list of tokenized sentences in this doc

build a phrase model on the given data
imdb_phrase_model = Phrases(sentences,
 connector_words=ENGLISH_CONNECTOR_WORDS,
 scoring='npmi',
 threshold=0.25).freeze()

raw_text='The movie was too long. I fell asleep after the first 2 hours.'

tokenized_sentences=tokenize_doc(raw_text)

tokenized_sentences

[['the', 'movie', 'was', 'too', 'long'],
 ['i', 'fell', 'asleep', 'after', 'the', 'first', '2', 'hours']]

1

2
3

4

148

When applied to the two tokenized sentence examples shown above, this phrase model produces
the following results:

The phrase model identifies three phrases: 'too_long', 'fell_asleep', and '2_hours'. All three carry
more information than their individual words.
For example, 'too_long' clearly carries a
negative sentiment, even though the
words 'too' or 'long' by themselves do not.
Similarly, even though seeing the word
'asleep' in a movie review is likely negative
evidence, the phrase 'fell_asleep' delivers
a much clearer message. Finally, '2_hours'
captures a much more specific context
than the words '2' and 'hours'.

imdb_phrase_model[tokenized_sentences[0]]

imdb_phrase_model[tokenized_sentences[1]]

def annotate_phrases(doc:str, phrase_model):

 sentences=tokenize_doc(doc)# split the document into tokenized sentences.

 tokens=[] # list of all the words and phrases found in the doc
 for sentence in sentences: # for each sentence
 # use the phrase model to get tokens and append them to the list.
 tokens+=phrase_model[sentence]
 return ' '.join(tokens) # join all the tokens together to create a new annotated document.

annotate all the test and train reviews.
X_train_text_annotated=[annotate_phrases(doc,imdb_phrase_model) for doc in X_
train_text]
X_test_text_annotated=[annotate_phrases(text,imdb_phrase_model)for text in X_
test_text]

['the', 'movie', 'was', 'too_long']

['i', 'fell_asleep', 'after', 'the', 'first', '2_hours']

The following function uses this phrase-detection capability to annotate phrases in a given document:

The following code uses the annotate_phrases() function to annotate both the training and testing
reviews from IMDb dataset:

asleep
negative

fell
context

fell_asleep
negative+

2
context

hours
context

2_hours
specific context

too_long
negative

too
neutral

long
neutral

tokenized

tokenized

tokenized

Figure 3.12: Positive and negative sentiments
before and after tokenization

149

Using TF-IDF for Text Vectorization
The frequency of a word within a document is not always an accurate
representation of its importance. A better way to represent frequency is
the popular TF-IDF measure. TF-IDF, which stands for "Term Frequency
Inverse Document Frequency", uses a simple mathematical formula to
determine the importance of tokens (i.e. words or phrases) in a document
based on two factors:

• the frequency of the token in the document, as measured by the number
of times the token appears in the document divided by the total number
of tokens in the documents

• the token's inverse document frequency, computed by dividing the total
number of documents in the dataset by the number of documents that
contain the token.

The first factor avoids the overestimation of the importance of terms that
appear in longer documents. The second factor penalizes terms that appear
in too many documents, which helps to adjust for the fact that some words
are more common than others.

TfidfVectorizer Tool
The sklearn library provides a tool that supports this type of TF-IDF
vectorization. The TfidfVectorizer tool can be used to vectorize a phrase.

from sklearn.feature_extraction.text import TfidfVectorizer

Train a TF-IDF model with the IMDb training dataset
vectorizer_tf = TfidfVectorizer(min_df=10)
vectorizer_tf.fit(X_train_text_annotated)
X_train_tf = vectorizer_tf.transform(X_train_text_annotated)

an example of an annotated document from the imdb training data
X_train_text_annotated[0]

'i_grew up b 1965 watching and loving the thunderbirds all my_mates at
school watched we played thunderbirds before school during lunch and
after school we all wanted to be virgil or scott no_one wanted to be alan
counting down from 5 became an art_form i took my children to see the movie
hoping they would get_a_glimpse of what i_loved as a child how bitterly
disappointing the only high_point was the snappy theme_tune not that it
could compare with the original score of the thunderbirds thankfully early
saturday_mornings one television_channel still plays reruns of the series
gerry_anderson and his_wife created jonatha frakes should hand in his
directors chair his version was completely hopeless a waste of film utter_
rubbish a cgi remake may_be acceptable but replacing marionettes with homo_
sapiens subsp sapiens was a huge error of judgment'

Term Frequency Inverse
Document Frequency (TF-IDF)

TF-IDF is a statistical method
which is used to determine
the importance of tokens in a
document.

Corpus

Document word term

times of term appears in document
number of words in the document = TF

number of documents in data set
number of documents containing term = IDF

TF * IDF = Value

Figure 3.13: Words and terms in document

150

This new vectorizer can now be input to the same Naive Bayes Classifier to build a new predictive
pipeline and apply it to the IMDb testing data:

train a new Naive Bayes Classifier on the newly vectorized data.
model_tf =MultinomialNB()
model_tf.fit(X_train_v2, Y_train)

create a new prediction pipeline.
prediction_pipeline_tf = make_pipeline(vectorizer_tf, model_tf)

get predictions using the new pipeline.
predictions_tf = prediction_pipeline_tf.predict(X_test_text_annotated)

print the achieved accuracy.
accuracy_score(Y_test, predictions_tf)

0.8858

This new pipeline achieves an accuracy of 88.58%, a significant improvement over the 84.68% reported
by the previous one. This improved pipeline can now be used to revisit the test example that was
misclassified by the first pipeline:

get the review example that confused the previous algorithm
mistake_example_annotated=X_test_text_annotated[4600]

print('\nReview:',mistake_example_annotated)

get the correct labels of this example.
print('\nCorrect Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example.
print('\nPrediction Probabilities for neg, pos:',prediction_pipeline_
tf.predict_proba([mistake_example_annotated]))

Review: i_personally thought the movie was_pretty good very_good acting by
tadanobu_asano of ichi_the_killer fame i really can_t say much about the
story but there_were parts that confused me a little_too much and overall
i_thought the movie was just too lengthy other_than that however the movie
contained superb_acting great fighting and a lot of the locations were
beautifully_shot great effects and a lot of sword play another solid effort
by tadanobu_asano in my_opinion well i really can_t say anymore about the
movie but if_you re only outlook on asian_cinema is crouching_tiger hidden_
dragon or house of flying_daggers i_would suggest_you trying to rent_it but
if_you re a die_hard asian_cinema fan i_would say this has to be in your_
collection very_good japanese film

Correct Label: pos

Prediction Probabilities for neg, pos: [[0.32116538 0.67883462]]

151

The new pipeline confidently predicts the correct positive label for this review. The following code
uses the LIME explainer to explain the logic behind this prediction:

The results verify that the new pipeline follows a significantly more intelligent logic. It correctly
identifies the positive sentiment of phrases like 'superb_acting', 'beautifully_shot' and 'very good'. It
is also not misguided by the words that erroneously drove the first pipeline toward a negative
prediction.
The performance of the predictive pipeline can be further improved in multiple ways, such as replacing
the Naive Bayes classifier with more sophisticated methods and tuning the parameters of these
methods to maximize their potential. Another option would be to experiment with alternative
vectorization techniques that are not based on token frequency, such as the word and document
embeddings that will be explored in the following lesson.

create an explainer.
explainer_tf = LimeTextExplainer(class_names=class_names)

explain the prediction of the second pipeline for this example.
exp = explainer_tf.explain_instance(mistake_example_annotated, prediction_
pipeline_tf.predict_proba, num_features=10)

visualize the results.
fig = exp.as_pyplot_figure()

Figure 3.14: Word influence for TF-IDF and Naive Bayes Classifier combination

152152

2 Explain the reason the dense matrix format requires more space in the memory than
the sparse format.

3 Analyze how the two mathematical factors in TD-IDF are utilized to inspect the
importance of a word in a document.

1

Read the sentences and tick True or False. True False

1. In supervised learning, you use labeled datasets to train the model.

2. Vectorization is a technique of converting data from numeric vector format
to raw data.

3. The sparse format requires far less memory than the dense matrix.

4. The Naive Bayes Classifier algorithm is used to build a prediction pipeline.

5. The frequency of a word within a document is the only accurate representation
of its importance.

Exercises

153153

4 You are given a numPy array X_train_text that includes one document in each row.
You are also given a second array Y_train that includes the labels for the documents in
X_train_text. Complete the following code so that it uses TF-IDF to vectorize the data,
trains a MultinomialNB classification model on the vectorized version, and then
combines the vectorizer and classification model into a single prediction pipeline.

5 Complete the following code so that it builds LimeTextExplainer for the prediction
pipeline that you built in the previous exercise and uses the explainer to explain the
prediction for a specific text example.

from .naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.feature_extraction.text import

vectorizer = (min_df=10)

vectorizer.fit() # fits the vectorizer on the training data

X_train = vectorizer. (X_train_text) # uses the fitted vectorizer to vectorize the data

model_MNB=MultinomialNB() # a Naive Bayes Classifier

model_MNB.fit(X_train,) # fits the classifier on the vectorized training data

prediction_pipeline = make_pipeline(,)

from import LimeTextExplainer

text_example="I really enjoyed this movie, the actors were excellent"
class_names=['neg','pos'] # creates a local explainer for explaining individual predictions

explainer = (class_names=class_names) # explains the prediction for this example

exp = explainer. (text_example.lower(),prediction_pipeline. ,

 =10) # focuses the explainer on the 10 most influential features

print(exp.) # prints the words with the highest influence on the prediction

154

Lesson 2

Unsupervised Learning

Link to digital lesson

Unsupervised Learning to Understand Text
Unsupervised learning is a type of machine learning where the model is not given any labeled
training data. Instead, the model is only given a set of examples and must find patterns and
relationships within the data on its own. In the context of understanding text, unsupervised learning
can be used to discover latent structures and patterns within a dataset of text documents. There
are many different techniques that can be used for unsupervised learning of text data, including
clustering algorithms, dimensionality reduction techniques, and generative models.

Clustering Algorithms
Clustering algorithms can group similar customers based on their
behavior, demographics, or purchasing history for targeted
marketing and increased customer retention.

Dimensionality Reduction Techniques
Dimensionality reduction is used in image compression to reduce
the number of pixels in an image to minimize the amount of data
needed to represent the image while preserving its main features.

Generative Models
Generative models are used in anomaly detection applications
where anomalies are detected in data by learning the normal
patterns of the data using a generative model.

Clustering algorithms can be used to group together similar
documents, while dimensionality reduction techniques can be used
to reduce the dimensionality of the data and identify important
features. Generative models, on the other hand, can be used to
learn the underlying distribution of the data and generate new text
that is similar to the original dataset.

Unsupervised Learning

In unsupervised learning, you
give to the model large amounts
of data that are not labeled and
it has to find patterns in the
unstructured data through
observation and clustering.

Dimensionality Reduction

Dimensionality reduction is a
technique in machine learning
and data analysis to reduce the
number of features (dimensions)
in a dataset while retaining as
much information as possible.

Figure 3.15: Unsupervised learning representation

Algorithm Model

Predicted Output

Unlabeled Data Feature Vectors

155

One of the key advantages of using unsupervised learning is that it can
be used to identify patterns and relationships that may not be
immediately apparent to a human observer. This can be especially
useful for understanding large datasets of unstructured text, where
manual analysis may be impractical.
In this unit, you will use an openly available dataset of news articles
from the BBC to demonstrate some key techniques for unsupervised
learning (Greene & Cunningham, 2006). The following code is used to
load the dataset, which is organized into five different news folders
representing articles from different news sections: business, politics,
sports, technology, and entertainment. These five labels will not be
used to inform any of the algorithms presented in this unit. Instead,
they will only be used for visualization and validation purposes.
Each news folder includes hundreds of text files, with each file including
the content of a single specific article. The dataset is already loaded
into the Jupyter Notebook, and the codeblock will open the dataset
and extract all the documents and required labels to two list data
structures, respectively.

used to list all the files and subfolders in a given folder
from os import listdir
used for generating random number
import random shuffling lists

bbc_docs=[] # holds the text of the articles
bbc_labels=[] # holds the news section for each article

for folder in listdir('bbc'): # for each news-section folder
 for file in listdir('bbc/'+folder): # for each text file in this folder

 # open the text file, use encoding='utf8' because articles may include non-ascii characters
 with open('bbc/'+folder+'/'+file,encoding='utf8',errors='ignore') as f:
 bbc_docs.append(f.read()) # read the text of the article and append to the docs list
 # use the name of the folder (news section) as a label for this doc
 bbc_labels.append(folder)
shuffle the docs and labels lists in parallel
merged = list(zip(bbc_docs, bbc_labels)) # link the two lists
random.shuffle(merged) # shuffle them in parallel (with the same random order)
bbc_docs, bbc_labels = zip(*merged) # separate them again into individual lists.

Cluster

A cluster is a group of similar
things. In machine learning,
grouping unlabeled data in
homogeneous clusters is
called clustering.

BBC open dataset
https://www.kaggle.com/datasets/shivamkushwaha/bbc-full-text-document-classification
D. Greene and P. Cunningham. "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering",Proc.
ICML 2006. All rights, including copyright, in the content of the original articles are owned by the BBC.

Figure 3.16: Representation
of a cluster

156

Selecting the Number of Clusters
Selecting the correct number of clusters is a crucial step for any clustering
task. Unfortunately, the vast majority of clustering algorithms expect the
practitioner to provide the correct number of clusters as part of the
input. The selected number can have a significant impact on the quality
and interpretability of the results.
There are several approaches that can be used to select the number of
clusters.

• One common approach is to use a measure of cluster "compactness". This
can be done by calculating the sum of the distances between the points
within each cluster, and selecting the number of clusters that minimizes
this sum.

• Another approach is to use a measure of the "separation" between the
clusters, such as the average distance between points in different clusters,
accordingly, the number of clusters raised from this average is determined.

In practice, the above approaches often contradict each other by
recommending different numbers. This is an especially common challenge
when working with text data, whose structure is often difficult to discern.

Figure 3.17: Machine calculating the distances between points

Euclidean Distance

Euclidean distance is a straight-line
distance between two points in a
multidimensional space. It is
calculated as the square root of the
sum of the squares of the
differences between the
corresponding dimensions of the
points. Euclidean distance is used in
clustering to measure the similarity
between two data points.

Cosine Distance

Cosine distance measures the
cosine similarity between two
data points. It calculates the
cosine of the angle between two
vectors representing the data
points and is often used in text
data clustering. The cosine
similarity value is between -1 and
1, with -1 indicating the complete
opposite and 1 indicating the
same direction.

Table 3.2: Factors that determine the quality of the results

1 The way in which the data has been vectorized. Even though TF-IDF is an established
technique in this space, this unit will also explore more sophisticated alternatives.

2 The exact definition of document-to-document similarity. For vectorized text data, the
Euclidean and Cosine distance measures are the most popular. The former will be used in
the examples presented in this unit.

3 The selected number of clusters. Agglomerative Clustering (AC) provides an intuitive method
for selecting the appropriate number of clusters for a given dataset, which is a key challenge
for clustering tasks.

Document Clustering
Now that the dataset has been loaded, the next step is to experiment with
various unsupervised methods. Clustering is arguably the most popular
type of method in this domain. Given a collection of unlabeled documents,
the goal of clustering is to group documents that are similar to one another,
while separating documents that are dissimilar.

Document Clustering

Document clustering is a
method which groups textual
documents into clusters based
on their content similarity.

157

Hierarchical Clustering

Hierarchical clustering is a clustering
algorithm for grouping data into clusters
based on similarity. In hierarchical
clustering, the data points are organized
into a tree-like structure, where each node
represents a cluster, and the parent node
represents a merger of its child nodes.

used for tfi-df vectorization, as seen in the previous unit
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import AgglomerativeClustering # used for agglomerative clustering

used to visualize and support hierarchical clustering tasks
import scipy.cluster.hierarchy as hierarchy

set the color palette to be used by the 'hierarchy' tool.
hierarchy.set_link_color_palette
(['blue','green','red','yellow','brown','purple','orange','pink','black'])

import matplotlib.pyplot as plt # used for general visualizations

The following code imports specific libraries that will be used for the end-to-end hierarchical clustering:

Text Vectorization
Similar to the supervised methods that were presented in the previous unit, many methods
for unsupervised learning also require raw text to be vectorized into a numeric format.
The following code uses the TfidfVectorizer tool (which was also used in the previous
lesson) for this purpose:

vectorizer = TfidfVectorizer(min_df=10) # apply tf-idf vectorization, ignore words that
appear in more than 10 docs.

text_tfidf=vectorizer.fit_transform(bbc_docs) # fit and transform in one line

text_tfidf

<2225x5867 sparse matrix of type '<class 'numpy.float64'>'
 with 392379 stored elements in Compressed Sparse Row format>

As can be seen above, the document data have now been converted into the sparse numeric format
that was also used in the previous lesson.

The number of clusters in unsupervised learning determines
how many groups or categories the algorithm will divide the
data into. Choosing the right number of clusters is important
because it affects the accuracy and interpretability of the
results. If clusters are too high, the groups may be too specific
and not meaningful. If the number of clusters is too low, the
groups may be too broad and not capture the underlying
structure of the data. It is important to strike a balance between
having enough clusters to capture meaningful patterns but not
so many that the results become too complex to understand.

158

Dimensionality Reduction
Dimensionality reduction can be useful in a number of applications, such as:

• Visualizing high-dimensional data: It can be difficult to visualize data
in a high-dimensional space, so reducing the number of dimensions
can make it easier to visualize and understand the data.

• Reducing the complexity of a model: A model with fewer dimensions
may be simpler and easier to understand, and the training process is
faster.

• Improving the performance of a model: Dimensional reduction can
help remove noise and redundancy from the data, which can improve
the performance of a model.

t-Distributed Stochastic
Neighbor Embedding
(T-SNE)

T-SNE (t-Distributed
Stochastic Neighbor
Embedding) is an
unsupervised machine
learning algorithm for
dimensionality reduction.

Table 3.3: Dimensionality reduction techniques
Technique Description Example of use

Feature
selection

Feature selection involves selecting
a subset of the original features.

Medical datasets may have hundreds of columns
per patient case. Only a few of these features can
help the model diagnose correctly. Other traits are
unrelated to the diagnosis and may distract the
model. Feature selection discards all but the most
discriminating features.

Feature
transformation

Feature transformation involves
combining or transforming the
original features to create a new
set of features. The original used
features can be dropped as they
have become redundant.

Consider predicting a patient's stay on admission,
we can create additional features for the model
from the current features of the patient's medical
records. For example, compute the number of lab
tests ordered during the past week, or the number
of visits during the past month. Another example
is computing the area of a rectangle from it's height
and width.

Manifold
learning

Manifold learning techniques,
such as t-SNE and UMAP (Uniform
Manifold Approximation and
Projection), are unsupervised
learning techniques that aim to
preserve the structure of the data
in a lower-dimensional space.

They can convert a high-dimensional image into a
lower-dimensional space while keeping its primary
characteristics and structure. Since it takes up less
space, this compressed representation may be
stored and sent, and the original image can be
rebuilt with minimal loss of information

%%capture
!pip install yellowbrick
from yellowbrick.text import TSNEVisualizer

The following code uses the TSENVisualizer tool from the yellowbrick library to project and visualize
the vectorized documents within a 2-dimensional space:

159

tsne = TSNEVisualizer(colors=['blue','green','red','yellow','brown'])
tsne.fit(text_tfidf,bbc_labels)
tsne.show();

This visualization uses the original "ground-truth" label (news section) of each document to reveal
the dispersion of each label across the 2D projected vectorization space. The figure reveals that, even
though there are some impurities in certain pockets of the space, the five news sections are generally
well-separated. Later, an improved vectorization that reduces these impurities will be described.

The following code can now be used to project these 5,867 dimensions into just two (the X and Y
coordinates of the plot). This code will create a scatter plot diagram, where each color represents
one of five news sections.

Figure 3.18: TSNE projection

One of the key features of t-SNE is that it tries to preserve the local structure of the data as much as possible, so
that similar data points are nearby in the low-dimensional representation. It does this by minimizing the divergence
between two probability distributions: the distribution of the high-dimensional data and the distribution of the
low-dimensional data.
The vectorized BBC dataset is indeed high-dimensional, as it includes a separate dimension (column) for each of
the unique words that appear in the data.

The total number of dimensions can be computed as follows:

print('Number of unique words in the BBC documents vectors:',
 len(vectorizer.get_feature_names_out()))

Number of unique words in the BBC documents vectors: 5867

160

Agglomerative Clustering (AC)
Agglomerative Clustering (AC), also called hierarchical clustering, is
one of the most popular and effective methods in this space, it
addresses this challenge by providing an intuitive visual method for
selecting the appropriate number of clusters. AC follows a bottom-up
approach. It begins by computing the distance between all pairs of
data points. It then selects the two closest points and merges them
into a single cluster. This process is repeated until all of the data points
have been merged into a single cluster or until the desired number
of clusters has been reached.

Linkage() Function
Python implements Agglomerative Clustering with the linkage() function.
Two parameters are provided for the linkage() function:

• The vectorized text data. The toarray() function is used to convert the data to its dense format, as
required by this function.

• The distance metric that should be used to decide which clusters to merge next during the
agglomerative process. There are many different options to choose from for a distance metric
depending on the needs and preferences of the user, like Euclidian, Manhattan, etc. For this project
you will use the ward distance metric.

The following code uses the linkage() function from the 'hierarchy' tool (imported above) to apply
this process to the vectorized BBC data:

plt.figure() # create a new empty figure

iteratively merge points and clusters until all points belong to a single cluster
return the linkage of the produced tree
linkage_tfidf=hierarchy.linkage(text_tfidf.toarray(),method='ward')

visualize the linkage
hierarchy.dendrogram(linkage_tfidf)

show the figure
plt.show()

Figure 3.19: Agglomerative Clustering (AC)

Level 1
a c d e f g h ib

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 3.20: Hierarchy dendrogram for the BBC data

161

Dendrogram

The dendrogram is a tree
diagram which shows the
hierarchical relationship
between data. Usually, it is
created as an output from
hierarchical clustering.

Ward Distance
The example above uses the popular Ward distance metric for the second parameter. The Ward
distance is based on the concept of within-cluster variance, defined as the sum of the distances
between the points in a cluster. In each iteration, the method evaluates every possible merge by
computing the within-cluster variance before and after the merge. It then performs the merge that
leads to the lowest variance increase. Even though Ward is one of the multiple options, it has been
shown to work well for text data.

The dendrogram in figure 3.20 provides an intuitive way of selecting
the number of clusters. In this example, the library suggests using
7 clusters, each highlighted with a different color.
The practitioner can either adopt this suggestion or use the
dendrogram to pick a different number. For instance, the blue and
green pair was merged last with the cluster group of all the other
colors. Therefore, choosing 6 clusters would merge purple and
orange, while choosing 5 clusters would also merge blue and green.

The following code adopts the tool's suggestions and uses the AgglomerativeClustering tool from the
sklearn library to cut the tree after the 7 clusters have been created:

Note that the original "ground-truth" label (news section) of each document has not been used at all
during this process. Instead, clustering was done exclusively based on the text of each document.
Having such ground-truth labels can be useful in practice, as it allows for the validation of the clustering
results. The current "ground-truth" labels are the ones on the bbc_labels list.

AC_tfidf=AgglomerativeClustering(linkage='ward',n_clusters=7) # prepare the tool,
set the number of clusters.

AC_tfidf.fit(text_tfidf.toarray()) # apply the tool to the vectorized BBC data.

pred_tfidf=AC_tfidf.labels_ # get the cluster labels.

pred_tfidf

array([6, 2, 4, ..., 6, 3, 5], dtype=int64)

Figure 3.21: Example of Ward distance metric

162

To complete the analysis, the data is re-clustered using
5 clusters, which are equal to the actual number of
ground truth labels:

from sklearn.metrics import homogeneity_score,adjusted_rand_
score,completeness_score

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_tfidf))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_tfidf))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_tfidf))

Homogeneity score: 0.6224333236569846

Adjusted Rand score: 0.4630492696176891

Completeness score: 0.5430590192420555

The following code uses the ground-truth labels and three different scoring functions from the sklearn
library to evaluate the quality of the produced clustering:

• The Homogeneity score takes values between 0 and 1 and is maximized when all the points of
each cluster have the same ground-truth label. Equivalently, each cluster contains only data points
of a single class.

• The Adjusted Rand score takes values between -0.5 and 1.0 and is maximized when all the data points
with the same label are in the same cluster and all points with different labels are in different clusters.

• The Completeness score also takes values between 0 and 1 and is maximized when all data points
of a given class are assigned to the same cluster.

AC_tfidf=AgglomerativeClustering(linkage='ward',n_clusters=5)
AC_tfidf.fit(text_tfidf.toarray())
pred_tfidf=AC_tfidf.labels_

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_tfidf))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_tfidf))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_tfidf))

Homogeneity score: 0.528836079209762

Adjusted Rand score: 0.45628412883628383

Completeness score: 0.6075627851312266

Even though the score results reveal that the combination of Agglomerative Clustering with TF-IDF
vectorization produces reasonable results, the quality of the clustering can be improved. The next section
demonstrates how vectorization techniques based on neural networks can lead to superior results.

Closer to 1 means better 1-1
mapping of clusters to labels.

Providing the AC clustering the
actual number of labels, gives a

better Completeness score, meaning
the clustering is more representative.

Closer to 1 means that the
group of texts in the cluster

belongs to 1 label.

163

Word Vectorization with Neural Networks
TF-IDF vectorization is based on counting and normalizing the frequency of words across the documents in
the dataset. Even though this can lead to good results, frequency-techniques have a significant limitation,
as they completely ignore the semantic connection between words. For example, even though the words
'trip' and 'journey' are synonyms, frequency-based vectorization would treat them as completely separate
and independent features. Similarly, even though the words 'apple' and 'fruit' are semantically related (as
apples are a type of fruit), this relation will also be ignored.

This limitation can significantly impact downstream applications that use this type of vectorization.
Consider these two sentences:

• "I have a very high fever, so I have to visit a doctor."
• "My body temperature has risen significantly, so I need to see a healthcare professional."
Even though these two sentences describe the exact same scenario, they do not share any informative
words. Therefore, any clustering algorithm that is based on TF-IDF (or any other frequency-based)
vectorization would fail to see their similarity and would likely not place them in the same cluster.

Word2Vec
This limitation can be addressed via methods that consider the semantic similarity between words.
One of the most popular methods for this purpose is Word2Vec, which uses an architecture based
on neural networks.

Word2Vec is based on the intuition that semantically similar words
will typically be surrounded by the same context words. Therefore,
given that the neural network uses the hidden embedding of each
word to predict its context, similar words should be mapped to similar
embeddings.
In practice, Word2Vec models are pre-trained on millions of documents
to learn high-quality word embeddings. Such pre-trained models can
then be downloaded and used in any text-based application.

import gensim.downloader as api
model_wv = api.load('word2vec-google-news-300')
fox_emb=model_wv['fox']
print(len(fox_emb))

300

The following code uses the gensim library to download a popular
pre-trained model that has been trained on a very large dataset from
Google News:

Embedding

Embedding represents words
or tokens in a continuous
vector space where
semantically similar words are
mapped to nearby points.

Stopwords

Stopwords are common words
in a language often removed
during the text pre-processing
step in NLP tasks such as word
vectorization. These words
include articles, conjunctions,
and prepositions and are not
typically considered useful for
determining the meaning or
context of a text.

This model maps each word to an
embedding with 300 dimensions.

164

fox_emb[:10]

pairs = [
 ('car', 'minivan'),
 ('car', 'bicycle'),
 ('car', 'airplane'),
 ('car', 'street'),
 ('car', 'apple'),
]
for w1, w2 in pairs:
 print(w1, w2, model_wv.similarity(w1, w2))

array([-0.08203125, -0.01379395, -0.3125 , -0.04125977, 0.05493164,
 -0.12988281, -0.10107422, -0.00164795, 0.15917969, 0.12402344],
 dtype=float32)

car minivan 0.69070363
car bicycle 0.5364484
car airplane 0.42435578
car street 0.33141237
car apple 0.12830706

The first 10 dimensions of the numeric "fox" embedding are displayed below:

The model can use the embeddings of the words to evaluate their similarity. Consider the following
example, which compares the word 'car' with other words of decreasing similarity. Similarity values
are always between 0 and 1.

print(model_wv.most_similar(positive=['apple'], topn=5))

[('apples', 0.720359742641449), ('pear', 0.6450697183609009),
('fruit', 0.6410146355628967), ('berry', 0.6302295327186584), ('pears',
0.613396167755127)]

The following code can be used to find the 5 most similar words of a given word:

Visualization can be used to further validate the embeddings of this pre-trained model. This can be
achieved by:

• Selecting a sample of words from the BCC dataset.
• Using t-SNE to reduce the 300-dimensional embedding of each word to a 2-dimensional point.
• Visualizing the points as a scatter plot in 2-dimensional space.

165

%%capture
import nltk # import the nltk library for nlp.
import re # import the re library for regular expressions.
import numpy as np # used for numeric computations
from collections import Counter # used to count the frequency of elements in a given list
from sklearn.manifold import TSNE # Tool used for Dimensionality Reduction.

download the 'stopwords' tool from the nltk library. It includes very common words for different
languages
nltk.download('stopwords')

from nltk.corpus import stopwords # import the 'stopwords' tool.

stop=set(stopwords.words('english')) # load the set of english stopwords.

The following function is then used to select a sample of representative
words from the BBC dataset. Specifically, the code selects the top 50
most frequent words from each of the 5 BBC news sections, excluding
stopwords (very common English words) and words that are not
included in the pre-trained Word2Vec model.

def get_sample(bbc_docs:list,
 bbc_labels:list
):

 word_sample=set() # a sample of words from the BBC dataset

 # for each BBC news section
 for label in ['business', 'entertainment', 'politics', 'sport', 'tech']:

 # get all the words in this news section, ignore stopwords.
 # for each BBC doc and for each word in the BBC doc
 # if the word belongs to the label and is not a stopword and is included in the Word2Vec model
 label_words=[word for i in range(len(bbc_docs))
 for word in re.findall(r'\b\w\w+\b',bbc_docs[i].lower())
 if bbc_labels[i]==label and
 word not in stop and
 word in model_wv]

 cnt=Counter(label_words) # count the frequency of each word in this news section.

 # get the top 50 most frequent words in this section.
 top50=[word for word,freq in cnt.most_common(50)]
 # add the top50 words to the word sample.
 word_sample.update(top50)

 word_sample=list(word_sample) # convert the set to a list.
 return word_sample

word_sample=get_sample(bbc_docs,bbc_labels)

Some very common and
frequent English words

considered stopwords include
"a", "the", "is" and "are".

166

Finally, you can use a method with t-SNE to reduce the 300-dimensional embeddings of the words in
the sample into 2-dimensional points. The points are then visualized via a simple scatter plot.

The plot verifies that the Word2Vec embeddings successfully capture the semantic associations
between words, as indicated by intuitive word groups such as:

• economy, economic, business, financial, sales, bank, firm, firms
• Internet, mobile, phones, phone, broadband, online, digital
• actor, actress, film, comedy, films, festival, band, movie
• game, team, match, players, coach, injury, club, rugby

Figure 3.22: Representation of the most frequent words from BBC dataset

167

%%capture
!pip install sentence_transformers
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MiniLM-L6-v2') # load the pre-trained model.

text_emb = model.encode(bbc_docs) # embed the BBC documents.

Sentence Vectorization with Deep Learning
Even though Word2Vec can be used to model individual words, clustering requires the vectorization of entire
documents. One of the most popular methods for this purpose is Sentence-BERT (SBERT), which is based
on deep learning methods.

SBERT
SBERT is a modified version of BERT. Similar to Word2Vec, BERT is trained to predict words based on
the context of their sentence. On the other hand, SBERT is trained to predict whether two sentences
are semantically similar.
SBERT can be effectively used to create embeddings for pieces of text that are longer than a sentence
such as paragraphs or short documents or articles in the BBC dataset that is used in this unit.

Sentence_transformers Library
The 'sentence_transformers' library implements the full functionality of the SBERT model. The library
comes with several pre-trained SBERT models, each trained on a different dataset and with different
objectives. The following code loads one of the most popular general-purpose pre-trained models
and uses it to create embeddings for the documents in the BBC dataset:

Even though all three models are based on neural networks, BERT and SBERT follow significantly
different and more complex architectures than Word2Vec.

Bidirectional Encoder Representations from Transformers (BERT)
BERT is a powerful language representation model developed by Google. Pre-training and fine-tuning
are the main factors to which BERT can apply transfer learning; the ability to retain information for
one problem and apply it to solve the other. Pre-training is done by feeding the model a massive
amount of unlabeled data for multiple tasks, such as masked language prediction (random words in
an input text are masked, and the task is to predict these words). For fine-tuning, the BERT model is
first initialized with the pre-trained parameters, and all of the parameters are fine-tuned using labeled
datasets from the downstream tasks. Each downstream task has separate fine-tuned models, even
though they are initialized with the same pre-trained parameters. For example, the fine-tuning
sentiment analysis model is different from the question-answering model. Interestingly, the models
will have little to no architectural difference after the fine-tuning step.

168

The same TSNEVisualizer tool that was used earlier in this unit to visualize the vectorized documents
produced by the TF-IDF vectorizer can now be used for the embeddings produced by SBERT:

The figure reveals that SBERT leads to a more distinct separation of the different news sections, with
fewer impurities than TF-IDF. The next step is to to use the embeddings to inform the Agglomerative
Clustering algorithm:

tsne = TSNEVisualizer(colors=['blue','green','red','yellow','brown'])
tsne.fit(text_emb,bbc_labels)
tsne.show();

plt.figure() # create a new figure.

iteratively merge points and clusters until all points belong to a single cluster. Return the the linkage of
the produced tree.
linkage_emb=hierarchy.linkage(text_emb, method='ward')

hierarchy.dendrogram(linkage_emb) # visualize the linkage.
plt.show() # show the figure.

Figure 3.23: TSNE Projection of embeddings by SBERT

Figure 3.24: Hierarchy dendrogram for SBERT

169

The dendrogram tool suggests the use of 4 clusters, each marked with a different color in the figure 3.24.
The following code uses this suggestion to compute the clusters and compute the evaluation metrics:

If the data is re-clustered using the correct number of 5 clusters, then the yellow cluster marked in
the figure above would be split into two. The results are then as follows:

The results verify that using SBERT for text vectorization leads to significantly improved clustering
results when compared with TF-IDF. In fact, even if the number of clusters is set to 5 (the correct
value) for TF-IDF and to 4 for SBERT, SBERT still scores much higher for all three metrics. The gap then
becomes even larger if the number is set to 5 for both approaches.
This is a testament to the potential of neural networks, whose sophisticated architecture allows them
to understand the complex semantic patterns found in text data.

AC_emb=AgglomerativeClustering(linkage='ward',n_clusters=4)
AC_emb.fit(text_emb)
pred_emb=AC_emb.labels_

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_emb))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_emb))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_emb))

Homogeneity score: 0.6741395570357063

Adjusted Rand score: 0.6919474005627763

Completeness score: 0.7965514907905805

AC_emb=AgglomerativeClustering(linkage='ward',n_clusters=5)
AC_emb.fit(text_emb)
pred_emb=AC_emb.labels_

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_emb))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_emb))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_emb))

Homogeneity score: 0.7865655030556284

Adjusted Rand score: 0.8197670431956582

Completeness score: 0.7887580797775077

170170

1

Read the sentences and tick True or False. True False

1. In Unsupervised learning, you use labeled datasets to train the model.

2. Unsupervised learning requires the vectorization of the data.

3. SBERT is more optimal than TD-IDF for word vectorization.

4. Agglomerative Clustering follows a up-bottom approach to cluster selecting.

5. SBERT is trained to predict whether two sentences are semantically different.

Exercises

2 Show examples of applications for which Dimensionality Reduction can be used. Describe
the techniques that are used in Dimensionality Reduction.

3 Describe the functionality of TF-IDF vectorization.

171171

4 You are given a numPy array 'Docs' that includes one text document in each row. You
are also given an array 'labels' that includes the label for each doc in Docs. Complete
the following code so that it uses a pre-trained SBERT model to compute the embeddings for
all the documents in Docs and then uses the TSNEVisualizer tool to visualize the embeddings
in 2-dimensional space, using a different color for each of the four possible labels.

5 Complete the following code so that it uses Word2Vec to replace every word in a given
sentence with its most similar one.

from sentence_transformers import

from import TSNEVisualizer model = ('all-MiniLM-

L6-v2') # loads the pre-trained model.

docs_emb = model. (Docs) # embeds the docs

tsne = (=['blue','green','red','yellow'])

tsne. (,)

tsne.show();

import gensim.downloader as
import re

model_wv = . ('word2vec-google-news-300')

old_sentence='My name is John and I like basketball.'
new_sentence=''

for word in re. (r'\b\w\w+\b',old_sentence.lower()):

 replacement=model_wv. (positive=['apple'], =1)[0]

 new_sentence+=

sentence=new_sentence.strip()

172

Lesson 3

Generating Text

Natural Language Generation
Natural Language Generation (NLG) is a sub-field of natural language processing (NLP) that focuses
on generating human-like text using computer algorithms. The goal of NLG is to produce written or
spoken language that is natural and understandable to humans, without the need for human
intervention. There are several different approaches to NLG, including template-based, rule-based,
and machine learning-based methods.

Natural Language Generation (NLG)

Natural Language Generation (NLG) is
the process of generating human-like
text using AI.

Natural Language Processing (NLP)

Natural Language Processing (NLP) is a
branch of AI which gives computers the
ability to simulate human natural
languages.

Table 3.4: The impact of NLG

NLG could be used to automatically generate news articles, reports, or
other written content, freeing up time for humans to focus on more
creative or higher-level tasks.

It could also be used to improve the efficiency and effectiveness of
customer service chatbots, enabling them to provide more natural and
helpful responses to customer inquiries.

NLG has the potential to increase accessibility for people with disabilities
or language barriers, by enabling them to communicate with machines
in a way that is natural and intuitive for them.

Computer
Science

LinguisticsAI

NLP

Figure 3.25: NLP Venn diagram

Link to digital lesson

173

Template-Based NLG
Template-based NLG involves the use of predefined templates that specify the structure and content of the
generated text. These templates are filled in with specific information to generate the final text. This approach
is relatively simple and can be effective at generating text for specific, well-defined tasks. On the other hand,
it may struggle with more open-ended tasks or tasks that require a high degree of variability in the generated
text. For example, a weather report template might look like this: "Today in [city], it is [temperature] degrees
with [weather condition]."

There are four types of NLGs:

Rule-Based NLG
Rule-based NLG uses a set of predefined rules to generate text. The rules might specify how to combine
words and phrases to form sentences, or how to choose words based on the context in which they are being
used. They are often used to create customer service chatbots. Rule-based systems can be simple to
implement. They can also be inflexible and may not produce very natural-sounding output.

Machine Learning-Based NLG
Machine learning-based NLG involves training a machine learning model on a large dataset of human-
generated text. The model learns the patterns and structure of the text, and can then generate new text
that is similar in style and content. This approach can be more effective for tasks that require a high degree
of variability in the generated text. This approach may require a larger amount of training data and
computational resources.

Selection-Based NLG
Selection-Based NLG involves the selection of a subset of sentences or paragraphs to create a representative
summary of a much larger corpus. Even though this approach does not generate new text, it is very popular
in practice. This is because, by sampling from a pool of sentences that have been written by humans, it
removes the risk of generating unpredictable or poorly formed text. For example, a selection-based weather
report generator might have a database of phrases such as "It is hot outside," "The temperature is rising,"
and "Expect sunny skies."

Using Template-Based NLG
Template-Based NLG is relatively simple and can be effective at generating text for specific, well-defined
tasks, such as generating reports or descriptions of data.
One advantage of template-based NLG is that it can be relatively easy to implement and maintain. The
templates can be designed by humans, and do not require the use of complex machine learning algorithms
or large amounts of training data. This makes template-based NLG a good choice for tasks where the structure
and content of the generated text are well-defined and do not need to vary significantly.
NLG templates can be based on any predefined linguistic construct. One common practice is to create a
template that requires words with a specific part-of-speech tag to be placed in specific slots within a sentence.

Part of Speech (POS) Tags
Part of speech tags, also known as POS tags, are labels
that are assigned to words in a text to indicate their
grammatical role, or part of speech, in the sentence.
For example, a word may be tagged as a noun, verb,
adjective, adverb, etc. Part of speech tags are used in
NLP to analyze and understand the structure and
meaning of a text.

Figure 3.26: Example of POS process

I want an early upgrade

PRON VERB DET ADJ NOUN

174

The above examples show that, while template-based NLG can be used to generate sentences with
a specific pre-approved structure, these sentences may be not be that meaningful in practice. Even
though the quality of the results can be significantly improved by defining more sophisticated templates
and placing more constraints on vocabulary use, this approach is not practical for generating realistic
text on a large scale. Rather than manually creating predefined templates, a different approach to
template-based NLG is to use the structure and vocabulary of any real sentence as a more dynamic
template. The paraphrase() function adopts this approach.

%%capture

!pip install wonderwords
used to generate template-based randomized sentences
from wonderwords.random_sentence import RandomSentence

make a new generator with specific words
generator=RandomSentence(
 # specify some nouns
 nouns=["lion", "rabbit", "horse","table"],
 verbs=["eat","run","laugh"], # specify some verbs.
 adjectives=['angry','small']) # specify some adjectives.

generates a sentence with the following template: [subject (noun)] [predicate (verb)]
generator.bare_bone_sentence()

'The table runs.'

generates a sentence with the following template:
the [(adjective)] [subject (noun)] [predicate (verb)] [direct object (noun)]
generator.sentence()

'The small lion runs rabbit.'

Syntax Analysis
Syntax analysis is often used along with POS tags in template-based NLG, to ensure that the templates
can lead to realistic text. Syntax analysis involves identifying the parts of speech of the words in the
sentence, and the relationships between them, to determine the grammatical structure of the sentence.
A sentence includes different types of syntax elements. For example:

• The predicate is the part of the sentence that contains the verb. It typically expresses what is being
done or what is happening.

• The subject is the part of the sentence that performs the action expressed by the verb, or that is
affected by the action.

• The direct object is a noun or pronoun that refers to the person or thing that is directly affected by
the action expressed by the verb.

The following code uses the wonderwords library, which follows this syntax-based approach, to provide
some examples of template-based NLG:

175

Paraphrase() Function
Given a paragraph of text, the function first splits the text into sentences. Then tries to replace each
word in the sentence with another semantically similar word. Semantic similarity is evaluated via the
Word2Vec model that was introduced in the previous lesson.
To avoid cases where Word2Vec recommends replacements that are very similar to the original word
(e.g. replacing "apple" with "apples"), the function uses the popular fuzzywuzzy library to evaluate
the lexical similarity between the original word and a candidate to replace it.
The function itself is then shown below:

def paraphrase(text:str, # text to be paraphrased
 stop:set, # set of stopwords
 model_wv,# Word2Vec Model
 lexical_sim_ubound:float, # upper bound on lexical similarity
 semantic_sim_lbound:float # lower bound on semantic similarity
):

 words=word_tokenize(text) # tokenizes the text to words

 new_words=[] # new words that will replace the old ones.

 for word in words: # for every word in the text

 word_l=word.lower() # lower-case the word.

 # if the word is a stopword or is not included in the Word2Vec model, do not try to replace it.
 if word_l in stop or word_l not in model_wv:
 new_words.append(word) # append the original word

 else: # otherwise

 # get the 10 most similar words, as per the Word2Vec model.
 # returned words are sorted from most to least similar to the original.
 # semantic similarity is always between 0 and 1.
 replacement_words=model_wv.most_similar(positive=[word_l],
topn=10)
 # for each candidate replacement word
 for rword, sem_sim in replacement_words:
 # get the lexical similarity between the candidate and the original word.
 # the partial_ratio function returns values between 0 and 100.
 # it compares the shorter of the two words with all equal-sized substrings
 # of the original word.
 lex_sim=fuzz.partial_ratio(word_l,rword)

 # if the lexical sim is less than the bound, stop and use this candidate.
 if lex_sim<lexical_sim_ubound:
 break

 fuzz denotes the

fuzzywuzzy library.

176

 # quality check: if the chosen candidate is not semantically similar enough to
 # the original, then just use the original word.
 if sem_sim<semantic_sim_lbound:
 new_words.append(word)
 else: # use the candidate.
 new_words.append(rword)

 return ' '.join(new_words) # re-join the new words into a single string and return.

The following code imports all the tools required to support the paraphrase() function and in the
white box below is displayed the output of the paraphrase method for the text assigned to the text
variable:

As with any template-based approach, the results can be improved by adding more constraints to
correct some of the less intuitive replacements shown above. However, the example above
demonstrates that even this simple function can produce very realistic text.

%%capture

import gensim.downloader as api # used to download and load a pre-trained Word2Vec model
model_wv = api.load('word2vec-google-news-300')

import nltk
used to split a piece of text into words. Maintains punctuations as separate tokens
from nltk import word_tokenize
nltk.download('stopwords') # downloads the stopwords tool of the nltk library
used to get list of very common words in different languages
from nltk.corpus import stopwords
stop=set(stopwords.words('english')) # gets the list of english stopwords

!pip install fuzzywuzzy[speedup]
from fuzzywuzzy import fuzz

text='We had dinner at this restaurant yesterday. It is very close to my
house. All my friends were there, we had a great time. The location is
excellent and the steaks were delicious. I will definitely return soon, highly
recommended!'
parameters: target text, stopwords, Word2Vec model, upper bound on lexical similarity, lower bound
on semantic similarity
paraphrase(text, stop, model_wv, 80, 0.5)

'We had brunch at this eatery Monday. It is very close to my bungalow. All
my acquaintances were there, we had a terrific day. The locale is terrific
and the tenderloin were delicious. I will certainly rejoin quickly, hugely
advised!'

Returns a paraphrased version of the given text.

177

Using Selection-Based NLG
In this section, you will see a practical approach to selecting a sample of representative sentences
from a given document. The approach exemplifies the use and benefits of selection-based NLG and
relies on two key building blocks:

• The Word2Vec model, which will be used to identify pairs of semantically similar words.
• The Networkx library, a popular python library used to create and process different types of

network data.
The input document that will be used in this chapter is a news article written after the final
match of the FIFA World Cup 2022.

Networkx Library
The vocabulary of the document can now be modeled as a weighted graph.
Python's Networkx library provides an extensive set of tools for creating
and analyzing graphs. In Selection-Based NLG, representing the vocabulary
of a document as a weighted graph can help to capture the relationships
between words and facilitate the selection of relevant phrases and
sentences. In a weighted graph, each node represents a word or a concept,
and the edges between nodes represent relationships between these
concepts. The weights on the edges represent the strength of these
relationships, allowing the NLG system to determine which concepts are
most strongly related. When generating text, the weighted graph can be
used to find the most relevant phrases and sentences based on the
relationships between words. For example, the system might use the graph
to find the most relevant words and phrases to describe a particular entity
and then use these words to select the most appropriate sentence from
its database.

First, the text is tokenized using the re library and the same regular expression that was used
in the previous Units:

import re # used for regular expressions

tokenize the document, ignore stopwords, focus only on words included in the Word2Vec model.
tokenized_doc=[word for word in re.findall(r'\b\w\w+\b',text.lower()) if word
not in stop and word in model_wv]

get the vocabulary (set of unique words).
vocab=set(tokenized_doc)

reads the input document that we want to summarize
with open('article.txt',encoding='utf8',errors='ignore') as f: text=f.read()

text[:100] # shows the first 100 characters of the article

'It was a consecration, the spiritual overtones entirely appropriate.
Lionel Messi not only emulated '

dinner

recommended

delicious
location

house
great

restaurant

3

3

2

2

2

2 1

1

Figure 3.27: Example of a Networkx
weighted graph

178

Build_graph() Function
The build_graph() function uses NetworkX to create a graph that includes:

• One node for each word in a given vocabulary.
• An edge between every two words. The weight on the edge is equal to the semantic similarity

between the words, as computed by Doc2Vec which is an NLP tool for representing documents as
a vector and is a generalization of the word2vec method

The function returns a graph with one node for each word in the given vocabulary. There is also an
edge between two nodes if their Word2Vec similarity is higher than the given threshold.

Given such a word-based graph, a set of words
that are all semantically similar to each other can
be represented as a cluster of nodes connected
to each other by high-weight edges. Such node
clusters are also referred to as "communities''.
The graph output is a simple set of vertices and
set of weighted edges. No clustering has been
done yet to create the "communities". Figure 3.28
uses different colors to mark the communities in
an example graph:

tool used to create combinations (e.g. pairs, triplets) of the elements in a list
from itertools import combinations
import networkx as nx # python library for processing graphs

def build_graph(vocab:set, # set of unique words
 model_wv # Word2Vec model
):
 # gets all possible pairs of words in the doc
 pairs=combinations(vocab,2)

 G=nx.Graph() # makes a new graph

 for w1,w2 in pairs: # for every pair of words w1, w2
 sim=model_wv.similarity(w1, w2) # gets the similarity between the two words
 G.add_edge(w1,w2,weight=sim)

 return G

creates a graph for the vocabulary of the World Cup document
G=build_graph(vocab,model_wv)
prints the weight of the edge (semantic similarity) between the two words
G['referee']['goalkeeper']

{'weight': 0.40646762}

Figure 3.28: Communities in a graph

179

Louvain Algorithm
The Networkx library includes multiple algorithms for analyzing the graph and finding such communities.
One of the most effective options is the Louvain algorithm, which works by iteratively moving nodes
between communities until it finds the community structure that best represents the linkage of the
underlying network.

Get_communities() Function
The following function uses the Louvain algorithm to find the communities in a given word-based
Graph. The function also computes an importance score for each community. Then it returns two
dictionaries:

• word_to_community, which maps each word to its community.
• community_scores, which maps each community to an importance score.
The score is equal to the sum of the frequencies of all the words in the community. For example, if a
community includes three words that appear 5, 8, and 6 times in the document, the community's
score is equal to 19. Conceptually, the score represents the part of the document that is "covered"
by the community.

from networkx.algorithms.community import louvain_communities
from collections import Counter # used to count the frequency of elements in a list

def get_communities(G, # the input graph
 tokenized_doc:list): # the list of words in a tokenized document

 # gets the communities in the graph
 communities=louvain_communities(G, weight='weight')
 word_cnt=Counter(tokenized_doc)# counts the frequency of each word in the doc

 word_to_community={}# maps each word to its community

 community_scores={}# maps each community to a frequency score

 for comm in communities: # for each community
 # convert it from a set to a tuple so that it can be used as a dictionary key.
 comm=tuple(comm)
 score=0 # initialize the community score to 0.

 for word in comm: # for each word in the community

 word_to_community[word]=comm # map the word to the community

 score+=word_cnt[word] # add the frequency of the word to the community's score.

 community_scores[comm]=score # map the community to the score.

 return word_to_community, community_scores

180

Now that all the words have been mapped to a community and each community is associated with
an importance score, the next step is to use this information to evaluate the importance of each
sentence in the original document. The evaluate_sentences() function is designed for this purpose.

Evaluate_sentences() Function
The function starts by splitting the document into sentences. It then computes an importance score
for each sentence, based on the words that it includes. Each word inherits the importance score of
the community that it belongs to.
For example, consider a sentence with 5 words w1, w2, w3, w4, w5. Words w1 and w2 belong to a
community with a score of 25, w3 and w4 belong to a community with a score of 30, and w5 belongs
to a community with a score of 15. The total score of the sentence is then 25+25+30+30+15=125.
The function then uses these scores to rank the sentences in descending order, from most to least
important.

from nltk import sent_tokenize # used to split a document into sentences

def evaluate_sentences(doc:str, # original document
 word_to_community:dict,# maps each word to its community
 community_scores:dict, # maps each community to a score
 model_wv): # Word2Vec model

 # splits the text into sentences
 sentences=sent_tokenize(doc)
 scored_sentences=[]# stores (sentence, score) tuples

 for raw_sent in sentences: # for each sentence

 # get all the words in the sentence, ignore stopwords and focus only on words that are in the
Word2Vec model.
 sentence_words=[word
 for word in re.findall(r'\b\w\w+\b',raw_sent.lower()) # tokenizes
 if word not in stop and # ignores stopwords

word_to_community, community_scores = get_communities(G,tokenized_doc)
word_to_community['player'][:10] # prints 10 words from the community of the word 'team'

('champion',
 'stretch',
 'finished',
 'fifth',
 'playing',
 'scoring',
 'scorer',
 'opening',
 'team',
 'win')

181

 word in model_wv] # ignores words that are not in the Word2Vec model

 sentence_score=0 # the score of the sentence

 for word in sentence_words: # for each word in the sentence

 word_comm=word_to_community[word] # get the community of this word
 sentence_score+=community_scores[word_comm] # add the score of this
community to the sentence score.

 scored_sentences.append((sentence_score,raw_sent)) # stores this sentence and
its total score

 # scores the sentences by their score, in descending order
 scored_sentences=sorted(scored_sentences,key=lambda x:x[0],reverse=True)

 return scored_sentences

scored_sentences=evaluate_sentences(text,word_to_community,community_
scores,model_wv)
len(scored_sentences)

for i in range(3):
 print(scored_sentences[i],'\n')

61

(3368, 'Lionel Messi not only emulated the deity of Argentinian football,
Diego Maradona, by leading the nation to World Cup glory; he finally
plugged the burning gap on his CV, winning the one title that has eluded
him – at the fifth time of asking, surely the last time.')

(2880, 'He scored twice in 97 seconds to force extra-time; the first a
penalty, the second a sublime side-on volley and there was a point towards
the end of regulation time when he appeared hell-bent on making sure that
the additional period would not be needed.')

(2528, 'It will go down as surely the finest World Cup final of all time,
the most pulsating, one of the greatest games in history because of how
Kylian Mbappé hauled France up off the canvas towards the end of normal
time.')

The original doc includes a total of 61 sentences. The following code can now be used to get the top
3 most important of these sentences:

182

print(scored_sentences[-1]) # prints the last sentence with the lowest score
print()
print(scored_sentences[30]) # prints a sentence at the middle of the scoring scale

(0, 'By then it was 2-0.')

(882, 'Di María won the opening penalty, exploding away from Ousmane
Dembélé before being caught and Messi did the rest.')

The results verify this approach can indeed successfully identify representative sentences that capture
the main points of the original document, while assigning lower scores to less informative sentences.
The same approach can be applied as is to generate a summary of any given document.

%%capture
from sentence_transformers import SentenceTransformer, util
model_sbert = SentenceTransformer('all-MiniLM-L6-v2')

1. Load the Pre-Trained SBERT Model
The first step is to load the pre-trained SBERT model:

Using Rule-Based NLG to Create a Chatbot
In this section, you will build a course-recommendation chatbot by combining a simple knowledge base of
questions and answers with the SBERT neural model. This demonstrates the transfer learning used in SBERT
as the same architecture of SBERT (all-MiniLM-L6-v2) will now be fine-tuned to a task other than sentiment
analysis: NLG.

2. Create a Simple Knowledge Base
The second step is to create a simple knowledge base to capture the question-answer script that the
chatbot will follow. The script includes 4 questions (Q1-Q4) and their respective answers (A1-A4).
Each answer consists of a list of options. The second cell represents the next question that the chatbot
will get to. If it is the final question, the second cell will have None. These options represent the
possible answers that are considered acceptable for the corresponding questions. For example, the
answer to question Q2 has two possible options (["Java",None] and ["Python",None]).
Each option consists of two values:

• The actual text of the acceptable answer (e.g. "Java" or "Courses on Marketing").
• An ID that points that to the next question that the chatbot should ask if the option is selected. For

example, if the user selects the ["Courses on Engineering","3"] option as a response to Q1 then the
next question that will be asked is Q3.

This simple knowledge can be easily extended to add more Q/A levels and make the chatbot more
intelligent.

183

Chat() Function
Finally, the following chat() function is used to process the knowledge base and implement the chatbot.
After asking a question, the chatbot reads the user's response.

• If the response is semantically similar to one of the acceptable answer options for this question,
then that option is selected and the chatbot proceeds to the next question.

• If the response is not similar to any of the options, then it asks the user to rephrase the response.
The function uses SBERT to evaluate the semantic similarity score between the response and each
candidate option. An option is considered similar if this score is higher than a lower bound parameter
(sim_lbound).

QA={
 "Q1":"What type of courses are you interested in?",
 "A1":[["Courses in Computer Programming","2"],
 ["Courses in Engineering","3"],
 ["Courses in Marketing","4"]],

 "Q2":"What type of Programming Languages are you interested in?",
 "A2":[["Java",None],["Python",None]],

 "Q3":"What type of Engineering are you interested in?",
 "A3":[["Mechanical Engineering",None],["Electrical Engineering",None]],

 "Q4":"What type of Marketing are you interested in?",
 "A4":[["Social Media Marketing",None],["Search Engine
Optimization",None]]
}

import numpy as np # used for processing numeric data

def chat(QA:dict, # the Question-Answer script of the chatbot
 model_sbert, # a pre-trained SBERT model
 sim_lbound:float): # lower bound on the similarity between the user's response and the
closest candidate answer

 qa_id='1' # the QA id

 while True: # an infinite loop, will break in specific conditions

 print('>>',QA['Q'+qa_id]) # prints the question for this qa_id
 candidates=QA["A"+qa_id] # gets the candidate answers for this qa_id

 print(flush=True) # used only for formatting purposes
 response=input() # reads the user's response

 # embed the response
 response_embeddings = model_sbert.encode([response], convert_to_
tensor=True)
 # embed each candidate answer. x is the text, y is the qa_id. Only embed x.
 candidate_embeddings = model_sbert.encode([x for x,y in candidates],

184

Interaction 1

convert_to_tensor=True)

 # gets the similarity score for each candidate
 similarity_scores = util.cos_sim(response_embeddings, candidate_
embeddings)

 # finds the index of the closest answer.
 # np.argmax(L) finds the index of the highest number in a list L
 winner_index=np.argmax(similarity_scores[0])

 # if the score of the winner is less than the bound, ask again.
 if similarity_scores[0][winner_index]<sim_lbound:
 print('>> Apologies, I could not understand you. Please rephrase
your response.')
 continue

 # gets the winner (best candidate answer)
 winner=candidates[winner_index]

 # prints the winner's text
 print('\n>> You have selected:',winner[0])
 print()

 qa_id=winner[1] # gets the qa_id for this winner

 if qa_id==None: # no more questions to ask, exit the loop
 print('>> Thank you, I just emailed you a list of courses.')
 break

Consider the following two interactions between the chatbot and a user:

chat(QA,model_sbert, 0.5)

>> What type of courses are you interested in?

marketing courses

>> You have selected: Courses on Marketing

>> What type of Marketing are you interested in?

seo

>> You have selected: Search Engine Optimization

>> Thank you, I just emailed you a list of courses.

In this first interaction, the chatbot correctly understands that the user is looking for Marketing
courses. It is also intelligent enough to understand that the term "SEO" is semantically similar to
"Search Engine Optimization", leading to the successful conclusion of the discussion.

185

Interaction 2

chat(QA,model_sbert, 0.5)

>> What type of courses are you interested in?

cooking classes
>> Apologies, I could not understand you. Please rephrase your response.
>> What type of courses are you interested in?

software courses

>> You have selected: Courses on Computer Programming

>> What type of Programming Languages are you interested in?

C++

>> You have selected: Java

>> Thank you, I just emailed you a list of courses.

In this second interaction, the chatbot correctly realizes that "Cooking Classes" is not semantically
similar to any of the options in its knowledge base. It is also intelligent enough to understand that
"Software courses" should be mapped to the "Courses on Computer Programming" option.
The final part of the interaction highlights a weakness: the chatbot matches the user's "C++" response
to "Java". Even though the two programming languages are indeed related (and are arguably more
related than Python and C++), the appropriate response would have been to say that the chatbot
does not have the knowledge to recommend C++ courses.
One way to address this weakness would be to use lexical rather than semantic similarity to compare
responses and options for some questions.

Using Machine Learning to Generate Realistic Text
The methods described in the previous sections use templates, rules, or selection techniques to produce text
for different applications. In this section, you will explore the state-of-the-art in machine learning for NLG.

Table 3.5: Advanced machine learning techniques for NLG
Technique Description

Long short-term
memory (LSTM)
network

An LSTM network is made up of several "memory cells" that are connected together.
When the network is given a sequence of data, it processes each element in the
sequence one at a time and for each element, the network updates its memory cells
to produce an output. LSTMs are particularly well-suited for NLG tasks because they
can retain information from sequences of data (such as speech or handwriting
recognition) and handle the complexity of natural language.

Transformer-
based models

Transformer-based models are models that can understand and generate human
language. They work by using a technique called "self-attention" that helps them
understand the relationships between different words in a sentence.

186

Transformers
Transformers are particularly well-suited for NLG tasks because they can process sequential input
data efficiently. In a transformer model, the input data is first passed through an encoder, which
converts the input into a continuous representation. The continuous representation is then passed
through a decoder, which generates the output sequence. One of the key features of these models
is the use of attention mechanisms that allow the model to focus on the important parts of a sequence
while ignoring less informative parts. Transformer models have been shown to produce high-quality
text for a variety of NLG tasks, including machine translation, summarization, and question answering.

OpenAI GPT-2 Model
In this section, you will use GPT-2, a powerful language model developed by OpenAI, to generate text
based on text prompts that are provided by the user. GPT-2 (Generative Pre-training Transformer 2)
was trained on a dataset of over 8 million web pages and has the ability to generate human-like text
in a variety of languages and styles. The transformer-based architecture of GPT-2 allows it to capture
long-range dependencies and generate coherent text. GPT-2 is trained with the objective of predicting
the next word, given all of the previous words within the text. The model can thus be used to produce
texts of arbitrary length, by continuously predicting and appending more words.

%%capture
!pip install transformers
!pip install torch
import torch # an open-source machine learning library for neural networks, required for GPT2.
from transformers import GPT2LMHeadModel, GPT2Tokenizer

initialize a tokenizer and a generator based on a pre-trained GPT2 model.

used to:
-encode the text provided by the user into tokens
-translate (decode) the output of the generator back to text
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

used to generate new tokens based on the inputted text
generator = GPT2LMHeadModel.from_pretrained('gpt2')

text='We had dinner at this restaurant yesterday. It is very close to my
house. All my friends were there, we had a great time. The location is
excellent and the steaks were delicious. I will definitely return soon, highly
recommended!'

The following text will then be provided as a seed to GPT-2:

ENCODERS DECODERS

INPUT OUTPUT
I am a student أنا طالب

Figure 3.29: TransformerFigure 3.30: LSTM

OUTPUT 2 OUTPUT N

INPUT 2 INPUT N

LSTM LSTM

"I" "am" "today"

INPUT 1

OUTPUT 1

LSTM

187

encodes the given text into tokens
encoded_text = tokenizer.encode(text, return_tensors='pt')

use the generator to generate more tokens.
do_sample=True prevents GPT-2 from just predicting the most likely word at every step.
generated_tokens = generator.generate(encoded_text,
 max_length=200) # max number of new tokens to
generate
#decode the generates tokens to convert them to words
skip_special_tokens=True is used to avoid special tokens such as '>' or '-' characters.
print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

I've been coming here for a while now and I've been coming here for a while
now and I've been coming here for a while now and I've been coming here for
a while now and I've been coming here for a while now and I've been coming
here for a while now and I've been coming here for a while now and I've
been coming here for a while now and I've been coming here for a while now
and I've been coming here for a while now and I've been coming here for a
while now and I've been coming here for a while now and I've been coming
here for a while now and I've been coming here for a while now and I've
been coming here for a while now and

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

If you just found this place helpful. If you like to watch videos or
go to the pool while you're there, go for it! Good service - I'm from
Colorado and love to get in and out of this place. The food was amazing!
Also, we were happy to see the waitstaff with their great hands - I went
for dinner. I ordered a small side salad (with garlic on top), and had a
slice of tuna instead. When I was eating, I was able to get up and eat my
salad while waiting for my friend to pick up the plate, so I had a great
time too. Staff was welcoming and accommodating. Parking is cheap in this
neighborhood, and it is in the neighborhood that it needs to

use the generator to generate more tokens.
do_sample=True prevents GPT-2 from just predicting the most likely word at every step.
generated_tokens = generator.generate(encoded_text,
 max_length=200, # max number of new tokens to
generate
 do_sample=True)

print(tokenizer.decode(generated_tokens[0],skip_special_tokens=True))

188

Generate tokens with higher diversity
generated_tokens = generator.generate(
 encoded_text, max_length=200, do_sample=True, temperature=2.0)

print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

Worth a 5 I thought a steak at a large butcher was the end story!! We were
lucky. The price was cheap!! That night though as soon as dinner was on
my turn that price cut completely out. At the tail area they only have
french fries or kiwifet - no gravy - they get a hard egg the other day too
they call kawif at 3 PM it will be better this summer if I stay more late
with friends. When asked it takes 2 or 3 weeks so far to cook that in this
house. Once I found a place it was great. Everything I am waiting is just
perfect as usual....great prices especially at one where a single bite
would suffice or make more as this only runs on the regular hours

This leads to a much more diverse output, while maintaining the authenticity of the generated text.
The text uses a rich vocabulary and is syntactically correct.
GPT-2 allows for the further customization of the output. An example is the use of the 'temperature'
parameter, which allows the model to take more risks and to sometimes select some lower-probability
words. Higher values of this parameter lead to more diverse texts. For example:

Too high temperature leads to divergence in the meaning of the tokens
generated_tokens = generator.generate(
 encoded_text, max_length=200, do_sample=True, temperature=4.0)

print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended! It has the nicest ambagas of '98 that I like; most Mexican.
And really nice steak house; amazing Mexican atmosphere to this very
particular piece of house I just fell away before its due date, no surprise
my 5yo one fell in right last July so it took forever at any number on
it being 6 (with it taking two or sometimes 3 month), I really have found
comfort/affability on many more restaurants when ordering.If you try at
it they tell ya all about 2 and three places will NOT come out before they
close them/curry. Also at home i would leave everything until 1 hour but
sometimes wait two nights waiting for 2+ then when 2 times you leave you
wait in until 6 in such that it works to

However, if the temperature is set too high, the model departs from the guidance of the original input
and leads to less realistic and meaningful output:

189189

1

Read the sentences and tick True or False. True False

1. Machine Learning-based NLG requires large amounts of training data and
computational resources.

2. Verb could be a POS tag.

3. In template-based NLG syntax, analysis is used separately from POS tags.

4. Communities are node clusters that represent semantically different words.

5. The more Q/A levels added to the chatbot's knowledge base, the smarter it gets.

Exercises

2 Compare the different approaches of Natural Language Generation (NLG).

3 State three different applications for NLG.

190190

4 Complete the following code so that the build_graph() function accepts a given
vocabulary of words and a trained Word2Vec model and returns a graph with one node
for each word in the vocabulary. The graph should have an edge between two nodes
if their similarity according to Word2Vec is higher than the given similarity_threshold.
There should be no weights on the edges.

from import combinations # tool used to create combinations

import networkx as nx # python library for processing graphs

def build_graph(vocab:set, # set of unique words

 model_wv, # Word2Vec model

 similarity_threshold:float

):

 pairs=combinations(vocab,) # gets all possible pairs of words in the vocabulary

 G=nx. # makes a new graph

 for w1,w2 in pairs: # for every pair of words w1,w2

 sim=model_wv. (w1, w2)# gets the similarity between the two words

 if :

 G. (w1,w2)

 return G

191191

5 Complete the following code so that the function get_max_sim() uses a pre-trained
SBERT model to compare a given sentence my_sentence with all the sentences in a
second given list of sentences L. The function should then return the sentence from L1
with the highest similarity score to my_sentence.

from sentence_transformers import , util

from import combinations # tool used to create combinations

model_sbert = ('all-MiniLM-L6-v2')

def get_max_sim(L1,my_sentence):

 # embeds my_sentence

 my_embedding = model_sbert, ([my_sentence], convert_to_tensor=True)

 # embeds the sentences from L2

 L_embeddings = model_sbert. (L, convert_to_tensor=True)

 similarity_scores = .cos_sim(,)

 winner_index=np.argmax(similarity_scores[0])

 return

192

Text classification is a 2-step process that includes:
Step 1: Using a set of training documents with known labels (classes) to train a classification

model.
Step 2: Using the trained model to predict the label for each document in a testing set.

The labels in the testing set are either unknown or hidden and used later for
verification.

The documents in both the training and testing sets have to be vectorized before they
can be used. The CountVectorizer or TfidfVectorizer tools from the sklearn library can
be used for vectorization.

The Python sklearn library offers a long list of classification models. Some of them are:
> GradientBoostingClassifier()
> DecisionTreeClassifier()
> RandomForestClassifier()

Your task is to use the IMDB training set that was used in this lesson to train a model
that achieves the highest possible accuracy on the IMDB testing set (imdb_data/imdb_
test.csv). You can achieve this by:

Replace the MultinomialNB classifier with other classification models from
sklearn, such as the ones listed above.

1

Re-run your notebook after each replacement, to compute the accuracy of each
new model that you try.

2

Create a report that compares the accuracy of all the models that you tried and
identifies the one that achieved the best accuracy.

3

Project

193

Now you have learned to:
> Classify text with unsupervised learning models.
> Analyze text with supervised learning models.
> Use Machine Learning models for NLG.
> Program a simple chatbot.

Black-Box predictors

Chatbot

Cluster

Dendrogram

Dimensionality
Reduction

Document Clustering

Natural Language
Generation

Natural Language
Processing

Part of Speech (POS)

Tags

Sentiment analysis

Supervised Learning

Syntax Analysis

Tokenization

Transfer Learning

Unsupervised Learning

Vectorization

KEY TERMS

Wrap up

Part 2
Unit 4
Image Recognition

Unit 5
Optimization & Decision-making Algorithms

Unit 6
AI and Society

Learning Objectives
In this unit, you will learn to:
> Preprocess images and extract their features.
> Train a supervised learning model to classify

images.
> Define the structure of a neural network.
> Train an unsupervised learning model to cluster

images.
> Generate images based on a text prompt.
> Realistically complete missing parts of an image.

Tools
> Jupyter Notebook

> Google Colab

4. Image
Recognition
In this unit, you will learn about supervised and unsupervised learning for
image recognition by creating and training a model to classify or cluster
images of different animal heads, as an example. You will also learn about
image generation and how to alter images or complete their missing
content while maintaining realism.

196

Link to digital lesson

Figure 4.1: Image classification with computer vision

raw image machine learning classification model labeled output

98% Arabian leopard

1% apple

1% car

Supervised Learning for Computer Vision
Computer vision is a subfield of Artificial Intelligence that focuses on teaching computers how to interpret and
understand the visual world. It involves using digital images and videos to train machines to recognize and analyze
visual information, such as objects, people, and scenery. The ultimate goal of computer vision is to enable machines
to "see" the world as humans do and use this information to make decisions or take actions.

Computer vision has a wide range of applications, such as:
• Medical Imaging: Computer vision can help doctors and healthcare professionals in diagnosing diseases

by analyzing medical images, such as X-rays, MRIs, and CT scans.
• Autonomous Vehicles: Self-driving cars and drones use computer vision to recognize traffic signals and

road patterns, pedestrians, and obstacles in the road and in the air, enabling them to navigate safely and
efficiently.

• Quality Control and Inspection: Computer vision is used to inspect products and identify defects in
manufacturing processes. This is used in various industries, including automotive, electronics, and textiles.

• Robotics: Computer vision is used to help robots navigate and interact with their environment, including
recognizing and manipulating objects.

Supervised and unsupervised learning are two main types of machine learning that are commonly used in
computer vision applications. Both approaches involve training algorithms on large datasets of images or
videos to enable machines to recognize and interpret visual information. Supervised learning and unsupervised
learning were introduced in unit 3 lessons 1 and 2, and were both applied in NLP and NLG. In this lesson,
they will be applied for image analysis.
Unsupervised learning involves training algorithms on unlabeled datasets, where no explicit labels or
categories are provided. The algorithm then learns to identify similar patterns in the data without any prior
knowledge of the labels. For example, an unsupervised learning algorithm might be used to group similar
images together based on common features, such as color, texture, or shape. Unsupervised learning will be
detailed in lesson 2.

Lesson 1

Supervised Learning
for Image Analysis

197

In constrast, supervised learning involves training algorithms on labeled datasets, where each image
or video is assigned a specific label or category. The algorithm then learns to recognize patterns and
features that are associated with each label, allowing it to accurately classify new images or videos.
For example, a supervised learning algorithm might be trained to recognize different breeds of cats
based on labeled images of each breed (e.g, see figure 4.1). Supervised learning is the focus of this
lesson.
The process of supervised learning typically involves four key steps: data collection, labeling, training,
and testing. During data collection and labeling, images or videos are collected and organized into a
dataset. Then, each image or video is labeled with a corresponding class or category, such as "eagle"
or "cat".
During the training phase, the machine learning algorithm uses this labeled dataset to "learn"
the patterns and features that are associated with each class or category. As more training data is
presented to the algorithm, it becomes more accurate at recognizing the different classes in the
dataset and improves its performance.
Once the model has been trained, it is tested on a separate set of images or videos to evaluate its
performance. The testing set is different from the training set to ensure that the model is able to
generalize to new data. For example, the data for a Cat has propertirs such as weight, color, breed
etc. The accuracy of the model is then evaluated based on how well it performs on the testing set.
The above process is very similar to the one followed for supervised learning tasks on different types
of data, such as text. However, visual data is generally considered harder to handle than text due to
multiple reasons as mentioned in Table 4.1.

Table 4.1: Challenges of visual data classification

Visual data is
high-dimensional

Images contain a large amount of data, which makes them more difficult
to process and analyze than textual data. While the basic elements of a text
document are words, the elements of an image are pixels. As you will see
in this chapter, even a small image can consist of thousands of pixels.

Visual data is noisy
and very diverse

Images can be affected by noise, lighting, blurring, and other factors that
make it difficult to accurately classify them. In addition, there is a wide
variety of visual data, with many different objects, scenes, and contexts
that can be difficult to accurately classify.

Visual data does
not follow a strict
structure

While text tends to follow specific rules for syntax and grammar, visual data
does not have such constraints. This makes it harder and more computationally
expensive to analyze.

As a result of these complexities, the effective classification of visual data requires specialized
techniques. This unit covers techniques that utilize the geometric and color properties of images,
besides more advanced machine learning techniques based on neural networks.
Speficially, this first lesson demonstrates how Python can be used for:

• Loading a dataset of labeled images.
• Converting the images to a numeric format that can be used by computer vision algorithms.
• Splitting the numeric data into training and testing datasets.

198

Loading and Preprocessing Images
The following code imports a set of libraries that are used to load the images from the LHI-Animal-
Faces dataset and convert them to a numeric format.

%%capture
import matplotlib.pyplot as plt # used for visualization
from os import listdir # used to list the contents of a directory

!pip install scikit-image # used for image manipulation
from skimage.io import imread # used to read a raw image file (e.g. png or jpg)
from skimage.transform import resize # used to resize images

used to convert an image to the "unsigned byte" format
from skimage import img_as_ubyte

Ensuring that all the images in the dataset have the same dimensions is required by supervised learning
algorithms, therefore, the following code reads the images from their input_folder and resizes each
of them to the same (width x height) dimensions. :

The dataset you will be using includes 1,730 face images for 16 different types of animals, making it
ideal for supervised learning and demonstrating the aforementioned techniques.

def resize_images(input_folder:str,
 width:int,
 height:int
):

 labels = [] # a list with the label for each image
 resized_images = [] # a list of resized images in np array format
 filenames = [] # a list of the original image file names

 for subfolder in listdir(input_folder): # for each sub folder

 print(subfolder)
 path = input_folder + '/' + subfolder

 for file in listdir(path): # for each image file in this subfolder

 image = imread(path + '/' + file) # reads the image
 resized = img_as_ubyte(resize(image, (width, height))) # resizes the image
 labels.append(subfolder[:-4]) # uses subfolder name without "Head" suffix
 resized_images.append(resized) # stores the resized image
 filenames.append(file) # stores the filename of this image

 return resized_images, labels, filenames

• Analyzing the data to extract informative patterns and features.
• Using the transformed data to train classification models that can be used to predict the labels of

new images.

199

resized_images, labels, filenames = resize_images("AnimalFace/Image",
width=100, height=100) # retrieves the images with their labels and resizes them to 100 x 100

BearHead
CatHead
ChickenHead
CowHead
DeerHead
DuckHead

EagleHead
ElephantHead
LionHead
MonkeyHead
Natural
PandaHead

PigeonHead
RabbitHead
SheepHead
TigerHead
WolfHead

Printing the image shape reveals a 169x169 matrix, for a total of 28,561 pixels. The "3" in the third
column represents the 3 channels (Red/Green/Blue) of the RGB system. For example, the following
code would print the RGB value of the first pixel of this image:

the pixel at the first column of the first row
print(image[0][0])

[102 68 66]

(169, 169, 3)

reads an image file, stores it in a variabe and
shows it to the user in a window
image = imread('AnimalFace/Image/LionHead/lioni78.jpg')
plt.imshow(image)
image.shape

The imread() function creates an "RGB" format of the image.
This format is widely used because it allows for the
representation of a wide range of colors. In the RGB color
system, the letters R, G, and B mean that the format contains
three major color components, namely red (R = Red), green
(G = Green), and blue (B = Blue). Each pixel is represented
by three 8-bit channels (one for red, one for green, and one
for blue) and can take on a value between 0 and 255. This
0-255 format is also known as the "unsigned byte" format.
The combination of these three channels allows for the
representation of a wide range of colors in the pixel. For
example, a pixel with the value (255, 0, 0) would be fully
red, a pixel with the value (0, 255, 0) would be fully green,
and a pixel with the value (0, 0, 255) would be fully blue. A
pixel with the value (255, 255, 255) would be white, and a pixel with the value (0, 0, 0) would be black.
In the RGB system, pixel values are arranged in a two-dimensional grid, with rows and columns
representing the x and y coordinates of the pixels in the image. The resulting grid is referred to as the
"image matrix."
For example , consider the image in figure 4.2 and the associated code below:

Figure 4.2: Original lion head image

The names of the folders.
Without the "Head" suffix,

they serve as the labels of the
images contained in them.

200

Resizing has the effect of converting RGB images to a float-based format:

resized = resize(image, (100, 100))
print(resized.shape)
print(resized[0][0])

(100, 100, 3)
[0.40857161 0.27523827 0.26739514]

Even though the image has now indeed been resized to a 100x100 matrix, the 3 RGB values of each
pixels have been normalized to a value between 0 and 1. It can be transformed back to the original
unsigned byte format via the following code:

The RGB values of the resized pixel are slightly different
from those in the original image, which is a common effect
of the resizing. Printing the resized image also reveals that
it is slightly less clear, as appears in figure 4.3. Again, this
is a result of compressing the 169x169 matrix to a 100x100
format.

displays the resized image
plt.imshow(resized);

Before proceeding with the training of supervised learning
algorithms, it is good practice to check if any of the images
in the dataset violates the (100,100,3) format:

violations = [index for index in range(len(resized_images)) if
resized_images[index].shape != (100,100,3)]

violations

[455, 1587]

Figure 4.3: Resized lion head image

The code reveals two such images. This is unexpected, given that the resize_images() function was
applied to all images in the dataset. The following code snippets print the two images, along with
their dimensions and file names:

resized = img_as_ubyte(resized)
print(resized.shape)
print(resized[0][0])
print(image[0][0])

(100, 100, 3)
[104 70 68]
[102 68 66]

201

The first image has a shape of (100, 100, 4). The "4" reveals
that the image has an "RGBA" rather than RGB format.
This is an extended format and contains a fourth additional
channel called the "Alpha" channel that represents the
transparency of each pixel.

prints the first pixel of the RGBA image
a value of 255 reveals that the pixel is
not transparent at all.
resized_images[pos1][0][0]

array([135, 150, 84, 255],
dtype=uint8)

Figure 4.4: RGBA image

print(filenames[pos2]);
print(resized_images[pos2].shape);
plt.imshow(resized_images[pos2]);
plt.title(labels[pos2]);

tiger0000000168.jpg
(100, 100)

The second image has a shape of (100, 100). The lack of
the third dimension reveals that the image has a grayscale
rather than RGB format. The misleading yellow/blue
format shown above is due to a color map that the imshow
applies by default to grayscale images. It can be switched
off as follows:

plt.imshow(resized_images[pos2],
cmap = 'gray')

Figure 4.6: Grayscale image

pos1 = violations[0]
pos2 = violations[1]

print(filenames[pos1])
print(resized_images[pos1].shape)
plt.imshow(resized_images[pos1])
plt.title(labels[pos1])

cow1.gif
(100, 100, 4)

Figure 4.5: Image that shows
transparency of each pixel

 For example:

202

Grayscale images have only one channel (rather than the 3 RGB channels). each pixel value is just a
single number ranging from 0 to 255. The pixel value 0 represents black and the pixel value 255
represents white. For example:

As an additional data quality check, the following code counts the frequency of each animal label in
the dataset:

The dataset contains both images of animals and nature to showcase outlier data.
The Counter reveals a very small category "Nat" with only 8 images. A quick inspection reveals that
this is an outlier category with images of natural landscapes without any animal faces.
The following code removes the two RGBA and Grayscale images, as well as all the images from the
"Nat" category from the resized_images, labels, and filenames lists:

N = len(labels)

resized_images = [resized_images[i] for i in range(N) if i not in violations
and labels[i] != "Nat"]
filenames = [filenames[i] for i in range(N) if i not in violations and
labels[i] != "Nat"]
labels = [labels[i] for i in range(N) if i not in violations and labels[i] !=
"Nat"]

used to count the frequency of each element in a list.
from collections import Counter

label_cnt = Counter(labels)
label_cnt

Counter({'Bear': 101,
 'Cat': 160,
 'Chicken': 100,
 'Cow': 104,
 'Deer': 103,
 'Duck': 103,
 'Eagle': 101,
 'Elephant': 100,
 'Lion': 102,
 'Monkey': 100,
 'Nat': 8,
 'Panda': 119,
 'Pigeon': 115,
 'Rabbit': 100,
 'Sheep': 100,
 'Tiger': 114,
 'Wolf': 100})

The outlier in the data
can be seen clearly here.

The "Nat" (Nature)
category has only 8

elements in comparison
to the others.

resized_images[pos2][0][0]

100

203

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 X,
 y,
 test_size = 0.20, # uses 20% of the data for testing
 shuffle = True, # to randomly shuffle the data.
 random_state = 42, # to ensure that data is always shuffled in the same way
)

Given that the animal folders were loaded one at a time, the images from each folder are packed
together in the above lists. This can be misleading for many algorithms, especially in the computer
vision domain. Setting shuffle=True in the code above solves this issue. In general, it is good to randomly
shuffle the data before proceeding with any analysis.

Prediction without Feature Engineering
Even though the steps followed in the previous section have indeed converted the data into a numeric
format, they are not in the standard one-dimensional format that is expected by many machine
learning algorithms. For instance, unit 3 described how each document had to be converted to a
one-dimensional numeric vector before the data could be used for training and testing machine
learning models. Instead, each data point in the dataset has a 3-dimensional format:

X_train[0].shape

(100, 100, 3)

The shape of the final X dataset reveals that it includes 1,720 RGB images, according to the number
of channels, all with the same 100x100 dimensions (10,000 pixels). Finally, the train_test_split()
function from the sklearn library can be used to split the dataset into training and testing sets:

import numpy as np
X = np.array(resized_images)
y = np.array(labels)

X.shape

(1720, 100, 100, 3)

The next step is to convert the resized_images and labels lists to numpy arrays, which is expected by
many computer vision algorithms. The following code also uses the (X,y) names that are typically
used to represent data and labels, respectively, in supervised learning tasks:

204

The following code can be used to "flatten" each image into a one-dimensional vector. Each image is
now represented as a flat numeric vector of 100 x 100 x 3 = 30,000 values:

X_train_flat = np.array([img.flatten() for img in X_train])
X_test_flat = np.array([img.flatten() for img in X_test])
X_train_flat[0].shape

(30000,)

This flat format can now be used with any standard classification algorithm, without any additional
effort to engineer additional predictive features. An example of feature engineering for image data
will be explored in the following section. The following code uses the Naive Bayes (NB) classifier that
was also used to classify text data in unit 3:

from sklearn.naive_bayes import MultinomialNB # imports the Naive Bayes Classifier

model_MNB = MultinomialNB()
model_MNB.fit(X_train_flat,y_train) # fits the model on the flat training data

MultinomialNB()

from sklearn.metrics import accuracy_score # used to measure the accuracy

pred = model_MNB.predict(X_test_flat) # gets the predictions for the flat test set
accuracy_score(y_test,pred)

0.36046511627906974

The following code prints the confusion matrix of the results, to provide additional insight:

%%capture
!pip install scikit-plot
import scikitplot

scikitplot.metrics.plot_confusion_matrix(y_test, # actual labels
 pred, # predicted labels
 title = "Confusion Matrix",
 cmap = "Purples",
 figsize = (10,10),
 x_tick_rotation = 90,
 normalize = True # to print percentages
)

205

The MultinomialNB algorithm achieves an accuracy around 30%.
While this might seem low, it has to be considered in the context of
the fact that the dataset includes 20 different labels. This means that,
assuming a relatively balanced dataset where each label covers 1/20
of the data, a random classifier that randomly assigns a label to each
testing point would achieve an accuracy of around 5%. Therefore, a
30% accuracy would be 6 times higher than a random guess!
Still, as shown in the following sections, this accuracy can be improved
significantly. The confusion matrix also verifies that there is room for
improvement. For example, the Naive Bayes model often mistakes
Pigeons for Eagles or Wolves for Cats.
The easiest way to try to improve the results is to leave the data as
it is and experiment with different classifiers. One model which has
been shown to work well with vectorized image data is the SGDClassifier
from the sklearn library. During training, the SGDClassifier adjusts the
weights of the model based on the training data. The goal is to find
the set of weights that minimizes a "loss" function, which measures
the difference between the predicted labels and the true labels in
the training data.
The following code uses the SGDClassifier to train a model on the flat
dataset:

MultinomialNB

MultinomialNB is a machine
learning algorithm used for
classifying text or other data
into different categories. It is
based on the Naive Bayes
algorithm, which is a simple
and efficient method for
solving classification problems.

SGDClassifier

The SGDClassifier is a machine
learning algorithm used to
classify data into different
categories or groups. It is
based on a technique called
Stochastic Gradient Descent
(SGD), which is an efficient
method for optimizing and
training various types of
models, including classifiers.

Figure 4.7: Confusion matrix of MultinomialNB algorithm performance

The normalized
values help to

view the elements
as percentages.

206

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_flat_scaled = scaler.fit_transform(X_train_flat)
X_test_flat_scaled = scaler.fit_transform(X_test_flat)

print(X_train_flat[0]) # the values of the first image pre-scaling
print(X_train_flat_scaled[0]) # the values of the first image post-scaling

[144 142 151 ... 76 75 80]
[0.33463473 0.27468959 0.61190285 ... -0.65170221 -0.62004162
 -0.26774175]

from sklearn.linear_model import SGDClassifier

model_sgd = SGDClassifier()
model_sgd.fit(X_train_flat, y_train)
pred=model_sgd.predict(X_test_flat)
accuracy_score(y_test,pred)

0.46511627906976744

The SGDClassifier achieves signicantly higher accuracy of over 46%,
despite the fact that it was trained on the exact same data as the
MultinomialNB classifier. This demonstrates the potential benefits of
experimenting with various classification algorithms to find the one
that best fits each particular dataset. In that effort, it is also important
to understand the strengths and weaknesses of each algorithm. For
example, the SGDClassifier is known to perform better when the input
data is scaled and the features are standardized. That is why you will
be using standard scaling in your model.

Standard scaling

A preprocessing technique
used in machine learning to
scale the features of a dataset
so that they have zero mean
and unit variance.

A new model can now be trained and tested using the scaled datasets:

model_sgd = SGDClassifier()
model_sgd.fit(X_train_flat_scaled, y_train)
pred=model_sgd.predict(X_test_flat_scaled)
accuracy_score(y_test,pred)

0.4906976744186046

The results indeed demonstrate an improvement after scaling. It is likely that further improvement
can be achieved by experimenting with other algorithms and tuning their parameters to better fit the
dataset.

The following code uses the StandardScaler tool from the sklearn library to scale the data:

207

plt.imshow(X_train[0]); plt.imshow(X_train_gray[0],cmap='gray');

The new shape of each image is now 100x100, rather than the RGB-based 100x100x3 format:

print(X_train_gray[0].shape)
print(X_train[0].shape)

(100, 100)
(100, 100, 3)

Prediction with Feature Selection
While the previous section focused on training models by simply
flattening the data, this section will describe how the original data
can be transformed to engineer smart features that capture key
properties of the image data. Specifically, the section demonstrates
a popular technique called the Histogram of Oriented Gradients
(HOG).
The first step towards engineering HOGs is to convert the RGB
images to grayscale. This can be done with the rgb2gray() function
from the sckit-image library:

from skimage.color import rgb2gray # used to convert a multi-color (rgb) image to grayscale
converts the training data
X_train_gray = np.array([rgb2gray(img) for img in X_train])
converts the testing data
X_test_gray = np.array([rgb2gray(img) for img in X_test])

Histogram of Oriented Gradients
(HOG)

HOGs divide an image into small
sections and analyze the
distribution of intensity changes
within each section, in order to
identify and understand the
shape of an object in the image.

Figure 4.8: RGB image Figure 4.9: Grayscale image

208

The next step is to create the HOG features for each image in the data. This can be achieved via the
hog() function from the scikit-image library. The following code shows an example for the first image
in the training dataset:

from skimage.feature import hog

hog_vector, hog_img = hog(
 X_train_gray[0],
 visualize = True
)
hog_vector.shape

(8100,)

The hog_vector is a one-dimensional vector with 8,100
numeric values that can now be used to represent this image.
A visual representation of this vector is shown using:

plt.imshow(hog_img);

X_train_hog = np.array([hog(img) for img in X_train_gray])
X_test_hog = np.array([hog(img) for img in X_test_gray])

A new SGDClassifier can now be trained on this new representation:

scales the new data
scaler = StandardScaler()
X_train_hog_scaled = scaler.fit_transform(X_train_hog)
X_test_hog_scaled = scaler.fit_transform(X_test_hog)

trains a new model
model_sgd = SGDClassifier()
model_sgd.fit(X_train_hog_scaled, y_train)

tests the model
pred = model_sgd.predict(X_test_hog_scaled)
accuracy_score(y_test,pred)

0.7418604651162791

This new representation captures the boundaries of the key
shapes in the image. It eliminates noise and focuses on the
informative parts that can help a classifier to make a
prediction. The following code applies this transformation
to all images in both training and testing sets:

Figure 4.10: HOG of image

209

The new results reveal a massive improvement in accuracy, which has now jumped to over 70% and
has far surpassed the accuracy achieved by the same classifier on the flat data without any feature
engineering. The improvement is also apparent in the updated confusion matrix, which now includes
far less false positives (mistakes). This demonstrates the value of using computer vision techniques
to engineer intelligent features that capture the various visual properties of the data.

Figure 4.11: Confusion matrix of SGDClassifier algorithm performance

scikitplot.metrics.plot_confusion_matrix(y_test, # actual labels
 pred, # predicted labels
 title = "Confusion Matrix", # title to use
 cmap = "Purples", # color palette to use
 figsize = (10,10), # figure size
 x_tick_rotation = 90
);

210

In the previous unit you were introduced to artificial neurons and neural network architectures.
Specifically, the Word2Vec model, which used a hidden layer and an output layer to predict the context
words of a given word in a sentence. Next, Keras is used to create a similar neural architecture for
images. First, the labels in y_train are converted to an integer format, as required by Keras:

Prediction Using Neural Networks
This section demonstrates how neural networks can be used to design classifiers that are customized
for image data and can often surpass even highly effective techniques, such as the HOG process that
was described in the previous section. The popular Tensorflow and Keras libraries are used for this
purpose. TensorFlow is a low-level library that provides a wide range of tools for machine learning
and artificial intelligence. It allows users to define and manipulate numerical computations involving
tensors, which are multi-dimensional arrays of data.
Keras, on the other hand, is a higher-level library that provides a simpler interface for building and
training models. It is built on top of TensorFlow (or other backends) and provides a set of pre-defined
layers and models that can be easily assembled to build a deep learning model. Keras is designed to
be user-friendly and easy to use, making it a popular choice for practitioners. Activation functions are
mathematical functions applied to the output of each neuron in a neural network that have the
advantage of adding non-linear properties to the model and allowing the network to learn complex
patterns in the data. The choice of activation function is important and can impact the network's
performance. Neurons receive input,
process it with weights and biases, and
produce an output based on an activation
function, as shown in figure 4.12. Neural
networks are constructed by connecting
many neurons together in layers and are
trained to adjust the weights and biases
and improve their performance over time.

%%capture
!pip install tensorflow
!pip install keras

gets the set of all distinct labels
classes=list(set(y_train))
print(classes)
print()

replaces each label with an integer (its index in the classes lists) for both the training and testing data
y_train_num = np.array([classes.index(label) for label in y_train])
y_test_num = np.array([classes.index(label) for label in y_test])
print()

example:
print(y_train[:5]) # first 5 labels
print(y_train_num[:5]) # first 5 labels in integer format

inputs biasweight
variables

outputactivation
function

x1

x2

xn

Figure 4.12: Activation function

The following code installs the libraries
tensorflow and keras:

211

The model summary reveals the total number of parameters that the model has to learn by fitting
on the training data. Since the input has 8,100 entries, which are the the dimensions of the HOG
images X_train_hog and the hidden layer has 200 neurons and is a dense layer that is fully connected
to the input, this creates a total of 8,100 x 200 = 1,620,000 weighted connections whose weights
(parameters) have to be learned. An additional 200 "bias" parameters are added, one for each neuron
in the hidden layer. A bias parameter is a value that is added to the input of each neuron in a neural
network. It is used to shift the activation function of the neuron to the negative or positive side,
allowing the network to model more complex relationships between the input data and the output
labels.

The Sequential tool from the Keras library can now be used to build a neural network as a sequence
of layers.

from keras.models import Sequential # used to build neural networks as sequences of layers
every neuron in a dense layer is connected to every other neuron in the previous layer.
from keras.layers import Dense

builds a sequential stack of layers
model = Sequential()
adds a dense hidden layer with 200 neurons, and the ReLU activation function.
model.add(Dense(200,input_shape = (X_train_hog.shape[1],), activation='relu'))
adds a dense output layer and the softmax activation function.
model.add(Dense(len(classes), activation='softmax'))
model.summary()

Model: "sequential"

 Layer (type) Output Shape Param #
===
 dense (Dense) (None, 200) 1620200

 dense_1 (Dense) (None, 16) 3216

===
Total params: 1,623,416
Trainable params: 1,623,416
Non-trainable params: 0

The number of neurons in the hidden
layer is a design choice. The number

of neurons in the output layer is
dictated by the number of classes.

212

Table 4.2: The arguments of the "compile" method

loss

This is the loss function that is used to evaluate the error in the model during
training. It measures how well the model's predictions match the true labels for
a given set of input data. The goal of training is to minimize the loss function,
which typically involves adjusting the model's weights and biases. In this case,
the loss function is 'sparse_categorical_crossentropy', which is a loss function
suitable for multi-class classification tasks where the labels are integers (as in
y_train_num).

metrics

This is a list of metrics that is used to evaluate the model during training and
testing. These metrics are computed using the output of the model and the true
labels, and they can be used to monitor the performance of the model and identify
areas where it can be improved. "Accuracy" is a common metric for classification
tasks that measures the fraction of correct predictions made by the model.

optimizer

This is the optimization algorithm that is used to adjust the model's weights and
biases during training. The optimizer uses the loss function and the metrics to
guide the training process, and it adjusts the model's parameters in an effort to
minimize the loss and maximize the performance of the model. In this case, the
optimizer is 'adam', which is a popular algorithm for training neural networks.

model.fit(X_train_hog, # training data
 y_train_num, # labels in integer format
 batch_size = 80, # number of samples processed per batch
 epochs = 40, # number of iterations over the whole dataset
)

Finally, the fit() method is used to train the model on the available data:

The Keras smart model preparation method known as model.compile() is used to define the basic
characteristics of a smart model and prepare it for training, verification, and prediction. It takes three
main arguments as illustrated in Table 4.2

compiling the model
model.compile(loss = 'sparse_categorical_crossentropy', metrics =
['accuracy'], optimizer = 'adam')

Given that the output layer has 16 neurons that are fully connected to the 200 neurons of the hidden
layer, this adds an additional 16 x 200 = 3,216 weighted connections. An additional 16 bias parameters
are added, one for each neuron in the output layer. The following line is used to "compile" the model:

213

Table 4.3: The arguments of the "fit" method

X_train_hog
This is the input data that is used to train the model. It consists of the
HOG-transformed data that was also used to train the latest version of
the SGDClassifier in the previous section.

y_train_num This includes the label for each image in integer format.

batch_size

This is the number of samples that is processed in each batch during
training. The model updates its weights and biases after each batch,
and the batch size can affect the speed and stability of the training
process. Larger batch sizes can lead to faster training, but they can also
be more computationally expensive and may result in less stable
gradients.

epochs

This is the number of times the model iterates over the entire dataset
during training. An epoch consists of one pass through the entire dataset,
and the model updates its weights and biases after each epoch. The
number of epochs can affect the model's ability to learn and generalize
to new data. It is an important hyperparameter that should be chosen
carefully. In this case, the model is trained for 40 epochs.

Epoch 1/40
17/17 [==============================] - 1s 16ms/step - loss: 2.2260 - accuracy: 0.3333
Epoch 2/40
17/17 [==============================] - 0s 15ms/step - loss: 1.1182 - accuracy: 0.7256
Epoch 3/40
17/17 [==============================] - 0s 15ms/step - loss: 0.7198 - accuracy: 0.8155
Epoch 4/40
17/17 [==============================] - 0s 15ms/step - loss: 0.4978 - accuracy: 0.9031
Epoch 5/40
17/17 [==============================] - 0s 16ms/step - loss: 0.3676 - accuracy: 0.9388
...
Epoch 36/40
17/17 [==============================] - 0s 15ms/step - loss: 0.0085 - accuracy: 1.0000
Epoch 37/40
17/17 [==============================] - 0s 21ms/step - loss: 0.0080 - accuracy: 1.0000
Epoch 38/40
17/17 [==============================] - 0s 15ms/step - loss: 0.0076 - accuracy: 1.0000
Epoch 39/40
17/17 [==============================] - 0s 15ms/step - loss: 0.0073 - accuracy: 1.0000
Epoch 40/40
17/17 [==============================] - 0s 15ms/step - loss: 0.0071 - accuracy: 1.0000

The fit() method is used to train a model on a given set of input data and labels. It takes four main
arguments, as illustrated in Table 4.3.

214

The trained model can now be used to predict the labels of the images in the testing set:

pred = model.predict(X_test_hog)
pred[0] # prints the predictions for the first image

14/14 [==============================] - 0s 2ms/step

array([4.79123509e-03, 9.79321003e-01, 8.39506648e-03, 1.97884417e-03,
 7.83501855e-06, 3.50346789e-04, 3.45465224e-07, 1.19854585e-05,
 4.41945267e-05, 4.11721296e-04, 1.27362555e-05, 9.83431892e-06,
 1.97038025e-04, 2.34744814e-03, 5.49758552e-04, 1.57057808e-03],
 dtype=float32)

While the predict() function from the sklearn library returns the most likely label as predicted by the
classifier, the Keras predict() function returns the probability of all candidate labels. The np.argmax()
function can then be used to return the index of the highest probability:

index of the class with the highest predicted probability.
print(np.argmax(pred[0]))
name of this class
print(classes[np.argmax(pred[0])])
uses axis=1 to find the index of the max value per row
accuracy_score(y_test_num,np.argmax(pred, axis=1))

1
Duck
0.7529021558872305

This simple neural network achieves an accuracy around 75%, similar to the one reported by the
SGDClassifier. However, the advantage of neural architectures comes from their versatility, which
allows you to experiment with different architectures to find the one that best fits your dataset.
This accuracy was achieved with a simple and shallow architecture that included just one hidden layer
with 200 neurons. Adding additional layers would make the network deeper, while adding more
neurons per layer would make it wider. The choice of the number of layers and number of neurons
per layer are important components of neural network design that have a considerable impact on
their performance. However, they are not the only way to improve performance and, in some cases,
using a different type of neural network architecture may be more effective.

Prediction Using Convolutional Neural Networks
One such type of architecture that is particularly well-suited for image classification is the Convolutional
Neural Network (CNN). As the CNN processes the input data, it continually adjusts the parameters of
convolved filters to detect patterns based on the data it sees, in order to better detect the desired
features. The output of each layer is then passed on to the next layer, where more complex features
are detected, until the final output is produced.

215

Convolutional Neural
Network (CNN)

CNNs are deep neural
networks that
automatically learn a
hierarchy of features from
raw data, like images, by
applying a series of
convolved filters to the
input data, which are
designed to detect specific
patterns or features.

One of the key advantages of CNNs is that they are very good at
learning from large amounts of data, and can often achieve high

levels of accuracy on tasks such as image classification without the
need for manual feature engineering, such as the HOG process.

INFORMATION

Despite the benefits of complex neural networks like CNNs, it is
important to note that:

• The power of convolutional neural networks (CNNs) is their
ability to automatically extract relevant features from images,
without the need for manual feature engineering.

• More complex neural architectures have more parameters that
have to be learned from the data during training. This typically
requires a larger training dataset, which may not be available
in some cases. In such cases, creating an overly complex
architecture is unlikely to be effective.

• Even though neural networks have indeed achieved impressive
results in image processing and other tasks, they are not
guaranteed to always deliver the best performance across
problems and datasets.

• Even if a neural network architecture is the best possible solution for a specific task, it may take
a lot of time, effort, and computational resources to experiment with different options until this
architecture is found. It is therefore best practice to start with simpler (but still effective) models,
such as the SGDClassifier and many others from libraries such as sklearn. Once you have built a
better prediction for the dataset and have reached the point where such models can no longer be
improved, then experimenting with neural architectures is an excellent next step.

Figure 4.13: Neural network with manual feature engineering

Input OutputLearningManual feature extraction

216

Transfer Learning
Transfer learning is a process of reusing a pre-trained neural network to solve a new task. In the
context of convolutional neural networks (CNN), transfer learning involves taking a pre-trained model,
which was trained on a large dataset, and adapting it to a new dataset or task. Instead of starting
from scratch, transfer learning allows the use of pre-trained models, which have already learned
important features, such as edges, shapes, and textures from the training dataset.

Input Output

Figure 4.14: Convolutional neural network without manual feature engineering

Figure 4.15: Reuse of pretrained network

Feature extraction & learning

New layers are added
to learn the specific

features of your data.

Load
pretrained
network

Replace
final layers

Train
network

Predict and
assess

network
accuracy

Deploy
results

Improve network

217

1 What are the challenges of visual data classification?

3 Descibe briefly how CNNs work and one of their key advantages.

Exercises

2 You are given two numpy arrays X_train and y_train. Each row in X_train has a shape
of (100, 100, 3) and represents a 100 × 100 RGB image. The n_th row in y_train represents
the label of the n_th image in X_train. Complete the following code so that it flattens
X_train and then trains a MultinomialNB model on this dataset.

from sklearn.naive_bayes import MultinomialNB # imports the Naive Bayes Classifier from sklearn

X_train_flat = np.array()

model_MNB = MultinomialNB() # new Naive Bayes model

model_MNB.fit(,) # fits model on the flat training data

218

5 Name some challenges of CNNs.

4 You are given two numpy arrays X_train and y_train. Each row in X_train has a shape
of (100, 100, 3) and represents a 100 × 100 RGB image. The n_th row in y_train represents
the label of the n_th image in X_train. Complete the following code so that it applies
the HOG transformation on this dataset and then uses the transformed data to train a
MultinomialNB model:

from skimage.color import # used to convert a multi-color (rgb) image to grayscale

from sklearn. import StandardScaler # used to scale the data

from sklearn.naive_bayes import MultinomialNB # imports the Naive Bayes Classifier from sklearn

X_train_gray = np.array([(img) for img in X_train]) # converts training data

X_train_hog =

scaler = StandardScaler()

X_train_hog_scaled = .fit_transform(X_train_hog)

model_MNB = MultinomialNB()

model_MNB.fit(X_train_flat_scaled,)

219

Link to digital lesson

Understanding Image Content
In the context of computer vision, unsupervised learning has been
used for a variety of tasks, such as image segmentation, video
segmentation, and anomaly detection. Another key application
of unsupervised learning is image search, which involves searching
a large database of images to find those that are similar to a given
query image.
The first step towards building a search engine for image data is
defining a similarity function that can evaluate the similarity
between two images based on their visual properties, such as
their border, texture, or shape. Once the user submits a new image
as a query, the search engine goes over all the images in the
available database, finds those with the highest similarity score,
and returns them to the user.
An alternative approach is to use the similarity function to separate
the images into clusters, so that each cluster consists of images
that are visually similar to each other. Each cluster is then
represented by a centroid: an image that sits at the center of the
cluster and has the smallest overall distance (i.e. difference) from
the other cluster members. Once the user submits a new image
as a query, the search engine will go over all the clusters and select
the one whose centroid is the most similar to the query image.
The members of the selected cluster then returned to the user.
Figure 4.16 shows an example of this approach:

Figure 4.16: Autonomous vehicle vision with image segmentation

Anomaly Detection

Anomaly detection is a process
used to identify abnormal or
unexpected patterns, events, or
data points within a dataset. Its
aim is to uncover unusual cases
that stand out from the norm and
may warrant further
investigation.

Image Segmentation

Image segmentation is a process
of dividing an image into multiple
segments or regions that share
common visual properties. Its aim
is to partition an image into
meaningful and coherent parts
that can be used for further
analysis.

Lesson 2

Unsupervised Learning
for Image Analysis

220

Figure 4.17: Clusters of image recognition analysis

In this example shown in figure 4.17, the query image has a similarity of 40%, 50%, and 90% with the
centroids of the three image clusters, respectively. Similarity is assumed to be a percentage between
0% and 100%. Cluster 2 has the highest score, as it includes cats of the same breed and color as the
query image. The scores of clusters 1 and 3 are close to each other (40% and 50%), as the two clusters
are similar to the query in different ways. Cluster 1 includes cats with a significantly different color
pattern. On the other hand, even though cluster 3 represents a different type of animal (tiger), the
color pattern is similar to that of the query image.
The process of clustering visual data is similar to that of clustering numeric or textual data. However,
the unique nature of visual data requires specialized methods for evaluating visual similarity. Even
though early methods relied on hand-crafted features, recent advances in deep learning have led to
the development of powerful models that can automatically learn sophisticated features from
unlabeled visual data.
This lesson uses an image-clustering task to demonstrate how using more sophisticated features can
lead to significantly better results. Specifically, the lesson will cover three different approaches:

• Flattening and clustering the original data, without any feature engineering.
• Transforming the data using the HOG feature descriptor (introduced in the previous lesson) and

then clustering the transformed data.
• Using a neural network model to cluster the original data without any feature engineering.
The LHI-Animal-Faces dataset that was used in the previous lesson will also be used to evaluate the
various image clustering techniques. This dataset was originally designed for classification tasks and
therefore includes the true label (the actual animal type) for each image. In this lesson, these labels
will only be used for validation and will not be used to actually cluster the images. An effective
clustering approach should be able to group images with the same label in the same cluster and
separate images with different labels into different clusters.

50%

40%

90%

cluster 2

cluster 3

cluster 1

221

Loading and Preprocessing Images
The following code imports the libraries that will be used to load and preprocess the images:

%%capture
import matplotlib.pyplot as plt
from os import listdiry

!pip install scikit-image
from skimage.io import imread
from skimage.transform import resize
from skimage import img_as_ubyte

a palette of 10 colors that will be used to visualize the clusters.
color_palette = ['blue','green','red','yellow','gray','purple','orange',
'pink','black','brown']

The following function reads the images of the LHI-Animal-Faces dataset from their input_folder and
resizes each of them to the same width and height dimensions. It extends the resize_images() from
the previous lesson by allowing the user to specify a list of animal classes that should be considered.
It also uses a single line of Python code to read, resize, and store each image:

def resize_images_v2(input_folder:str,
 width:int,
 height:int,
 labels_to_keep:list
):
 labels = [] # a list with the label for each image
 resized_images = [] # a list of resized images in np array format
 filenames = [] # a list of the original image file names

 for subfolder in listdir(input_folder):

 print(subfolder)
 path = input_folder + '/' + subfolder

 for file in listdir(path):

 label=subfolder[:-4] # uses the subfolder name without the "Head" suffix
 if label not in labels_to_keep: continue
 labels.append(label) # appends the label
 #loads, resizes, preprocesses, and stores the image.
 resized_images.append(img_as_ubyte(resize(imread(path+'/'+file),
(width, height))))
 filenames.append(file)

 return resized_images,labels,filenames

222

Unstructured data is diverse and can require a lot of time and computational resources. This is
especially true when they are processed via complex deep learning techniques, as will be done later
in this lesson. Therefore, in order to reduce computational time, the resize_images_v2() is applied to
a subset of images from animal classes:

You can easily change the "labels_to_keep" parameter to focus on particular classes. You will also
notice that the width and height of the images are now set to 224 × 224, rather than the 100 × 100
shape that was used in the previous lesson. This is done because one of the deep-learning clustering
methods that is presented in this lesson requires the images to have these dimensions. The 224 ×
224 shape is therefore adopted in order to ensure that all methods are given access to the same
input.
As also mentioned in the previous lesson, the original lists (resized_images, labels, filenames) include
the images from each class packed together. For instance, all the "Lion" images appear together at
the beginning of the 'resized' list. This can be misleading for many algorithms, especially in the
computer vision domain. While this can be addressed by randomly shuffling each of the three lists,
it is important to ensure that the same random order is used for all three of them. Otherwise, it is
impossible to find the correct label or filename for a specific image.
In the previous lesson, shuffling was taken care of by the train_test_split() function. However, given
that this function is not applicable for clustering tasks, the following code is used for shuffling:

resized_images,labels,filenames=resize_images_v2(
 "AnimalFace/Image",
 width = 224,
 height = 224,
 labels_to_keep=['Lion', 'Chicken', 'Duck', 'Rabbit', 'Deer',
'Cat', 'Wolf', 'Bear', 'Pigeon', 'Eagle']
)

BearHead
CatHead
ChickenHead
CowHead
DeerHead
DuckHead
EagleHead
ElephantHead
LionHead

MonkeyHead
Natural
PandaHead
PigeonHead
RabbitHead
SheepHead
TigerHead
WolfHead

import random

#connects the three lists together, so that they are shuffled in the same order
connected = list(zip(resized_images,labels,filenames))
random.shuffle(connected)
disconnects the three lists
resized_images,labels,filenames= zip(*connected)

These 10 are the
labels that are

going to be used

223

The next step is to convert the 'resized_images' and 'labels' lists to numpy arrays. Similarly to the
previous lesson, the standard (X,y) variable names are used to represent data and labels:

The shape of the data verifies that it includes 1,085 images, each with dimensions of 224 × 224 and
3 RGB channels.

import numpy as np # used for numeric computations
X = np.array(resized_images)
y = np.array(labels)

X.shape

(1085, 224, 224, 3)

Clustering without Feature Engineering
The first clustering attempt will focus on simply flattening the images to convert each of them to a
one-dimensional vector with 224 × 224 × 3 = 150,528 numbers.
Similar to the classification algorithms that were explored in the previous lesson, most clustering
algorithms also require this type of vectorized format.

X_flat = np.array([img.flatten() for img in X])
X_flat[0].shape

(150528,)

X_flat[0] # prints the first flat image

array([107, 146, 102, ..., 91, 86, 108], dtype=uint8)

Each numeric value in this flat format is an RGB value between 0 and 255. As also seen in the previous
lesson, standard scaling and normalization can sometimes improve the results of some machine
learning algorithms.
The following code can be used to normalize the values and bring them between 0 and 1.

X_norm = X_flat / 255
X_norm[0]

array([0.41960784, 0.57254902, 0.4 , ..., 0.35686275, 0.3372549 ,
 0.42352941])

224

This preliminary visualization is not promising. The various animal classes seem to be scrambled
together, without clear separation and no obvious clusters. This indicates that simply flattening the
original image data is unlikely to lead to high quality results.
Next, the same agglomerative clustering algorithm that was used in unit 3 lesson 2 is also used to
cluster the data in X_norm. The following code imports the set of required tools and visualizes the
dendrogram of the dataset:

Figure 4.18: Clusters visualization

%%capture
!pip install yellowbrick
from yellowbrick.text import TSNEVisualizer

tsne = TSNEVisualizer(colors = color_palette) # initializes the tool
tsne.fit(X_norm, y) # uses TSNE to reduce the data to 2 dimensions
tsne.show();

The data can now be visualized using the familiar TSNEVisualizer tool from the yellowbrick library.
This tool was also used in unit 3 lesson 2 to visualize the clusters in text data.

225

Figure 4.19: Dendrogram categorizing data into two clusters
The dendrogram reveals two large clusters that can be further broken down into smaller ones. The
following code uses the AgglomerativeClustering tool to create 10 clusters, which is the actual number
of clusters in the data:

Finally, the homogeneity, completeness, and adjusted Rand metrics (all introduced in unit 3 lesson 2)
are used to evaluate the quality of the produced clusters:

AC = AgglomerativeClustering(linkage = 'ward',n_clusters = 10)
AC.fit(X_norm) # applies the tool to the data

pred = AC.labels_ # gets the cluster labels

pred

array([9, 6, 3, ..., 4, 4, 3], dtype=int64)

from sklearn.cluster import AgglomerativeClustering # used for agglomerative clustering
import scipy.cluster.hierarchy as hierarchy

hierarchy.set_link_color_palette(color_palette) # sets the color palette
plt.figure()

iteratively merges points and clusters until all points belong to a single cluster
linkage_flat = hierarchy.linkage(X_norm, method = 'ward')
hierarchy.dendrogram(linkage_flat)
plt.show()

'ward' is a linkage
method used in

hierarchical
agglomerative

clustering.

226

from sklearn.metrics import homogeneity_score, adjusted_rand_score,
completeness_score

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.09868725008128477

Adjusted Rand score: 0.038254515908926826

Completeness score: 0.101897123096584

Clustering with Feature Selection
The previous lesson demonstrated how the HOG transformation can be used to convert image data
into a more informative format that led to significantly higher performance for image classification.
Next, the same transformation is applied to test whether it can also improve the results of image
clustering tasks.

from skimage.color import rgb2gray
from skimage.feature import hog
converts the list of resized images to an array of grayscale images
X_gray = np.array([rgb2gray(img) for img in resized_images])
computes the HOG features for each grayscale image in the array
X_hog = np.array([hog(img) for img in X_gray])
X_hog.shape

(1085, 54756)

The shape of the transformed data reveals that each image is now represented as a vector of 54,756
numeric values.

The following code uses the TSNEVisualizer tool to visualize this new format:

tsne = TSNEVisualizer(colors = color_palette)
tsne.fit(X_hog, y)
tsne.show();

As described in detail in unit 3 lesson 2, the homogeneity and completeness scores take values between
0 and 1. The first is maximized when all the points of each cluster have the same ground truth label.
The second one is maximized when all the data points with the same ground truth label also belong
to the same cluster. Finally, the adjusted Rand score takes values between –0.5 and 1.0 and is maximized
when all the data points with the same label are in the same cluster and all points with different labels
are in different clusters. As expected following the visualization of the data, the algorithm fails to find
high-quality clusters that match the actual animal classes. The values for all three metrics are very
low. This demonstrates that, even though simply flattening the data was sufficient to get reasonable
results for image classification, image clustering is a significantly harder problem.

227

The visualization is much more promising than the one produced for the non-transformed data. Even
though some impurities exist, the figure reveals clear and generally well-separated clusters. The
dendrogram of this more promising dataset can now be computed:

plt.figure()
linkage_2 = hierarchy.linkage(X_hog,method = 'ward')
hierarchy.dendrogram(linkage_2)
plt.show()

Figure 4.21: Dendrogram of the various animal face categories with HOG

Figure 4.20: Clusters visualization

228

AC = AgglomerativeClustering(linkage = 'ward', n_clusters = 5)
AC.fit(X_hog)
pred = AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.4046340612330986

Adjusted Rand score: 0.29990205334627734

Completeness score: 0.6306921317302154

The dendrogram suggests 5 clusters, exactly half of the correct number of 10. The following code
adopts this suggestion, applies the AgglomerativeClustering tool, and reports the results for the three
metrics:

The results reveal that, even though the number of clusters that was used was significantly lower
than the correct one, the results are far superior to those delivered when using the correct number
on the non-transformed data.
This demonstrates the intelligence of the HOG transformation and validates that it can lead to
impressive performance improvements for both supervised and unsupervised learning tasks in
computer vision. To complete the analysis, the following code re-clusters the transformed data with
the correct number of clusters:

As expected, the scores have increased overall. For instance, both homogeneity and completeness
are now above 0.55, indicating that the algorithm does a better job both of placing animals from the
same class in the same cluster and of creating "pure" clusters that mostly consist of the same animal
class.

AC = AgglomerativeClustering(linkage = 'ward', n_clusters = 10)
AC.fit(X_hog)
pred = AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.5720932612704411

Adjusted Rand score: 0.41243540297103065

Completeness score: 0.617016965322667

229

VGG16 follows a deep CNN-based architecture
with 16 layers. VGG16 is a supervised model that
was trained on a large dataset of labeled images,
called ImageNet. However, the training dataset
for the VGG16 consists of millions of images and
hundreds of different labels. This significantly
improves the model's ability to understand the
different parts of an image.
Similar to the simple CNN shown in the figure 4.22,
VGG16 also uses a final dense layer with 4,096
neurons to represent each image, before feeding
it to the output layer. This section demonstrates
how VGG16 can be adapted for image clustering,
even though it was originally designed for image
classification:
1 Load the pre-trained VGG16 model.
2 Remove the output layer of the model. This leaves the final dense layer as the new output layer.
3 Use the truncated model to map each of the images in the Animal Faces dataset to a numeric

vector with 4,096 values.
4 Use Agglomerative Clustering to cluster the produced vectors.

In the neural network of unit 3 lesson 1, a
300-neuron hidden layer of the Word2Vec model
was used to represent each word. In that case,
the Word2Vec model was pre-trained on a very
large dataset with millions of stories from Google
News. Pre-trained neural network models are also
popular in the computer vision domain. A
chracteristic example is the VGG16 model, which
is commonly used for image recognition tasks.

Dense layer

A layer in neural networks Where the
signals are passed from the nodes in the
previous layer in the network to the nodes
in the current layer by means of a specific
weight, and an activation function is
applied to the signals sent to the dense
layer to generate the final output results.

Pooling layer

A layer in neural networks used to reduce
the spatial dimensions of the input data.

Dropout layer

A regularization technique used to prevent
overspecialization of a model to a dataset
in neural networks by randomly dropping
out nodes in the layer during each training
iteration.

Clustering Using Neural Networks
The use of deep learning models (deep neural networks with multiple layers) has revolutionized the
field of image clustering by providing powerful and highly accurate algorithms that can automatically
group similar images together without the need for feature engineering. Many traditional image
clustering methods rely on feature extractors to extract meaningful information from an image and
use this information to group similar images together. This process can be time-consuming and requires
domain expertise to design effective feature extractors. In addition, as seen in the previous lesson,
even though feature descriptors such as the HOG transformation can indeed improve the results,
they are far from perfect and there is certainly room for improvement.
Deep learning, on the other hand, has the ability to learn feature representations from the raw data
automatically. This allows deep learning methods to learn highly discriminative features that capture
the underlying patterns in the data, resulting in more accurate and robust clustering. To achieve this,
several different layers are used in a neural network including:

• Dense layers
• Pooling layers
• Dropout layers

230

input

The TensorFlow and Keras libraries that were introduced in the previous lesson can be used to access
and truncate the VGG16 model. The first step is to import all the required tools:

from keras.applications.vgg16 import VGG16 # used to access the pre-trained VGG16 model
from keras.models import Model

model = VGG16() # loads the pretrained VGG16 model
removes the output layer
model = Model(inputs = model.inputs, outputs = model.layers[-2].output)

The multiprocessing=True parameter is set to speed up the process by computing the vectors for
multiple images in parallel. Before proceeding with the clustering step, the following code is used to
visualize the vectorized data:

tsne = TSNEVisualizer(colors = color_palette)
tsne.fit(X_VGG16, labels)
tsne.show();

The following code applies some basic preprocessing required by
VGG16, such as scaling the RGB values to be between 0 and 1:

from keras.applications.vgg16 import preprocess_input
X_prep = preprocess_input(X)
X_prep.shape

(1085, 224, 224, 3)

Note that the shape of the data remains the same: 1,085 images, each with dimensions of 224 × 224
and 3 RGB channels. Next, the truncated model can be used to map each image to a vector of 4,096
numbers:

X_VGG16 = model.predict(X_prep, use_multiprocessing = True)
X_VGG16.shape

34/34 [==============================] - 57s 2s/step

(1085, 4096)

Remove the last layer
from the output.

Figure 4.22: VGG16 architecture
Co

nv
 1

-1

Co
nv

 2
-1

Co
nv

 3
-1

Co
nv

 4
-1

Co
nv

 5
-1

Co
nv

 1
-1

Co
nv

 2
-2

Co
nv

 3
-2

Co
nv

 4
-2

Co
nv

 5
-2

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

Co
nv

 3
-3

Co
nv

 4
-3

Co
nv

 5
-3

De
ns

e
De

ns
e

De
ns

e

output

231

The results are impressive. The new visualization reveals clearly separated, near perfect clusters. The
separation is also significnatly better than that in the HOG-transformed data.

linkage_3 = hierarchy.linkage(X_VGG16, method = 'ward')
plt.figure()
hierarchy.dendrogram(linkage_3)
plt.show()

The dendrogram suggests 4 clusters. In this case, the practitioner can easily ignore this suggestion
and instead follow the visualization above which clearly indicates the existence of 10 clusters.

Figure 4.23: Clusters visualization

Figure 4.24: Dendrogram of the various animal face categories with VGG16

232

The following code uses Agglomerative Clustering and reports the metric scores for both 4 and 10
clusters:

AC = AgglomerativeClustering(linkage = 'ward',n_clusters = 4)
AC.fit(X_VGG16)
pred=AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.504687456015823

Adjusted Rand score: 0.37265351562538257

Completeness score: 0.9193141240200559

The results validate the evidence provided by the visualization. The transformations produced by
VGG16 lead to vastly superior results for both 4 and 10 clusters. In fact, near-perfect scores for all
three metrics were reported when using 10 clusters, verifying that the produced results are almost
perfectly aligned with the animal classes in the dataset.
VGG16 is one of the earliest highly intelligent pre-trained CNN models for computer vision applications.
However, many other intelligent pre-trained CNN models have been published and surpassed the
performance of the VGG16 model.

AC = AgglomerativeClustering(linkage='ward',n_clusters = 10)
AC.fit(X_VGG16)
pred=AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.8403973102506642

Adjusted Rand score: 0.766734821176714

Completeness score: 0.8509145102288217

233

1 Mention an advantage that unsupervised vision techniques have over supervised
techniques.

3 List some advantages of using Deep Learning over other traditional image clustering
methods?

2 You are given a numpy array X_flat that includes flattened images. Each row in the array
represents a different flattened image as a sequence of integers between 0 and 255.
Complete the following code so that it uses Agglomerative Clustering to group the
images from X_flat into 5 different clusters.

from import AgglomerativeClustering # used for agglomerative clustering

AC = AgglomerativeClustering(linkage='ward',)

X_norm = # normalizes the data

AC.fit(X_norm) # applies the tool to the data

pred = AC. # gets the cluster labels

Exercises

234

4 You are given a numpy array X_flat that includes flattened images. Each row in the array
represents a different flattened image as a sequence of integers between 0 and 255.
Complete the following code so that it uses the ward method to create and visualize
the dendrogram of the images in this array:

import scipy.cluster.hierarchy as hierarchy # visualizes and supports hierarchical clustering tasks

import as plt

X_norm = # normalizes the data

plt.figure() # creates a new empty figure

linkage_flat=hierarchy.linkage(, method=' ')

hierarchy. (linkage_flat)

plt.show() #shows the figure

5 Describe how clustering with neural networks is applied in image analysis.

235

Lesson 3

Generating Visual Data

Using AI to Generate Images
While the computer vision algorithms described in the previous
two lessons of this unit focused on understanding the different
aspects of a given image, the field of image generation in this
lesson focuses on creating new images. The field of image
generation has a long history, dating back to the 1950s & 1960s,
when researchers first began experimenting with mathematical
equations to create images. Today, the field has grown to
encompass a wide range of techniques.
One of the earliest and most well-known techniques for image
generation is the use of fractals. A fractal is a geometric shape
or pattern that is self-similar, meaning that it looks the same
at different zoom scales. The most famous fractal is the
Mandelbrot set, which can be seen in figure 4.25.

In the late 20th century, researchers began to explore more advanced techniques for image generation,
such as neural networks. One of the most popular techniques for image generation with neural networks
is text-to-image synthesis. This technique involves training a neural network to generate images from textual
descriptions. The neural network is trained on a dataset of images and their associated text descriptions.
The network learns to associate certain words or phrases with specific features of an image, such as the
shape or color of an object. Once trained, the network can be used to generate new images from text
descriptions. This technique has been used to generate a wide range of images, from simple objects to
complex scenes.
Another technique for image generation is image-to-image synthesis. This technique involves training a
neural network on a dataset of images to learn to recognize the unique features of an image, in order to
generate new images that are similar to the existing one, but with variations. Recently, researchers have
been exploring text-guided image-to-image synthesis, which combines the strengths of text-to-image and
image-to-image synthesis methods by allowing the user to guide the synthesis process using text prompts.
This technique has been used to generate high-quality images that are consistent with a given text prompt
while also being visually similar to an initial image.
Finally, another state-of-the-art technique is text-guided image-inpainting, which focuses on filling in missing
or corrupted parts of an image based on a given text description. The text description provides information
about what the missing or corrupted parts of the image should look like, and the goal of the inpainting
algorithm is to use this information to generate a realistic and coherent image. This lesson provides practical
examples for text-to-image, text-guided image-to-image, and text-guided image-inpainting generation.

Figure 4.25: Mandelbrot fractal

Link to digital lesson

236

Image Generation and Computational Resources
Image generation is a computationally intensive task, as it involves
the use of complex algorithms that require large amounts of
processing power. These algorithms typically involve the treating of
large amounts of data, such as 3D models, textures, and lighting
information, which can also contribute to the computational demands
of the task.
One of the key technologies that is used to accelerate image
generation is the use of Graphics Processing Units (GPUs). Unlike a
traditional Central Processing Unit (CPU), which is designed to handle
a wide range of tasks, a GPU is optimized for the types of mathematical
operations required for image rendering and other graphics-related tasks. This makes them much more
efficient at handling large amounts of data and performing complex calculations, which is why they are
often used in image generation and other computationally intensive tasks.

Graphics Processing Unit
(GPU)

A GPU is a specialized type of
processor that is designed to
handle the large number of
mathematical operations
required for rendering images
and video.

This lesson demonstrates how you can utilize
the popular Google Colab platform to get access
to a powerful GPU-based infrastructure at no
cost, using only a standard google account.
Google Colab is a free cloud-based platform that
allows users to write and execute code, run
experiments, and train models in a Jupyter
Notebook environment.

Figure 4.26: Accessing Google Colab

1 2

3

4 5

To access Google Colab:

 > Go to https://colab.research.google.com 1

 > Sign in with your Google account. 2

 > Click on Edit > Notebook settings. 3

 > Choose GPU 4 and click Save. 5

237

To use Python Notebook:

 > Click on File > New notebook. 1

 > Click Files 2 and inside the adjacent area that unfolds drag
and drop the images you will be using in the lesson. 3

 > You can now type your python code inside the code cell 4
and run it by clicking the button beside. 5

3

5
2

The Google Colab environment works similarly to Jupyter
Notebook. Below is the classic "Hello World" example:

Figure 4.27: Use a Python Notebook.

1

4

The image generation algorithms described in this
chapter are designed to be creative, and are thus not
determistic. This means that they are not guaranteed

to always generate the exact same image for the
same input. The generated images included in this

chapter are thus just examples of the possible images
that can be generated by the code.

Diffusion Models and Generative Adversarial Networks
In recent years, the field of image generation has seen significant progress, with the development of
various techniques and models that can generate realistic and high-quality images from different
sources of information. Two of the most popular and widely used techniques for image generation
are Generative Adversarial Networks (GANs) and Stable Diffusion.
In this section, you will be introduced to the main concepts and techniques behind GANs and Stable
Diffusion and provide an overview of their applications in image generation. Furthermore their
similarities and differences will be discussed and the pros and cons of each approach.

238

Figure 4.28: GAN architecture

Generating Images with Generative Adversarial Networks (GANs)
GANs are a class of generative models that consist of two main components: a generator and a
discriminator. The generator generates fake images, while the discriminator tries to distinguish the
generated images from real images. The two components are trained in an adversarial way, where
the generator tries to "trick" the discriminator, and the discriminator tries to become better at detecting
fake images.
One of the main advantages of GANs is that they can generate high-quality and realistic images that
are difficult to distinguish from real images. However, GANs also have some limitations, such as non-
convergence which means generator and discriminator networks do not improve over time, and mode
collapse in outputs, which means often repeating the same or similar outputs, regardless of the input
noise or data.

Generating Images with Stable Diffusion
Stable Diffusion is a deep learning model for text-to-image generation. The method consists of two
main components: a text encoder and a visual decoder. The text encoder and visual decoder are
trained together on a dataset of paired text and image data, where each text input is associated with
one or more corresponding images.
The text encoder is a neural network that takes in text input (such as a sentence or a paragraph) and
maps it to an embedding: a numeric vector with a fixed number of values. This embedding representation
captures the meaning of the input text. A similar approach is used by the Word2Vec and SBERT models
that were covered in unit 3 and generate embeddings for individual words and sentences, respectively.
The text embedding created by the encoder is then passed through the visual decoder to generate
an image. The visual decoder is also a type of neural network and is typically implemented using a
CNN or a similar architecture. The generated image is compared with the corresponding real image
from the dataset, and the difference between them is used to compute the loss. The loss is then used
to update the parameters of the text encoder and visual decoder to minimize the difference between
the generated images and the real images.

The generator and
the discriminator in
GANs are typically
implemented using

Convolutional Neural
Networks (CNNs) or a
similar architecture.

Table 4.4: Stable Diffusion training process

1. Pass the text input through the text encoder to get the text embedding.

2. Pass the text embedding through the visual decoder to generate an image.

3. Compute the loss (difference) between the generated image and the corresponding real
image.

4. Use the loss to update the parameters of the text encoder and visual decoder. At a high
level, this includes rewarding the neurons that helped reduce the loss and "punishing" the
neurons that contributed to its increase.

5. Repeat the above steps for multiple text-image pairs in the dataset.

Random Noise Generator Fake Images

Predicted LabelsDiscriminatorReal Images

Loss

239

Both GANs and Stable Diffusion models have delivered impressive results in the field of image
generation. The remainder of this lesson focuses on providing practical Python examples for the
diffusion-based approach, which is currently considered the state-of-the-art.
As described before, image generation is a computationally intensive task. It is therefore strongly
encouraged that you run all Python examples on the Google Colab platform or a different GPU-powered
infrastructure that you may have access to.
This chapter utilizes the "diffusers" library, which is currently considered the best open-source library
for diffusion-based models. The following code installs the library, as well as some additional required
libraries:

%%capture
!pip install diffusers
!pip install transformers
!pip install accelerate

import matplotlib.pyplot as plt
from PIL import Image # used to represent images

Text-to-Image Generation
This section demonstrates how the diffusers library can be used to generate images based on text
prompt provided by the user. The examples in this section utilizes "stable-diffusion-v1-4", a popular
pretrained model for text-to-image generation.

a tool used to generate images using stable diffusion
from diffusers import DiffusionPipeline
generator = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
specifies what GPUs should be used for this generation
generator.to("cuda")

image = generator("A photo of a white lion in the jungle.").images[0]
plt.imshow(image);

CUDA (Compute Unified Device Architecture)
is a parallel computing platform that enables

the use of GPUs.

INFORMATION

Figure 4.29: Generated image of a white lion in the jungle

The model responds to the "A photo of a white
lion in the jungle" prompt with an impressive and
very realistic image as shown in figure 4.29.
Experimenting with creative prompts is the best
way to gain experience and understand the
capabilities and limitations of this approach.

240

The following prompt adds an additional dimension to the generation process, by asking for a white
lion painted in the specific style of Pablo Picasso, one of the most famous artists of the twentieth-
century.

image = generator("A painting of a white lion in the style of Picasso.").
images[0]
plt.imshow(image);

Again, the results are impressive and demonstrate
the creativity of the stable diffusion process. The
produced image is indeed that of a white lion.
However, contrary to the previous prompt, the new
prompt leads to painting-like rather than photo-like
images. In addition, the painting's style is indeed
remarkably similar to that followed by Pablo Picasso.

pipeline used for image to image generation with stable diffusion
from diffusers import StableDiffusionImg2ImgPipeline
loads a pretrained generator model
generator = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-
diffusion-v1-5")
moves the generator model to the GPU (CUDA) for faster processing
generator.to("cuda")

init_image = Image.open("landscape.jpg")
init_image.thumbnail((768, 768)) # resizes the image to prepare it as input of the model
plt.imshow(init_image);

Figure 4.30: Generated image of lion in Picasso style

Image-to-Image Generation with
Text Guidance
The next example uses the diffusers library to
generate an image based on two inputs: an existing
image, which serves as the basis for the new image
that will be generated and a text prompt that
describes what the produced image should look like.
While the text-to-image task demonstrated in the
previous section was only limited by a text prompt,
this new task has to ensure that the new image is
both similar to the original and an accurate visual of
the description given in the text prompt.

241

a detailed prompt describing the desired visual
for the produced image
prompt = "A realistic mountain
landscape with a large castle."
image = generator(prompt=prompt,
image = init_image, strength=0.75).
images[0]
plt.imshow(image);

The model indeed generates an image that is both faithful to the text prompt and visually similar to the
original image. The "strength" parameter is used to control the visual difference between the original and
new images. The parameter takes values between 0 and 1, with higher values allowing the model to be
more flexible and less constrained by the original image. For example, the following code uses the exact
same prompt with a strength=1.

generate a new image based on the prompt and the
initial image using the generator model
image = generator(prompt=prompt,
image = init_image, strength=1).images[0]
plt.imshow(image);

The resulting image in figure 4.33 verifies that increasing the value of the
strength parameter leads to a visual that fits even better with the guidance
offered by the text prompt, but is also significantly less similar to the
input image.

Figure 4.31: Original landscape image

Another characteristic example is shown below. Its output is shown
on figure 4.34.

init_image = Image.open("cat_1.jpg")
init_image.thumbnail((768, 768))
plt.imshow(init_image);

The example on figure 4.31 uses the pretrained
model "stable-diffusion-v1-5", which is

appropriate for image-to-image generation with
text guidance.

Figure 4.32: Generated landscape image with strength=0.75

Figure 4.33: Generated landscape image with strength=1

Figure 4.34: Original cat image242

The following code will now be used to convert this to a photo of a tiger:

prompt = "A photo of a tiger"
image = generator(prompt=prompt, image=init_image, strength=0.5).images[0]
plt.imshow(image);

The first attempt is bound by the value of the
strength parameter, leading to a picture that
appears to be a mix between a tiger and the cat
from the original photo as shown in figure 4.35.
The new picture indicates that the algorithm did
not have enough "strength" to properly convert
the face of the cat to that of a tiger. The background
remains highly similar to that of the original image.
Next, the strength parameter is increased to allow
the model to move further away from the original
image and closer to the text prompt:

image = generator(prompt=prompt,
image = init_image, strength=0.75).
images[0]
plt.imshow(image);

Figure 4.35: Generated tiger image
with strength=0.5

Indeed, the new image displayed is a tiger.
However, notice how the surroundings, posture
and angles of the animal remains very similar to
the original. This demonstrates that the model is
still aware of the original image and tried to
maintain elements that did not have to be changed
to get closer to the text prompt.

Figure 4.36: Generated tiger
image with strength=0.75

243

Text-Guided Image-Inpainting
The next example focuses on using stable diffusion to replace specific parts of a given image with a
new visual described by a text prompt. The "stable-diffusion-inpainting" pretrained model is used for
this purpose. The following code loads the image of a cat on a bench and a "mask" isolates the specific
parts of the image that are covered by the cat

tool used for text-guided image in-painting
from diffusers import StableDiffusionInpaintPipeline
init_image = Image.open("cat_on_bench.png").resize((512, 512))
plt.imshow(init_image);
mask_image = Image.open("cat_mask.jpg").resize((512, 512))
plt.imshow(mask_image);

Figure 4.37: Original cat image Figure 4.38: Cat image mask

The mask is a simple black and white image that has the exact same dimensions as the original. The
parts that are replaced in the new image are highlighted in white, while every other part of the mask
is black. Next, the pretrained model is loaded and a prompt is created to replace the cat in the original
picture with an astronaut as you can see in figure 4.39.

generator = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-
diffusion-inpainting")
generator = generator.to("cuda")

prompt = "A photo of an astronaut"
image = generator(prompt=prompt, image=init_image, mask_image=mask_image).
images[0]
plt.imshow(image);

244

The new image successfully replaces the cat from the
original image with a very realistic visual of an
astronaut. In addition, this visual blends smoothly with
the background elements and lighting of the image.
In fact, even a simpler, less accurate mask is sufficient
to produce a realistic replacement. Consider the
following input image and mask:

init_image = Image.open("desk.jpg").resize((512, 512))
plt.imshow(init_image);
mask_image = Image.open("desk_mask.jpg").resize((512, 512))
plt.imshow(mask_image);

Figure 4.39: Generated astronaut image

Figure 4.40: Original desk image Figure 4.41: Desk image mask

In this example, the mask covers the laptop at the middle of the image. The following prompt and
code are then used to replace the laptop with a photo of book:

prompt = "A photo of a book"
image = generator(prompt=prompt, image=init_image, mask_image=mask_image).
images[0]
plt.imshow(image);

Despite the fact that the prompt asked for the
introduction of an object (book) that was significantly
different from the one that was being replaced
(laptop), the model did a good job of blending shapes
and colors to create an accurate visual. With the
continued advancement of machine learning and
computer graphics technologies, it is likely that even
more impressive and realistic images will be generated
in the future .

Figure 4.42: Generated desk image with book
245

1 Give a brief description of text-guided image inpainting.

Exercises

2 Describe the training process for Stable Diffusion models.

246

4 Use the DiffusionPipeline tool from the diffusers library to create a photo of your favorite
animal eating your favorite food. Use the Google Colab platform for this task.

5 Use the StableDiffusionImg2ImgPipeline tool from the diffusers library to transform
the animal in the photo from the previous exercise to a different animal of your choice.
Use the Google Colab platform for this task.

3 Describe the generator and discriminator components in Generative Adversarial Networks.

247

Project

Not every dataset responds the same to training with all the
classification algorithms. In order to receive the best results for
your dataset, you have to experiment with different algorithms.
The Python Sklearn library offers a variety of algorithms you can
try, including the ones below:
> from sklearn.ensemble.forest import RandomForestClassifier
> from sklearn.naive_bayes import GaussianNB
> from sklearn.svm import SVC

Use the training set of the animal faces to train a model that
achieves the highest possible accuracy on the testing set.

1

Replace the SGDClassifier library with each of the algorithms
mentioned above (RandomForestClassifier, GaussianNB, SVC)
and try to find the best one.

2

Re-run your notebook after each replacement to compute the
accuracy of each new model that you try.

3

Create a report that compares the accuracy of all the models
that you tried and identifies the one that achieved the best
accuracy.

4

248

KEY TERMS

Computer vision

Convolutional Neural
Network (CNN)

Diffusion Model

Feature Engineering

Feature Selection

Generative Adversarial
Network (GAN)

Histogram of Oriented
Gradients (HOG)

Image Generation

Image Preprocessing

Image Recognition

Network Layer

Stable Diffusion

Standard Scaling

Visual Data

KEY TERMS

Wrap up

Now you have learned to:
> Prepare images for recognition.
> Use libraries and functions to create supervised learning models

to classify images.
> Describe how a neural network is structured.
> Use libraries and functions to create unsupervised learning

models to cluster images.
> Create images by providing a text prompt.
> Fill missing fragments of an image with realistic data.

249

Learning Objectives
In this unit, you will learn to:
> classify optimization approaches to address complex problems.
> describe different decision-making algorithms.
> use Python to solve team-based resource allocation problems.
> solve scheduling problems by using optimization algorithms.
> use Python to solve scheduling problems.
> use mathematical programming to solve optimization problems.
> define the Knapsack problem.
> define the Traveling Salesman problem.

Tools
> Jupyter Notebook

5. Optimization &
Decision-making
Algorithms
In this unit, you will study various algorithms and techniques that help to find
the most efficient solutions to complex optimization problems. You will learn
how optimization and decision-making algorithms work and how they can be
applied to solve real-world problems related to resource allocation, scheduling,
and route optimization.

250

Link to digital lesson

Constraint
Weight limitation

Objective function
Maximizing the number of items
processed and dispatched

Figure 5.1: Using optimization
algorithms in a warehouse

Optimization Algorithms in AI
AI is being used in various industries to make decisions that are efficient
and accurate. One way AI is used to make decisions is through the use
of machine learning algorithms. As you learned in the previous unit,
machine learning algorithms enable AI to learn from data and make
predictions or recommendations. For example, in health care, AI can
be used to predict patient outcomes and recommend treatment plans
based on data collected from similar cases. In finance, AI can be used
to make investment decisions by analyzing large sets of financial data
and identifying patterns that indicate potential risks or opportunities.
Even though machine learning algorithms are increasingly popular,
they are not the only type of AI algorithm that can be used to make
decisions. Another approach is to use optimization algorithms, which
are generally used to find the best solution to a problem based on
certain constraints and objectives.
The purpose of optimization is to achieve the "best" design relative to a set of prioritized criteria or constraints.
These include maximizing factors such as productivity, reliability, longevity and efficiency, and in the same time,
minimizing other factors such as costs, waste, downtime, and errors.

Constraints

Constraints are restrictions on the
solution, such as a maximum weight
limit for a package being shipped.

Objective functions

Objective functions are measures of
how well the solution meets
desired outcomes, such as
minimizing the travel distance for a
delivery truck.

Allocation Problems
Allocation problems are common optimization problems in which a set of resources, such as workers,
machines, or funds, need to be assigned to a set of tasks or projects in the most efficient way possible. They
arise in a wide range of fields, including manufacturing, logistics, project management, and finance, and
can be formulated in various ways depending on their constraints and objectives. In this lesson, you will
learn about allocation problems and the optimization algorithms used to solve them.

Lesson 1

Resource Allocation Problem

251

Next, you will look at a number of examples each with their own domain specific constraints and objectives.

Constraints Objective functions

Trasportation
companies

ͳ Time windows for deliveries, to ensure that
packages are delivered within a specific time
frame.

ͳ The availability and capacity of delivery
vehicles, to make sure that the right vehicle
is used for each delivery and that it can carry
the necessary amount of packages.

ͳ The availability and shift patterns of drivers
and other employees, to ensure that they
work efficiently and are not overworked.

ͳ Minimizing delivery time and distance traveled
to reduce costs and improve efficiency.

ͳ Maximizing the number of packages delivered
per vehicle to reduce the number of trips
needed.

ͳ Maximizing customer satisfaction by delivering
packages on time and within a specific time
frame.

Airline
scheduling

ͳ Aircraft availability and maintenance schedules,
to ensure that all airplanes are well-maintained
and available for flights.

ͳ Air traffic control restrictions, to avoid delays
and reduce fuel consumption.

ͳ Passenger demand and preferences, to schedule
flights that are most convenient for passengers.

ͳ Minimizing flight delays and cancellations to
improve customer satisfaction.

ͳ Maximizing aircraft utilization to reduce costs
and improve efficiency.

ͳ Maximizing revenue by offering flights that are
in high demand and adjusting ticket prices
based on demand.

Manufacturers

ͳ Production capacity and lead times, to ensure
that products are produced on time.

ͳ Material availability and storage capacity, to
avoid stockouts or overstocking.

ͳ Demand fluctuations, to adjust production
schedules based on changes in customer
demand.

ͳ Minimizing production costs by optimizing the
use of resources and reducing waste.

ͳ Maximizing production efficiency by scheduling
production runs to minimize setup times and
changeovers.

ͳ Maximizing customer satisfaction by ensuring
products are available when needed.

Inventory
management
in companies

ͳ Limited storage capacity, which requires
careful management of inventory levels.

ͳ Delivery lead times and variability, which
affect how much inventory needs to be held
at any given time.

ͳ Budget availability for purchasing inventory.

ͳ Maximing profit by securing sufficient inventory
levels for high-margin items.

ͳ Minimizing storage costs by optimizing inventory
levels based on demand forecasts.

ͳ Maximizing customer satisfaction by ensuring
that the right products are available at the right
time and at the right location, and by minimizing
stockouts, delays, and other disruptions that
can impact the customer experience.

Power
companies

ͳ Electricity demand and fluctuations.
ͳ The availability of necessary raw materials

and energy sources.
ͳ Transmission and distribution constraints,

such as grid capacity and distance between
power plants and consumers.

ͳ Minimizing the cost of generating and distributing
electricity by optimizing the use of resources.

ͳ Minimizing power losses and service failures.

252

All of the above applications can be modeled as complex problems with a vast number of possible
solutions. For instance, consider a classic resource-allocation problem focused on team formation.
This problem arises when we have:

• a large pool of workers with different skill sets, and
• a task that requires a specific subset of skills in order to be completed.
The objective is to create the smallest possible team of workers, while satisfying the constraint that
the members of the team should be able to collectively cover all the skills required by the task.

For instance, assume a simple scenario with five workers:

The total number of
possible different teams

you can create is:
5 + 10 + 10 + 5 + 1 = 31

The number can also be
computed as 25 - 1.

Worker 1
Skills: s1, s3, s6

Worker 2
Skills: s2, s3

Worker 3
Skills: s1, s2, s3

Worker 4
Skills: s2, s4

Worker 5
Skills: s5

Worker 1
Skills: s1, s3, s6

Worker 4
Skills: s2, s4

Worker 5
Skills: s5

Worker 2
Skills: s2, s3

Worker 1
Skills: s1, s3, s6

Worker 3
Skills: s1, s2, s3

Worker 5
Skills: s5

Another solution would be a team
that includes workers 1, 2, 3, and
5. While this team indeed covers
all six skills, it also requires more
workers. This makes it a feasible
but suboptimal solution.

Evaluating all 31 possible teams would reveal that
the best possible solution is creating a team that
includes workers 1, 4 and 5. That team would cover
all six required skills and would include three
workers. It is not possible to cover all the skills with
a smaller team, making this the optimal solution.

• For a team of size 1, there are 5 ways to choose 1 out of 5 workers.
• For a team of size 2, there are 10 ways to choose 2 out of 5 workers.
• For a team of size 3, there are 10 ways to choose 3 out of 5 workers.
• For a team of size 4, there are 5 ways to choose 4 out of 5 workers.
• For a team of size 5, there is only 1 way to choose all 5 workers.

The task to be completed requires all skills s1, s2,
s3, s4, s5, and s6. A brute-force solution would
be to consider all possible teams of workers, focus
on the teams that cover all required skills, and
choose the team with the smallest size. Assuming
that each team must have at least one person,
you can create a total of 31 different teams with
5 workers.

Brute-force

Brute-force is a method of problem-solving
that involves systematically trying every
possible solution to the problem in order
to find the optimal solution, regardless of
computational cost.

253

Even for a modest number
of 50 workers, the number
of possible teams explodes

to over one quadrillion!

The exchaustive nature of the brute-force approach guarantees that it will always find the optimal solution,
as long as one exists. However, examining all possible teams comes at a high computational cost:

• If we have 6 workers, the number of possible teams is 26 - 1 = 63
• If we have 10 workers, the number of possible teams is 210 - 1 = 1,023
• If we have 15 workers, the number of possible teams is 215 - 1 = 32,767
• If we have 20 workers, the number of possible teams is 220 - 1 = 1,048,575
• If we have 50 workers, the number of possible teams is 250 - 1 = 1,125,899,906,842,623

Clearly, in such settings, exchaustive enumeration of all possible
solutions is not a practical option. Various optimization approaches
have been proposed to address complex problems by searching the
space of possible solutions in ways that are much more efficient
than the brute-force approach. These approaches can be broadly
classified into three categories:

• heuristic methods
• constraint programming
• and mathematical programming.

Heuristic Methods

Heuristic methods are typically based on experience, rules
of thumb, or common sense, rather than on a rigorous
mathematical analysis. They can be used to find good solutions
quickly, but do not guarantee an optimal (best possible)
solution. Examples of heuristics include greedy algorithms,
simulated annealing, genetic algorithms, and ant colony
optimization. These methods are typically used for complex
problems in which the computation time is too high and
finding exact solutions is not feasible. You will learn more
about these algorithms in the following lessons.

Constraint Programming

Constraint Programming (CP) solves optimization problems
by modeling the constraints and finding a solution that
satisfies all the constraints. This approach is particularly useful
for problems that have a large number of constraints or that
require the optimization of several objectives.

+ Pros
CP can handle complex constraints and can
find optimal solutions.

- Cons
These methods can also be computationally
expensive for large problems.

+ Pros
Heuristics are computationally efficient, can
handle complex problems, and can find good
quality solutions if a reasonable heuristic is used.

- Cons
They do not guarantee an optimal solution and
some heuristics require significant tuning to
deliver good results.

Optimal Solution
It is possible for multiple optimal solutions to exist. In this example, this would mean multiple teams that
include three members and can cover all required skills. It is also possible that no feasible solution exists
for some problems. For example, if the given task required a skill s7 that none of the workers possessed,
then there would be no feasible solution.

254

Mathematical Programming

Mathematical Programming (MP) is a family of techniques
that uses mathematical models to solve optimization
problems. MP includes Linear Programming, Quadratic
Programming, Nonlinear Programming, and Mixed-Integer
Programming. These techniques are widely used in many
areas, including economics, engineering, and operations
research. MP techniques also play a crucial role in deep
learning. Deep learning models typically have a large
number of parameters that need to be learned from data.
Optimization algorithms are used to adjust the parameters
of the model in order to minimize a cost function that
measures the difference between the predicted output
from the model and the true output. Several optimization
algorithms, such as Adam, AdaGrad, and RMSprop have
been developed specifically for deep learning models.

+ Pros
MP can handle a wide range of optimization
problems and can often guarantee an optimal
solution.

- Cons
The computational cost for large problems and
the complexity of creating an appropriate
mathematical formulation are high for complex
real-world problems.

A Working Example: Optimization for the Team-Formation Problem
This lesson will initially demonstrate the use of a brute-force algorithm and a greedy heuristic algorithm
for solving a decision problem focused on the team-based resource allocation problem described
above. Then, the results of the two algorithms will be compared.

The following function can be used to create randomized instances
of the team formation problem. It allows the user to specify four
parameters: the total number of skills to be considered, the total
number of available workers, the number of skills that the members
of a team have to collectively cover in order to complete a task, and
the maximum number of skills that each worker can have.
The function then creates and returns a set of workers with different
skillsets, as well as the set of required skills. The function uses the
popular "random" library, which can be used to sample random
numbers from a given interval or random elements from a given list.

Greedy Heuristic Algorithm

A greedy algorithm is a heuristic
approach to problem-solving,
where the algorithm constructs
the solution step-by-step,
selects the locally optimal
choice at each stage, hoping to
eventually reach a global
optimum.

import random

def create_problem_instance(skill_number, # total number of skills
 worker_number, # total number of workers
 required_skill_number, # number of skills the team has to cover
 max_skills_per_worker # max number of skills per worker
):

 # creates the global list of skills s1, s2, s3, ...
 skills = ['s' + str(i) for i in range(1, skill_number+1)]

 worker_skills = dict() # dictionary that maps each worker to their set of skills

255

Now, you will test the above function by creating a problem instance with 10 total skills, 6 workers,
5 required skills, and at most 5 skills per worker.

 for i in range(1, worker_number+1): # for each worker

 # makes a worker id (w1, w2, w3, ...)
 worker_id = 'w' + str(i)

 # randomly decides the number of skills that this worker should have (at least 1)
 my_skill_number = random.randint(1, max_skills_per_worker)

 # samples the decided number of skills
 my_skills = set(random.sample(skills, my_skill_number))

 # remembers the skill sampled for this worker
 worker_skills[worker_id] = my_skills

 # randomly samples the set of required skills that the team has to cover
 required_skills = set(random.sample(skills, required_skill_number))

 # returns the worker and required skills
 return {'worker_skills':worker_skills, 'required_skills':required_skills}

x10
The problem needs
10 total skills

x6
workers

x5
required
skills

x5
at most 5 skills
per worker

Given the randomized nature of the
function, you will get a different problem

instance every time you run this code.

Figure 5.2: Graphic representaion of a problem instance

256

the following code represents the above test
sample_problem = create_problem_instance(10, 6, 5, 5)

prints the skills for each worker
for worker_id in sample_problem['worker_skills']:
 print(worker_id, sample_problem['worker_skills'][worker_id])

print()

prints the required skills that the team has to cover
print('Required Skills:', sample_problem['required_skills'])

w1 {'s10'}
w2 {'s2', 's8', 's5', 's6'}
w3 {'s7', 's2', 's4', 's5', 's1'}
w4 {'s9', 's4'}
w5 {'s7', 's4'}
w6 {'s7', 's10'}

Required Skills: {'s6', 's8', 's7', 's5', 's9'}

Decision Making with a Brute-Force Algorithm
The first solver will implement the brute-force approach that relies on exhaustively enumerating and
considering all possible teams. This solver will use the "combinations" tools from the "itertools" module
to generate all possible teams of a specific size.
The tool is demonstrated via a simple example below:

The next step is to create a solver which is an optimization algorithm that can determine the smallest
possible team of workers that can be used to cover all the required skills.

used to generate all possible combinations in a given list of elements
from itertools import combinations

L = ['w1', 'w2', 'w3', 'w4']

print('pairs', list(combinations(L, 2))) # all possible pairs
print('triplets', list(combinations(L, 3))) # all possible triplets

pairs [('w1', 'w2'), ('w1', 'w3'), ('w1', 'w4'), ('w2', 'w3'), ('w2',
'w4'), ('w3', 'w4')]
triplets [('w1', 'w2', 'w3'), ('w1', 'w2', 'w4'), ('w1', 'w3', 'w4'),
('w2', 'w3', 'w4')]

257

The following function can then be created to solve an instance of the team formation problem via
the brute-force approach. This brute-force solver considers all possible team sizes and creates all
possible teams for each size. It then identifies teams that cover all required skills and reports the
smallest one.

def brute_force_solver(problem):

 worker_skills = problem['worker_skills']
 required_skills = problem['required_skills']

 worker_ids = list(worker_skills.keys()) # gets the ids of all the workers
 worker_num = len(worker_ids) # total number of workers
 all_possible_teams = [] # remembers all possible teams
 best_team = None # remembers the best (smallest) team found so far

 #for each possible team size (singles, pairs, triplets, ...)
 for team_size in range(1, worker_num+1):

 # creates all possible teams of this size
 teams = combinations(worker_ids, team_size)
 for team in teams: # for each team of this size

 skill_union = set() # union of skills covered by all members of this team
 for worker_id in team: # for each team member
 # adds their skills to the union
 skill_union.update(worker_skills[worker_id])

 # if all the required skills are included in the union
 if required_skills.issubset(skill_union):

 # if this is the first team that covers all required skills
 # or this team is smaller than the best one or
 if best_team == None or len(team) < len(best_team):
 best_team = team # makes this team the best one

 return best_team # returns the best solution

It is possible for a problem instance to not have a feasible solution. For example, if the set of required
skills includes a skill that none of the available workers possesses, then there is no way to create a
team that covers all skills. In such cases, the above solver will simply return a None value.
The following code can now be used to test the brute-force solver on the sample problem that was
created above.

uses the brute-force solver to find the best team for the sample problem
best_team = brute_force_solver(sample_problem)
print(best_team)

('w2', 'w3', 'w4')

258

The brute-force solver is guaranteed to always find the best possible solution (the smallest possible
team), as long as a solution exists. However, as discussed in the beginning of this Lesson, its exhaustive
nature also leads to an explosion of computational cost as the size of the problem gets bigger.
This can be demonstrated by creating multiple problems with an increasing number of workers. The
following code can be used to generate instances of the team formation problem. The number of
workers is varied to be equal to 5, 10, 15, and 20. A total of 100 instances are generated for each
worker number. All instances include 10 total skills, 8 required skills and at most 5 skills per worker.

problems_with_5_workers = [] # 5 workers
problems_with_10_workers = [] # 10 workers
problems_with_15_workers = [] # 15 workers
problems_with_20_workers = [] # 20 workers

for i in range(100): # repeat 100 times

 problems_with_5_workers.append(create_problem_instance(10, 5, 8, 5))
 problems_with_10_workers.append(create_problem_instance(10, 10, 8, 5))
 problems_with_15_workers.append(create_problem_instance(10, 15, 8, 5))
 problems_with_20_workers.append(create_problem_instance(10, 20, 8, 5))

The following function accepts a list of problem instances and a solver. It then uses the solver to
compute and returns the solution for all instances. It also prints the total time (in seconds) required
to compute the solutions, as well as the total number of instances for which a solution could be found.

import time

def gets_solutions(problems,solver):

 total_seconds = 0 # total seconds required to solve all problems with this solver
 total_solved = 0 # total number of problems for which the solver found a solution
 solutions = [] # solutions returned by the solver

 for problem in problems:

 start_time = time.time() # starts the timer
 best_team = solver(problem) # computes the solution
 end_time = time.time() # stops the timer
 solutions.append(best_team) # rememberσ the solution
 total_seconds += end_time-start_time # computes total elapsed time

 if best_team != None: # if the best team is a valid team
 total_solved += 1
 print("Solved {} problems in {} seconds".format(total_solved,
 total_seconds))

 return solutions

259

The following code uses this function and the brute-force solver to compute the solutions for 5-worker,
10-worker, 15-worker, and 20-worker datasets that were created above.

brute_solutions_5 = gets_solutions(problems_with_5_workers,
 solver = brute_force_solver)

brute_solutions_10 = gets_solutions(problems_with_10_workers,
 solver = brute_force_solver)

brute_solutions_15 = gets_solutions(problems_with_15_workers,
 solver = brute_force_solver)

brute_solutions_20 = gets_solutions(problems_with_20_workers,
 solver = brute_force_solver)

Solved 23 problems in 0.0019948482513427734 seconds
Solved 80 problems in 0.06984829902648926 seconds
Solved 94 problems in 2.754629373550415 seconds
Solved 99 problems in 109.11902689933777 seconds

While the exact numbers printed by the gets_solutions() function will vary due to the randomized
nature of the datasets, two patterns will always be consistent:

• Increasing the number of workers leads to a higher number of problem instances for which a
solution could be found. This is reasonable, as having more workers increases the probability that
the worker pool includes at least one worker that possesses each required skill.

• Increasing the number of workers leads to a significant (exponential) increase in computational
time. This was anticipated given the analysis conducted in the beginning of this lesson. For worker
populations of size 5, 10, 15, and 20, the number of possible teams is equal to 31, 1023, 32767,
and 1048575, respectively.

In general, given N workers, the number of possible teams is equal to 2N-1. This number becomes far
too large to evaluate even for modest values of N. This demonstrates that, even for a simple problem
with 1 constraint (covering all required skills) and 1 objective (minimizing the size of the team), brute
force is only applicable for very small datasets and it is certainly not practical for any of the complex
real-world optimization problems described at the beginning of this lesson.

Decision Making with a Greedy Heuristic Algorithm
The following function addresses this constraint by implementing an optimization algorithm based
on a "greedy" heuristic. The heuristic gradually populates a team by adding one member at a time.
The next member that is added is always the one that covers the most of the previously uncovered
skills. The process continues until all required skills have been covered.

The "greedy heuristic" in this case is the criterion of choosing a worker that
covers the most of the previously uncovered skills. A different heuristic function

could have been adding first the worker having the largest number of skills.

260

def greedy_solver(problem):

 worker_skills = problem['worker_skills']
 required_skills = problem['required_skills']

 # skills that still have not been covered
 uncovered_required_skills = required_skills.copy()
 best_team = []
 # remembers only the skills of each worker that are required but haven't been covered yet
 uncovered_worker_skills = {}

 for worker_id in worker_skills:

 # remembers only the required uncovered skills that this worker has
 uncovered_worker_skills[worker_id] = worker_skills[worker_id].
intersection(uncovered_required_skills)

 # while there are still required skills to cover
 while len(uncovered_required_skills) > 0:

 best_worker_id = None # the best worker to add next
 # number of uncovered skills required for the best worker to cover
 best_new_coverage = 0

 for worker_id in uncovered_worker_skills:

 # uncovered required skills that this worker can cover
 my_uncovered_skills = uncovered_worker_skills[worker_id]

 # if this worker can cover more uncovered required skills than the best worker so far
 if len(my_uncovered_skills) > best_new_coverage:
 best_worker_id=worker_id # makes this worker the best worker
 best_new_coverage=len(my_uncovered_skills)

 if best_worker_id != None: # if a best worker was found
 best_team.append(best_worker_id) # adds the worker to the solution

 #removes the best worker's skills from the skills to be covered
 uncovered_required_skills = uncovered_required_skills -
 uncovered_worker_skills[best_worker_id]

 for worker_id in uncovered_worker_skills:

 # remembers only the required uncovered skills that this worker has
 uncovered_worker_skills[worker_id] =
uncovered_worker_skills[worker_id].intersection(uncovered_required_skills)

 else: # no best worker has been found and some required skills are still uncovered
 return None # no solution could be found

 return best_team

intersection() returns a
new set containing only the

skills that are common to
worker's worker_skills and
uncovered_required_skills.

261

The greedy solver does not consider all possible teams and does not guarantee finding the optimal
solution. However, as demonstrated below it is much faster than the brute-force solver and can still
produce good (and often optimal) solutions. The method is also guaranteed to find a solution if one
exists.
The following code uses the greedy solver to compute the solutions for the same 5-worker, 10-worker,
15-worker, and 20-worker datasets that was used to evaluate the brute-force solver.

greedy_solutions_5 = gets_solutions(problems_with_5_workers,
 solver = greedy_solver)

greedy_solutions_10 = gets_solutions(problems_with_10_workers,
 solver = greedy_solver)

greedy_solutions_15 = gets_solutions(problems_with_15_workers,
 solver = greedy_solver)

greedy_solutions_20 = gets_solutions(problems_with_20_workers,
 solver = greedy_solver)

Solved 23 problems in 0.0009970664978027344 seconds
Solved 80 problems in 0.000997304916381836 seconds
Solved 94 problems in 0.001995086669921875 seconds
Solved 99 problems in 0.0019943714141845703 seconds

The difference in speed between the two solvers is evident. In fact, the greedy solver can be applied
even on much larger problem instances. For example:

creates 100 problem instances of a team formation problem with 1000 workers
problems_with_1000_workers = []

for i in range(100): # repeats 100 times
 problems_with_1000_workers.append(create_problem_instance(10, 1000, 8, 5))

solves the 100-worker problems using the greedy solver
greedy_solutions_1000 = gets_solutions(problems_with_1000_workers,
 solver = greedy_solver)

Solved 100 problems in 0.09574556350708008 seconds

262

The compare() function can now be used to compare the effectiveness of the two solvers applied to
the datasets with 5, 10, 15, and 20 workers.

print(compare(brute_solutions_5,greedy_solutions_5))
print(compare(brute_solutions_10,greedy_solutions_10))
print(compare(brute_solutions_15,greedy_solutions_15))
print(compare(brute_solutions_20,greedy_solutions_20))

1.0
0.82
0.88
0.85

The results demonstrate that the greedy heuristic can consistently find the optimal solution for about
80%, or higher, of all solvable problem instances. In fact, one can easily verify that, even for cases
when it fails to find the optimal solution, the size of the team that it returns is very close to that of
the best possible team.
Combined with the overwhelming speed advantage, this makes the heuristic a far more practical
choice for realistic applications.
The next lesson will explore even more intelligent optimization techniques and their applications to
different problems.

def compare(brute_solutions,greedy_solutions):
 total_solved = 0
 same_size = 0

 for i in range(len(brute_solutions)):

 if brute_solutions[i] != None: # if a solution was found
 total_solved += 1

 # if the solvers reported a solution of the same size
 if len(brute_solutions[i]) == len(greedy_solutions[i]):
 same_size += 1

 return round(same_size / total_solved, 2)

Comparing the Algorithms
Having demonstrated the speed advantage of the greedy heuristic, the next step is to also validate
the quality of the solutions that it produces. The following function accepts the solutions produced
by the greedy and brute-force solvers on the same collection of problem instances. It then reports
the percentage of instances for which both solvers report the optimal solution (the smallest possible
team).

263

1 What are the advantages and disadvantages of the brute-force and greedy algorithms
for solving optimization problems?

Exercises

2 Analyze how greedy heuristic algorithms are used to find optimal solutions in optimization
problems.

264

3 You want to create a greedy solver for the optimization problem of team formation.
Complete the following code so that the function utilizes a greedy heuristic for the
assignment of team members to a job.

def greedy_solver(problem):
 worker_skills=problem['worker_skills'] # worker skills for this problem
 required_skills=problem['required_skills'] # required skills for this problem

 uncovered_required_skills = required_skills. () # skills not covered
 best_team=[] # best solution
 uncovered_worker_skills={}
 for worker_id in worker_skills:

 uncovered_worker_skills[worker_id]=worker_skills[worker_id].
(uncovered_required_skills)
 while len(uncovered_required_skills) > 0:

 best_worker_id= # the best worker to add next
 best_new_coverage=0 # number of uncovered required skills covered by the best worker
 for worker_id in uncovered_worker_skills: # for each worker
 my_uncovered_skills=uncovered_worker_skills[worker_id]
 # if this worker can cover more uncovered required skills than the best worker so far
 if len(my_uncovered_skills)>best_new_coverage:
 best_worker_id=worker_id # makes this worker the best worker

 best_new_coverage= (my_uncovered_skills)

 if best_worker_id!= : # if a best worker was found

 best_team. (best_worker_id) # adds the worker to the solution
 #removes the best worker's skills from the skills to be covered
 uncovered_required_skills=uncovered_required_skills - uncovered_
worker_skills[best_worker_id]
 # for each worker
 for worker_id in uncovered_worker_skills:

 # remembers only the required uncovered skills that this worker has
 uncovered_worker_skills[worker_id]=uncovered_worker_

skills[worker_id]. (uncovered_required_skills)
 else: # no best worker has been found and some required skills are still uncovered

 return # no solution could be found
 return best_team

265

4 List three different real-world optimization problem. For each problem:

• Give an example of an objective function.
• Give two examples of constraints, if any.

5 In the brute-force solver, if you increase the number of workers, how does it affect the
problem in terms of number of solutions and computational time?

266

Link to digital lesson

Scheduling Problems
Scheduling problems are common in the optimization field as they require the allocation of limited resources
to multiple tasks in a way that optimizes some objective function. Scheduling problems often have additional
constraints, such as requiring tasks to happen in a specific order or to be completed by a certain deadline.
These problems are essential in various real-world applications, including manufacturing, transportation,
healthcare, and project management. In this lesson, you will go deeper into optimization algorithms by
introducing additional techniques to solve scheduling problems.

Table 5.1: Real-world applications need scheduling solutions
Application Function

Project scheduling Allocate resources and tasks to project activities to minimize project
duration and costs.

Production planning Determine the optimal production plan to meet demand while minimizing
inventory and costs.

Airline scheduling Schedule aircraft departures and crew shifts to optimize flight schedules
while minimizing costs and delays.

Call center scheduling Allocate agents to shifts to ensure adequate coverage for working periods
while minimizing costs and meeting service level agreements.

Job shop scheduling Allocate resources in manufacturing to minimize production time and
costs.

Media scheduling Schedule the timing of advertisements on television or radio to maximize
audience reach and revenue, while respecting budget constraints.

Nurse scheduling Assign nurses to shifts in a hospital to ensure adequate coverage during
working periods while minimizing labor costs.

Figure 5.3: A Gantt chart showing a project schedule

Lesson 2

Resource Scheduling Problem

267

The SMWT problem is challenging to solve as its complexity grows
exponentially with the number of jobs. Thus making it computationally
expensive, and often impossible, to find the best possible solution
for large input sizes.

Optimization algorithms
are used to obtain

near-optimal solutions for
a problem in a reasonable

amount of time.

Single-Machine Weighted Tardiness (SMWT) Problem
To illustrate the problem, consider a factory that needs to schedule the production tasks of several
items on a single machine.

• Each job has a specific processing time and a due date by which it needs to be completed.
• Each job is also associated with a weight, that represents the job's importance.
If it is impossible to complete all tasks by the deadline, it will be less expensive to miss the deadline
for low-weight tasks than for high-weight tasks.

In this lesson, the Single-Machine Weighted Tardiness (SMWT) problem will be used as a working
example to demonstrate how optimization algorithms can solve scheduling problems.

Job Due Time Completion Time Lateness Weighted Tardiness

---------------- ------------------------- -------------------------- ------------------ --------------------------

J1 14 11 0 0

J2 20 23 3 3

J3 17 18 1 2

Figure 5.5: Visual representation of the sequence of jobs

Figure 5.4: Calculate the weighted tardiness

Goal
The goal is to schedule the jobs in a way that minimizes the weighted sum of the lateness (tardiness)
of each job. The weight tardiness sum thus serves as the objective function for optimization algorithms
designed to solve this problem.

Lateness calculation
The lateness of a job is calculated as the difference between its completion time and its due time.
Job weights are then used as multipliers to complete the final weighted sum. For example, consider
a schedule with three jobs J1, J2, and J3 with weights equal to 2, 1, and 2, respectively. According to
this schedule, J1 will finish on time, J2 will be 3 hours late, and J3 will finish 1 hours late. This means
that the weighted tardiness sum is equal to 3×1+1×2=5.

3 hours late1 hour late

0 5 10 15 20 23

Job 1 Job 3 Job 2

268

Job Shop Scheduling (JSS) Problem
The Job Shop Scheduling (JSS) problem, is another classic scheduling problem that has been widely
studied in the optimization field. The JSS problem involves scheduling a set of jobs on multiple
machines, where each job has to be processed in a specific order and time on each machine in relation
to the other jobs.

The above are only a subset of the various complex constraints and problem variants that occur in
real-world scheduling problems. Each variant has its own unique characteristics and practical
applications, and different optimization algorithms may be more suitable for solving each variant.

Goal
To minimize the total completion time (makespan) of all jobs.

Variants of the problem
Other variants of this problem introduce multiple additional constraints, such as:

• Each job has a "release" date before which it cannot be started, in addition to each deadline date.
• Some jobs have to be scheduled before others due to precedence constraints between them.
• Each machine has to undergo periodic maintenance according to a strict maintaince schedule.

Machines cannot service jobs during maintenance and a job cannot stop once it has started.
Each machine needs to have some downtime after completing a job. The length of the downtime
might be fixed or it may vary across machines. It might also depend on the time that it took to complete
the previous job.

Using Python and Optimization to Solve the SMWT Problem
The following code can be used to create randomized instances of the SMWT problem:

import random

creates an instance of the Single-Machine Weighted Tardiness problem.

def create_problem_instance(job_num, # number of jobs to create
 duration_range, # job duration range
 deadline_range, # deadline range
 weight_range):# importance weight range

 # generates a random duration, deadline, and weight for each job
 durations = [random.randint(*duration_range) for i in range(job_num)]
 deadlines = [random.randint(*deadline_range) for i in range(job_num)]
 weights = [random.randint(*weight_range) for i in range(job_num)]

 # returns the problem instance as a dictionary
 return {'durations':durations,
 'deadlines':deadlines,
 'weights':weights}

269

The following code uses the create_problem_instance() function to generate a sample problem
instance such that:

• The instance includes 10 jobs.
• Each job can last between 5 and 20 time units. We will assume hours as time units for the remainder

of this lesson.
• Each job has a deadline that can range between 5 and 50 hours. The deadline clock starts from the

moment the first job starts using the machine. For example, if the deadline for a job is equal to 10,
then this means that the job has to be completed within 10 hours from the beginning of the job
that was scheduled first.

• The weight of each job is an integer between 1 and 3.

The following function can be used to evaluate the quality of a schedule that has been produced by
any algorithm for a specific problem instance. The function accepts a problem instance and a schedule.
It then goes over all the jobs in their scheduled order to compute their finish times, as well as the
total weighted tardiness of the entire schedule. The latter is computed by computing the tardiness
of each job (with respect to its deadline), multiplying it by the job's weight, and adding the result to
the sum.

computes the total weighted tardiness of a given schedule for a given problem instance

def compute_schedule_tardiness(problem, schedule):

 # gets the information for this problem
 durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

 job_num = len(schedule) # gets the number of jobs
 finish_times = [0] * job_num # stores the finish time for each job
 schedule_tardiness = 0 # initializes the weighted tardiness of the overall schedule to 0

create_problem_instance(10, [5, 20], [5, 50], [1, 3])

{'durations': [18, 17, 17, 6, 9, 6, 20, 12, 9, 19],
 'deadlines': [39, 31, 6, 42, 48, 10, 39, 16, 34, 35],
 'weights': [2, 2, 3, 2, 1, 3, 2, 1, 3, 1]}

The random.randint(x,y) function is used to generate a random integer between x and y. A different
way to use this function is to provide a list [x,y] or a tuple (x,y). In that case, the * symbol needs to
be typed before the list, exactly as done in the function above. For example:

for i in range(5):# prints 5 random integers between 1 and 10
 print(random.randint(*[1, 10]))

6
5
5
10
1

number of
jobs to create

job duration
range

deadline range

importance
weight range

270

The compute_schedule_tardiness() function will be used to evaluate schedules and will serve as a
useful tool for all the algorithms that will be presented in this Lesson for the solution of the SMWT
problem.

 for pos in range(job_num): # goes over the jobs in scheduled order
 job_id=schedule[pos] # schedule[pos] is the id in the 'pos' position of the schedule

 if pos == 0: # if this is the job that was scheduled first (position 0)

 # the finish time of the job that starts first is equal to its run time
 finish_times[pos] = durations[job_id]

 else: # for all jobs except the one that was scheduled first

 # the finish time is equal to the finish time of the previous time plus the job's run time
 finish_times[pos] = finish_times[pos-1] + durations[job_id]

 # computes the weighted tardiness of this job and adds it to the schedule's overall tardiness
 schedule_tardiness += weights[job_id] * max(finish_times[pos] -
deadlines[job_id], 0)

 return schedule_tardiness,finish_times

Brute-Force Solver
In the previous lesson, you learnt how to implement a brute-force solver for the team formation
problem. Even though the solver was shown to be too slow for larger problems, its ability to always
find the optimal (best possible) solution for small instances was useful for evaluating the quality of
the solutions produced by faster optimization algorithms that do not guarantee optimality. Similarly,
the following brute-force solver can be used to solve an instance of the SMWT problem.

 Brute-force solvers are
better used for small

problems. An instance of
the SMWT problem with

N jobs has N! possible
schedules. For N = 5, this

creates only 5! = 120
schedules. However, the
number skyrockets for

N = 10 to 10! = 3,628,800
and for N = 11 to
11! = 39,916,800.

job_ids = [0,1,2] # the ids of 3 jobs
for schedule in itertools.permutations(job_ids):
 print(schedule)

(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

 Itertools.Permutations() Function
The brute-force solver will be using the itertools.permutations() function to create all possible schedules
(job combinations). It will then be computing the tardiness of each possible schedule and reporting
the best one (the one with the lowest total tardiness).
The itertools.permutations() function accepts a single iterable (e.g. list) and creates each possible
permutation of input values. The following simple example demonstrates the use of the permutations()
function and shows the permutations of all given job ids:

271

import itertools

def brute_force_solver(problem):

 # gets the information for this problem
 durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

 job_num = len(durations) # number of jobs

 # Generates all possible schedules
 all_schedules = itertools.permutations(range(job_num))

 # Initializes the best solution and its total weighted tardiness
 best_schedule = None # initialized to None

 # 'inf' stands for 'infnity'. Python will evaluate all numbers as smaller than this value.
 best_tardiness = float('inf')

 # stores the finish time of each job in the best schedule
 best_finish_times = None # initalized to None

 for schedule in all_schedules: # for every possible schedule

 #evalutes the schedule
 tardiness,finish_times=compute_schedule_tardiness(problem, schedule)

 if tardiness < best_tardiness: # this schedule is better than the best so far
 best_tardiness = tardiness
 best_schedule = schedule
 best_finish_times = finish_times

 # returns the results as a dictionary
 return {'schedule':best_schedule,
 'tardiness':best_tardiness,
 'finish_times':best_finish_times}

sample_problem = create_problem_instance(5, [5, 20], [5, 30], [1, 3])
brute_force_solver(sample_problem)

{'schedule': (0, 2, 1, 3, 4),
 'tardiness': 164,
 'finish_times': [5, 11, 21, 36, 51]}

The solver returns the best schedule, its tardiness, and the
finish time of each job given this best schedule. For example,
if a 3-job schedule has finish times equal to [10, 14, 20], then
this means that the job that started first finished after 10 hours,
The second job finished 4 hours after that, and the last job
finished 6 hours after the second job was done.

number
of jobs to

create

job duration
range

importance
weight range

deadline
range

272

Greedy Heuristic Solver
This greedy solver uses a simple heuristic to sort the jobs and decide the order in which they should
be scheduled. It then goes over the jobs in this order to compute the finish time of each job and the
total weighted tardiness of the entire schedule. For this particular example, the greedy solver returns
exactly the same type of output as the brute-force solver.
The greedy solver accepts two parameters: the problem to be solved and the heuristic function (job-
sorting criterion) to be used. This allows the user to implement any heuristic function of their choosing
as a Python function and pass it to the greedy solver as a parameter.
The following function implements an optimization algorithm that uses a greedy heuristic function
to solve the problem:

def greedy_solver(problem, heuristic):

 # gets the information for this problem
 durations, weights, deadlines = problem['durations'], problem['weights'],
problem['deadlines']

 job_num = len(durations)# gets the number of jobs

 # Creates a list of job indices sorted by their deadline in non-decreasing order
 schedule = sorted(range(job_num), key = lambda j: heuristic(j, problem))

 # evaluates the schedule
 tardiness, finish_times = compute_schedule_tardiness(problem, schedule)

 # returns the results as a dictionary
 return {'schedule':schedule,
 'tardiness':tardiness,
 'finish_times':finish_times}

The following function returns the deadline of a specific job in a given problem instance:

returns the deadline of a given job
def deadline_heuristic(job,problem):

 # accesses the deadlines for this problem and returns the deadline for the job
 return problem['deadlines'][job]

Passing this deadline_heuristic() function as a parameter to the greedy solver means that the solver
will schedule (sort) the jobs in ascending deadline order. This means that the jobs with the earliest
deadlines will be scheduled first.

The use of the 'lambda' syntax is used with
Python's sorted() function when the goal is to
sort a list of elements based on a value that is

computed separately for each element.

In this example, the greedy
heuristic function used to select the
next job to be scheduled is choosing
the job having the closest deadline.

273

The following function implements an alternative heuristic that also takes into account the weights
of the jobs when deciding their order in the schedule:

greedy_sol = greedy_solver(sample_problem, deadline_heuristic)
greedy_sol

{'schedule': [3, 1, 4, 0, 2],
 'tardiness': 124,
 'finish_times': [15, 26, 32, 48, 57]}

returns the weighted deadline of a given job
def weighted_deadline_heuristic(job,problem):

 # accesses the deadlines for this problem and returns the deadline for the job
 return problem['deadlines'][job] / problem['weights'][job]
weighted_greedy_sol=greedy_solver(sample_problem, weighted_deadline_heuristic)
weighted_greedy_sol

{'schedule': [3, 2, 1, 4, 0],
 'tardiness': 89,
 'finish_times': [15, 24, 35, 41, 57]}

Local Search
Even though the greedy solver is much faster than the brute-force
approach, it also tends to produce lower quality solutions with a
significantly higher tardiness. A way to improve a solution computed
by a greedy algorithm or by any other approach is Local Search.
In Local Search, a starting solution is iteratively refined by examining
its neighboring solutions, which are obtained by applying small
modifications to the current solution. For many optimization
problems, a common approach for modifying a solution is by
iteratively swapping elements. For instance, in the team-formation
problem that was covered in the previous lesson, a local search approach would try to create a better
team by swapping team members with workers who are currently not a part of the team.
The greedy heuristic solver constructed the solution step-by-step until eventually a complete and
final solution was obtained. On the contrary, local search methods start with a complete solution
(that may be of moderate or even bad quality), and work iteratively to improve the quality of the
solution. Each step, a small change is made to the current solution, and the quality of the resulting
solution (known as the neighbor) is evaluated. If the neighbor solution has better quality, then it
replaces the current solution, and the search continues. Otherwise, the neighbor solution is discarded
and the process is repeated to generate another neighbor. The search terminates when no neighbor
solution can be found having quality better than the current solution. The best solution found is
returned.

Local search

Local search is a heuristic
optimization method that
focuses on exploring the
neighborhood of a given
solution to improve it.

274

Local_search_solver() Function
The following local_search_solver() function implements a swap-based local search solver for the
SMWT problem. The function accepts four parameters:

• A problem instance.
• A greedy heuristic that will be used by the greedy_solver() function to compute an initial solution.
• A swap_selector function that will be used to select two jobs that will swap their positions in their

schedule. For example, if the current solution of a 4-job problem is [0,2,3,1], and the swap selector
decided to swap the first and last jobs, the new candidate solution would be [1,2,3,0].

• A max_iterations integer that determines how many swaps should be attempted before the solver
returns the best solution found so far.

def local_search_solver(problem, greedy_heuristic, swap_selector, max_
iterations):

 # gets the information for this problem
 durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

 job_num = len(durations) # gets the number of jobs

 # uses the greedy solver to get a first schedule
 # this schedule will be then iteratively refined through local search
 greedy_sol = greedy_solver(problem, greedy_heuristic) # the best schedule so far

 best_schedule, best_tardiness, best_finish_times = greedy_sol['schedule'],
greedy_sol['tardiness'], greedy_sol['finish_times']

 # local search
 for i in range(max_iterations): # for each of the given iterations

 # chooses which two positions to swap
 pos1, pos2 = swap_selector(best_schedule)

 new_schedule = best_schedule.copy() # create a copy of the schedule

 # swaps jobs at positions pos1 and pos2
 new_schedule[pos1], new_schedule[pos2] = best_schedule[pos2],
 best_schedule[pos1]

The behavior of local search
optimization algorithms is
heavily influenced by the

strategy that is used to
iteratively modify the solution.

In each iteration, the solver selects two jobs to swap. It then
creates a new schedule that swaps the two jobs but is otherwise
identical to the original. If the new schedule has a lower weighted
tardiness than best schedule found so far, then it becomes the
best in its place. The solver has the exact same output as the
greedy and brute-force solvers.

275

The following function implements a random swap by simply selecting two random jobs in the given
schedule that should exchange places.

def random_swap(schedule):

 job_num = len(schedule) # gets the number of scheduled jobs

 pos1 = random.randint(0, job_num - 1) # samples a random position

 pos2 = pos1
 while pos2 == pos1: # keeps sampling until it finds a position other than pos1
 pos2 = random.randint(0, job_num - 1) # samples another random position

 return pos1, pos2 # returns the two positions that should be swapped

 # computes the new tardiness after the swap
 new_tardiness, new_finish_times = compute_schedule_tardiness(problem,
new_schedule)

 # if the new schedule is better than the best one so far
 if new_tardiness < best_tardiness:

 # the new_schedule becomes the best one
 best_schedule = new_schedule
 best_tardiness = new_tardiness
 best_finish_times = new_finish_times

 # returns the best solution
 return {'schedule':best_schedule,
 'tardiness':best_tardiness,
 'finish_times':best_finish_times}

The following function then adopts a different strategy by always choosing to swap a random pair of
jobs that are adjacent in the schedule. For example, if the current schedule for a 4-job problem
instance was [0,3,1,2], then the only candidate swaps would be 0<>3, 3<>1, and 1<>2.

def adjacent_swap(schedule):

 job_num = len(schedule) # gets the number of scheduled jobs

 pos1 = random.randint(0, job_num - 2) # samples a random position (excluding the last
one)
 pos2 = pos1 + 1 # gets the position after the sampled one

 return pos1,pos2 # returns the two positions that should be swapped

The neighbors of a solution in this
example are all solutions that are

obtained by selecting two jobs
within the solution and swapping
their positions in their schedule.

276

Comparing Solvers
The following code uses the create_problem_instance() function to generate two datasets:

• A dataset of 100 SMWT problem instances with 7 jobs each.
• A dataset of 100 SMWT problem instances with 30 jobs each.
The first dataset will be used to compare the performance of all solvers that were described in this
lesson:

1. The brute-force solver.
2. The greedy solver with the deadline heuristic.
3. The greedy solver with the weighted deadline heuristic.
4. The local search solver with random swaps and a greedy solver with the deadline heuristic to find

the initial solution.
5. The local search solver with random swaps and a greedy solver with the weighted deadline heuristic.
6. The local search solver with adjacent swaps and a greedy solver with the deadline heuristic.
7. The local search solver with adjacent swaps and a greedy solver with the weighted deadline heuristic.

The following code uses both swap strategies with the local search solver to solve the sample problem
generated in the beginning of this lesson.

print(local_search_solver(sample_problem, weighted_deadline_heuristic, random_
swap, 1000))

print(local_search_solver(sample_problem, weighted_deadline_heuristic,
adjacent_swap, 1000))

{'schedule': [3, 4, 2, 1, 0], 'tardiness': 83, 'finish_times': [15, 21, 30,
41, 57]}
{'schedule': [3, 4, 2, 1, 0], 'tardiness': 83, 'finish_times': [15, 21, 30,
41, 57]}

#Dataset 1
problems_7 = []
for i in range(100):
 problems_7.append(create_problem_instance(7, [5, 20], [5, 50], [1, 3]))

#Dataset 2
problems_30 = []
for i in range(100):
 problems_30.append(create_problem_instance(30, [5,20], [5, 50], [1, 3]))

The second dataset will be used to compare all solvers except for the brute-force one, which is far
too slow for 30-job problems.

The results show the best schedule [3, 4, 2, 1, 0] for this example and also the overall tardiness (83)
and finish times (job 3 will finish on the 15th unit of time, job 4 on the 21st and so on).

277

from collections import defaultdict
import numpy

def compare(problems,use_brute):
 # comparison on Dataset 1
 # maps each solver to a list of all tardiness values it achieves for the problems in the given dataset
 results = defaultdict(list)
 for problem in problems: # for each problem in this datset

 #uses each of the solvers on this problem
 if use_brute == True:
 results['brute-force'].append(brute_force_solver(problem)
['tardiness'])
 results['greedy-deadline'].append(greedy_solver(problem,deadline_
heuristic)['tardiness'])
 results['greedy-weighted_deadline'].append(greedy_
solver(problem,weighted_deadline_heuristic)['tardiness'])
 results['ls-random-wdeadline'].append(local_search_solver(problem,
weighted_deadline_heuristic, random_swap, 1000)['tardiness'])
 results['ls-random-deadline'].append(local_search_solver(problem,
deadline_heuristic, random_swap, 1000)['tardiness'])
 results['ls-adjacent-wdeadline'].append(local_search_solver(problem,
weighted_deadline_heuristic, adjacent_swap, 1000)['tardiness'])
 results['ls-adjacent-deadline'].append(local_search_solver(problem,
deadline_heuristic, adjacent_swap, 1000)['tardiness'])

 for solver in results: # for each solver
 # prints the solver's mean tardiness values
 print(solver,numpy.mean(results[solver]))

Compare() Function
The following compare() function uses all the solvers to solve all problems in the given dataset. It
then returns the average tardiness value achieved by each solver over all the problems in the dataset.
The function also accepts a boolean use_brute parameter to determine if the brute-force solver
should be used or not.

The compare() function can now be used with both the problems_7 and problems_30 datasets:

compare(problems_7,True) brute-force 211.49
greedy-deadline 308.14
greedy-weighted_deadline 255.61
ls-random-wdeadline 212.35
ls-random-deadline 212.43
ls-adjacent-wdeadline 220.62
ls-adjacent-deadline 224.36

compare(problems_30,False) greedy-deadline 10126.18
greedy-weighted_deadline 8527.61
ls-random-wdeadline 6647.73
ls-random-deadline 6650.99
ls-adjacent-wdeadline 6666.47
ls-adjacent-deadline 6664.67

278

1 Describe two different strategies (swapping, inversion, shifting etc.) for the local search
approach of solving the SMWT problem.

2 How many possible schedules (solutions) are there for an instance of the SMWT problem
with 9 jobs?

Exercises

279

3 You want to create a brute-force solver for the SMWT problem. Complete the following
code so that the function utilizes brute force to find the optimal scheduling permutation.

def brute_force_solver(problem):

 # gets the information for this problem

 durations, weights, deadlines=problem['durations'], problem['weights'],

problem['deadlines']

 job_num = len() # number of jobs

 # generates all possible schedules

 all_schedules = itertools. (range(job_num))

 # initializes the best solution and its total weighted tardiness

 best_schedule = # initialized to None

 # 'inf' stands for 'infnity'. Python will evaluate all numbers as smaller than this value.

 best_tardiness = float(' ')

 # stores the finish time of each job in the best schedule

 best_finish_times= # initalized to None

 for schedule in all_schedules: # for every possible schedule

 #evalute the schedule

 tardiness,finish_times=compute_schedule_tardiness(problem, schedule)

 if tardiness<best_tardiness: # this schedule is better than the best so far

 best_tardiness=

 best_schedule=

 best_finish_times=

 # return the results as a dictionary

 return {'schedule':best_schedule,

 'tardiness':best_tardiness,

 'finish_times':best_finish_times}

280

4 You want to create a local search solver for the SMWT problem. Complete the following
code so that the function utilizes local search to find the optimal scheduling permutation.

def local_search_solver(problem, greedy_heuristic, swap_selector, max_
iterations):
 # gets the information for this problem
 durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

 job_num = len()# gets the number of jobs
 # uses the greedy solver to get a first schedule.
 # this schedule will be then iteratively refined through local search

 greedy_sol = (problem, greedy_heuristic) # remembers the best
schedule so far
 best_schedule, best_tardiness, best_finish_times=greedy_
sol['schedule'],greedy_sol['tardiness'],greedy_sol['finish_times']

 # local search

 for i in range(): # for each of the given iterations
 # chooses which two positions to swap

 pos1,pos2= (best_schedule)

 new_schedule = best_schedule. ()# creates a copy of the
schedule
 # swaps jobs at positions pos1 and pos2
 new_schedule[pos1], new_schedule[pos2] = best_schedule[pos2], best_
schedule[pos1]
 # computes the new tardiness after the swap
 new_tardiness, new_finish_times = compute_schedule_tardiness(problem,
new_schedule)
 # if the new schedule is better than the best one so far
 if new_tardiness < best_tardiness:
 # the new_schedule becomes the best one

 best_schedule =

 best_tardiness =

 best_finish_times=

 # returns the best solution
 return {'schedule':best_schedule,
 'tardiness':best_tardiness,
 'finish_times':best_finish_times}

281

5 Describe how local search works.

6 Write your observations about the results of the the greedy solvers compared to the
local search solvers, in the 30 job problem. Why do you think in the 30 job problem the
brute-force solver was not used?

282

Table 5.2: Examples of decision and state variables
Decision Variables State Variables

Production
Planning

The quantity of each product
that has to be produced.

The availability of raw materials, production
machines' capacity, and production labor
availability.

Resource
Transportation

The number of goods to be
transported from one location
to another.

The distance between the locations that
must be visited and the capacity of the
vehicles.

Job Scheduling
The order and time duration of
each job to be performed.

The availability of workers and machines,
the deadlines, and the importance weights
of each job.

Personel
Rostering

The assignment and scheduling
of workers to different tasks at
different times.

The skills, preferences, and availability of
each worker. The skills required to complete
each task.

Link to digital lesson

Mathematical Programming
In Optimization Problems
The previous two lessons demonstrated how heuristic algorithms
could be used to solve different types of optimization problems.
While heuristics can be very fast and often produce good solutions,
they do not always guarantee the optimal solution and may not
be suitable for all types of problems. In this lesson you will focus
on a different optimization approach: mathematical programming.
Mathematical programming can solve many optimization problems,
such as resource allocation, production planning, logistics, and scheduling. The technique has the
advantage of providing a guaranteed optimal solution and can handle complex problems with multiple
constraints.
A mathematical programming solution starts with formulating the given optimization problem as a
mathematical model using variables. These variables represent the values that have to be optimized.
They are used to define the objective function and constraints, which together describe the problem
and enable the use of mathematical programming algorithms.
Mathematical programming utilizes decision variables which can be controlled and tuned by the
decision-maker to find the solution, or state variables which the decision-maker has no control over
and are imposed by the external environment. State variables cannot be tuned. The following lists
provide examples of decision and state variables for some popular optimization problems:

Lesson 3

Route Optimization Problem

Mathematical programming

Mathematical programming is a
technique to solve optimization
problems by formulating them as
mathematical models.

283

The objective function is formulated as a mathematical expression to be optimized (maximized or
minimized) based on the relevant variables. This function represents the goal of the optimization
problem, such as maximizing profit or minimizing costs. It is usually defined in terms of the decision
variables and sometimes the state variables. Similarly, the constraints can be formulated using variables
and mathematical inequalities.
There are several types of mathematical programming, including Linear Programming (LP), Quadratic
Programming (QP), and Mixed Integer Programming (MIP). This lesson focuses on MIP, which is used
for problems where the decision variables are restricted to integers, such as scheduling or routing
problems.

The Knapsack Problem
A simple example of using MIP to formulate the objective function and constraints is the 0/1 Knapsack
Problem. The problem is defined as follows: you are given a knapsack with a maximum weight capacity
of C and a set of items I. Each item i has two state variables: a weight wi and a value vi. The requirement
is to fill the knapsack with the maximum possible value within the knapsack's capacity. A decision
variable xi is also used to keep track of the combinations of items to be packed in a knapsack, where
xi = 1 if the item i is selected to be added to the knapsack and xi = 0 otherwise. The goal is to select
a subset of the items from I such that:

• Constraint: The sum of the weights of the selected items is not greater than the maximum capacity C.
• Objective function: The sum of the values of the selected items is as high as possible (maximized).

A knapsack instance is illustrated in figure 5.6 with six items having specific weights and values and
a maximum knapsack capacity of 40. The following code installs and uses the open-source Python
library mip (mixed integer programming) to solve an instance of the 0/1 Knapsack problem and imports
the necessary modules.

!pip install mip # install the mip library

imports useful tools from the mip library
from mip import Model, xsum, maximize, BINARY
values = [20, 10, 23, 15, 7, 7] # values of available items
weights = [5, 10, 19, 8, 11, 2] # weights of available items

w3=8

w4=11

w2=19

w0=5

w5=2

w1=10

Figure 5.6: The Knapsack problem

v
0=20

v1=10

v
2=23

v3=15

v4=7

v5=7

284

C = 40 # knapsack capacity

I = range(len(values)) # creates an index for each item: 0,1,2,3,...

solver = Model("knapsack") # creates a knapsack solver
solver.verbose = 0 # setting this to 1 will print more information on the progress of the solver

x = [] # represents the binary decision variables for each item.

for each items creates and appends a binary decision variable
for i in I:
 x.append(solver.add_var(var_type = BINARY))

creates the objective function
solver.objective = maximize(xsum(values[i] * x[i] for i in I))

adds the capacity constraint to the solver
solver += xsum(weights[i] * x[i] for i in I) <= C

solves the problem
solver.optimize()

The code creates a list x to store the binary decision variables for the items. The mip library provides:

• the add_var(var_type=BINARY)) tool for creating binary variables and adding them to the solver.
• the maximize() tool for optimization problems that need to maximize an objective function, whereas

the minimize() tool is used for optimization problems that need to minimize an objective.
• the xsum() tool for creating mathematical expressions that include sums. In the above example,

the tool is used to compute the total weight of the items in a solution and create the capacity
constraint.

• the optimize() tool for finding a solution that optimizes the objective function while respecting the
constraints. The tool uses MIP to efficiently consider different combinations of values for the
decision variables and find the one that optimizes the objective.

• the += operator to add additional constraints to an existing solver.

<OptimizationStatus.OPTIMAL: 0>

In the implementation below, the list x holds one binary variable for each item. After the solution has
been computed, each variable will be equal to 1 if the item was included in the solution and equal
to 0 otherwise. The mip library uses the x[i].x syntax to return the binary value for the item with
index i. The solver computes the decision variable x, then finds the total value and weight of the
selected items by iterating over the decision variable x, accumulating the weights and values for each
selected item i, based on x[i], and displaying them as shown in the following code.

total_weight = 0 # stores the total weight of the items in the solution
total_value = 0 # stores the total value of the items in the solution

285

Each circle (node) represents a city or location that has to be
visited. There is an edge connecting two locations if it is possible
to travel between them. The nu mber on the edge represents
the cost (distance) between the two locations. In this example,
the locations have been numbered according to their order in
the optimal solution to the problem. The total cost of the route
1→2→4→3→1 is 10 + 25 + 30 + 15 = 80, which is the shortest
possible route that visits every city exactly once and returns to
the starting point. TSP has practical applications in logistics,
transportation, supply chain management, and telecommunications.
It belongs to a broader family of routing problems that also includes
other famous problems which are presented below:

• The Vehicle Routing Problem involves finding the optimal routes for a fleet of vehicles to deliver
goods or services to a set of customers while minimizing the total distance traveled. Applications
include logistics, delivery services, and garbage collection.

• The Pickup and Delivery Problem involves finding the optimal routes for vehicles to pick up and
deliver goods or people to different locations. Applications include taxi services, emergency medical
services, and shuttle services.

• The Train Timetabling Problem involves finding the optimal train schedules in a railway network
while minimizing delay percentage and ensuring efficient use of resources. Applications include
railway transportation and scheduling.

Traveling Salesman Problem
Another problem that can be solved via MIP is the Traveling Salesman
Problem (TSP). It is a classic problem that seeks to determine the
shortest possible route a salesman must take to visit a set of cities
exactly once and then return to his starting point, without visiting any
city twice. The figure 5.7 visualizes an instance of this problem.

item 0 was selected
item 2 was selected
item 3 was selected
item 5 was selected
total weight 34
total value 65

for i in I: # for each item
 if x[i].x == 1: # if the item was selected
 print('item', i, 'was selected')
 # updates the total weight and value of the solution
 total_weight += weights[i]
 total_value += values[i]

print('total weight', total_weight)
print('total value', total_value)

Figure 5.7: Instance of
Traveling Salesman problem

35

30

10 15

32

4

1

25

20

TSP graph instances are fully
connected; there is an edge

connecting every pair of nodes.

286

The following code can be used to create an instance of the TSP. The function accepts the number of
locations to be visited and the distance range (minimum and maximum distance) between two
locations. It then returns:

• a distance matrix that includes the distance between every possible pair of locations.
• a set of numeric location ids (one for each location).
• the location that serves as the start and end of the route. This is referred to as the 'startstop'

location.

import random
import numpy
from itertools import combinations

def create_problem_instance(num_locations, distance_range):
 # initializes the distance matrix to be full of zeros
 dist_matrix = numpy.zeros((num_locations, num_locations))
 # creates location ids: 0,1,2,3,4,...
 location_ids = set(range(num_locations))
 # creates all possible location pairs
 location_pairs = combinations(location_ids, 2)
 for i,j in location_pairs: # for each pair
 distance = random.randint(*distance_range) # samples a distance within range
 # the distance from i to j is the same as the distance from j to i
 dist_matrix[j,i] = distance
 dist_matrix[i,j] = distance

 # returns the distance matrix, location ids and the startstop vertix
 return dist_matrix, location_ids, random.randint(0, num_locations - 1)

The following code used the above function to create a TSP instance with 8 locations and pairwise
distances between 5 and 20:

dist_matrix, location_ids, startstop = create_problem_instance(8, (5, 20))
print(dist_matrix)
print(startstop)

[[0. 19. 17. 15. 18. 17. 7. 15.]
 [19. 0. 15. 18. 11. 6. 20. 5.]
 [17. 15. 0. 17. 15. 7. 5. 11.]
 [15. 18. 17. 0. 19. 7. 7. 16.]
 [18. 11. 15. 19. 0. 17. 20. 17.]
 [17. 6. 7. 7. 17. 0. 15. 14.]
 [7. 20. 5. 7. 20. 15. 0. 14.]
 [15. 5. 11. 16. 17. 14. 14. 0.]]
3

Notice that the diagonal
represents the distances from
the nodes to themselves (dist_

matrix[i,i]), and thus is zero.

287

The brute force solver uses the permutations() tool to create all possible routes. Note that the startstop
location is excluded from the permutations, as it must always appear at the start and end of each
route. For example, if we have 4 locations 0,1,2,3 and 0 is the startstop location, then the list of
possible permutations would be:

for route in permutations({1,2,3}):
 print(route)

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

Creating a Brute-Force Solver for the Traveling Salesman Problem
The following function uses brute force to exhaustively enumerate all possible routes (permutations)
and return the shortest one. It accepts the distance matrix and the startstop location returned by the
create_problem_instance() function. Note that a solution to a TSP instance is a permutation of cities,
starting and ending at the startstop city.

from itertools import permutations

def brute_force_solver(dist_matrix, location_ids, startstop):
 # excludes the starstop location
 location_ids = location_ids - {startstop}
 # generate all possible routes (location permutations)
 all_routes = permutations(location_ids)
 best_distance = float('inf') # initializes to the highest possible number
 best_route = None # best route so far, initialized to None

 for route in all_routes: # for each route
 distance = 0 # total distance in this route
 curr_loc = startstop # current location

 for next_loc in route:
 distance += dist_matrix[curr_loc,next_loc] # adds the distance of this step
 curr_loc = next_loc # goes to the next location
 distance += dist_matrix[curr_loc,startstop] # goes to the starstop location
 if distance < best_distance: # if this route has lower distance than the best route
 best_distance = distance
 best_route = route

 # adds the startstop location at the beginning and end of the best route and returns
 return [startstop] + list(best_route) + [startstop], best_distance

288

The brute force solver computes the total distance of each route and finally returns the one with the
shortest distance. The following code applies the solver to the TSP instance generated above.

brute_force_solver(dist_matrix, location_ids, startstop)

([3, 5, 2, 7, 1, 4, 0, 6, 3], 73.0)

Similar to the brute-force solvers that were described in the previous lessons, this solver is only
applicable to small TSP instances. This is because the number of possible routes is a number that
grows exponentially as N gets larger and is equal to (N−1)!. For example, for N=15, the number of
possible routes is equal to 14! = 87,178,291,200.

Using MIP to Solve the Traveling Salesman Problem
To use MIP to solve the TSP, a mathematical formulation that covers both the objective function and
the constraints of the TSP needs to be created.
The formulation requires a binary decision variable xij for every possible transition i→j from a location
i to another location j. For a problem with N locations, the number of possible transitions is equal to
N×(N−1). If xij is equal to 1, the solution includes a transition from location i to location j. Otherwise,
if xij is equal to 0, then this transition is not included in the solution.

The code also uses the product() tool from 'itertools' to compute all possible location transitions.
For example:

ids = {0, 1, 2}
for i, j in list(product(ids, ids)):
 print(i, j)

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

arr = numpy.full((4,4), 0) # creates a 4x4 array full of zeros

print(arr)

arr[0, 0] = 1
arr[3, 3] = 1

print()
print(arr)

[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]

[[1 0 0 0]
 [0 0 0 0]
 [0 0 0 0]
 [0 0 0 1]]

Accessing elements in a 2-dimensional numpy array can be easily done via the [i,j] syntax. For example:

289

The above code uses the numpy.full() tool to create N×N numpy array for storing the binary x variables.
After adding the x decision variables, the following code can be used to formulate the objective function
for the TSP. The function iterates over every possible transition i→j and multiplies its distance dist_matrix[i,j]
with its decision variable x[i,j]. If the transition is included in the solution, then x[i,j]=1 and dist_matrix[i,j]
will be considered. Otherwise, dist_matrix[i,j] will be multiplied by 0 and will be ignored.

the minimize tool is used then the objective function has to be minimized
from mip import xsum, minimize

objective function: minimizes the distance
solver.objective = minimize(xsum(dist_matrix[i,j]*x[i][j] for i,j in
transitions))

The next step is to ensure that the solver only reports solutions that visit each location, except for
the startstop, exactly once, as the TSP requires. Visiting each location once means that a valid route
can only:

• arrive at each location exactly once.
• depart from each location exactly once.

These arrive/depart constraints can be easily added as follows:

for each location id
for i in location_ids:
 solver += xsum(x[i,j] for j in location_ids - {i}) == 1 # exactly 1 arrival
 solver += xsum(x[j,i] for j in location_ids - {i}) == 1 # exactly 1 departure

from itertools import product # used to generate all possible transition
from mip import BINARY
from mip import Model,INTEGER

solver = Model() # creates a solver
solver.verbose = 0 # setting this to 1 will print info on the progress of the solver

'product' creates every transition from every location to every other location
transitions = list(product(location_ids, location_ids))

N = len(location_ids) # number of locations

creates a square numpy array full of 'None' values
x = numpy.full((N, N), None)

adds binary variables indicating if transition (i->j) is included in the route
for i, j in transitions:
 x[i, j] = solver.add_var(var_type = BINARY)

The following code uses the Python mip library to create an MIP solver. It then adds one binary
decision variable for every possible transition in the TSP instance generated above.

290

The complete formulation of the TSP includes one more type of constraint to ensure the computation
of connected routes. Consider the TSP instance in figure 5.8. Location 0 is assumed to be the startstop
location.

In this instance, the shortest possible route is 0→3→4→1→2,
with a total travel distance of 24. However, without a
connectivity constraint, a solution with two unconnected
routes 0→3→4→0 and 1→2→1 is also valid. This 2-route
solution satisfies the arrive/depart constraints defined in
the code above, as every location is entered and exited
exactly once. However, this is not an acceptable TSP solution.
A solution with a single connected route can be enforced
by adding the decision variable yi for every location i. These
variables will capture the order in which each location is
visited in the solution.

adds a decision variable for each location
y = [solver.add_var(var_type = INTEGER) for i in location_ids]

For example, if the solution is 0→3→4→1→2→0, then the y values would be y3=0, y4=1, y1=2, y2=3.
Location 0 is the startstop location, so its y value is not considered.
These new decision variables can be used to ensure connectivity by adding a new constraint for each
transition i→j that does not include the startstop:

adds a connectivity constraint for every transition that does not include the startstop
for (i, j) in product(location_ids - {startstop}, location_ids - {startstop}):
 # ignores transitions from a location to itself
 if i != j:
 solver += y[j] - y[i] >= (N+1) * x[i, j] - N

If a transition i→j has xij=1 and is included in the solution, then the above inequality becomes
y[j] >= y[i] + 1. This states that locations that are visited later are required to have higher y values.
Combined with the arrive/depart constraints, a route that does not include the startstop is valid only
if:

• If it starts and ends with the same location, to ensure that all locations have exactly one arrival and
one departure.

• It assigns higher y values to locations that are visited later since y[j] has to be greater than y[i] for
all transitions included in the route. This also avoids adding the same edge from a different direction
(e.g., i→j and j→i).

However, if a location serves as both the start and end of a route, then it needs to have a y value that
is both higher and lower than those of all the others in the route. Given that this is impossible, adding
the connectivity constraint eliminates any solutions with routes that do not include the startstop.

Figure 5.8: TSP instance

3

57

5

5

6

3

2

4

0

1

291

As an example, consider the 1→2→1 route in the 2-route solution of the TSP instance shown in the
figure above. The connectivity constraint requires that y2 ≥ y1 + 1 and y1 ≥ y2 + 1. This is not possible,
so the solution would be eliminated.
In constrast, the correct solution 0→3→4→1→2→0 requires that y4 ≥ y3 + 1, y1 ≥ y4 + 1, and
 y2 ≥ y1 + 1. These can be satisfied by setting y3=0, y4=1, y1=2, y2=3. Connectivity constraints do not
apply to transitions that include the startstop node.
The following function puts everything together to create a complete MIP solver for the TSP:

from itertools import product
from mip import BINARY,INTEGER
from mip import Model
from mip import xsum, minimize

def MIP_solver(dist_matrix, location_ids, startstop):
 solver = Model()# creates a solver
 solver.verbose = 0 # setting this to 1 will print info on the progress of the solver
 # creates every transition from every location to every other location
 transitions = list(product(location_ids,location_ids))
 N = len(location_ids) # number of locations
 # create an empty square matrix full of 'None' values
 x = numpy.full((N, N), None)
 # adds binary decision variables indicating if transition (i->j) is included in the route
 for i, j in transitions:
 x[i, j]=solver.add_var(var_type = BINARY)
 # objective function: minimizes the distance
 solver.objective = minimize(xsum(dist_matrix[i,j]*x[i][j] for i,j in transitions))
 # Arrive/Depart Constraints
 for i in location_ids:
 solver += xsum(x[i,j] for j in location_ids - {i}) == 1 # exactly 1 arrival
 solver += xsum(x[j,i] for j in location_ids - {i}) == 1 # exactly 1 departure
 # adds a binary decision variable for each location
 y = [solver.add_var(var_type=INTEGER) for i in location_ids]
 # adds connectivity constraints for transitions that do not include the startstop
 for (i, j) in product(location_ids - {startstop}, location_ids - {startstop}):
 if i != j: # ignores transitions from a location to itself
 solver += y[j] - y[i] >=(N+1)*x[i,j] - N
 solver.optimize() #solves the problem
 # prints the solution
 if solver.num_solutions: # if a solution was found
 best_route = [startstop] # stores the best route
 curr_loc = startstop # the currently visited location
 while True:
 for next_loc in location_ids:# for every possible next location
 if x[curr_loc,next_loc].x == 1: # if x value for the curr_loc->next_loc transition is 1
 best_route.append(next_loc) # appends the next location to the route
 curr_loc=next_loc # visits the next location
 break
 if next_loc == startstop: # exits if route returns to the startstop
 break
 return best_route, solver.objective_value # returns the route and its total distance

292

The following code generates 100 TSP instances with 8 locations and a distance range between 5 and
20. It also uses the brute-force and the MIP solver to solve each instance and reports the percentage
for which the two methods reported routes with the same distance.

same_count = 0
for i in range(100):
 dist_matrix, location_ids, startstop=create_problem_instance(8, [5,20])
 route1, dist1 = brute_force_solver(dist_matrix, location_ids, startstop)
 route2, dist2 = MIP_solver(dist_matrix, location_ids, startstop)
 # counts how many times the two solvers produce the same total distance
 if dist1 == dist2:
 same_count += 1
print(same_count / 100)

1.0

The results verify that the MIP solver reports the optimal solution for 100% of the problem instances.
The following code also demonstrates the speed of the MIP solver, by using it to solve 100 larger
instances with 20 locations.

import time

start = time.time() # starts timer
for i in range(100):
 dist_matrix, location_ids, startstop = create_problem_instance(20, [5,20])
 route, dist = MIP_solver(dist_matrix, location_ids, startstop)

stop=time.time() # stops timer
print(stop - start) # prints the elapsed time in seconds

188.90074133872986

Even though the exact execution time will depend on the processing power of the machine that you
use to run this Jupyter notebook, it should generally take just a few minutes to compute the solution
for all 100 datasets.
This is quite impressive, considering that the number of possible routes for each of the 100 instances
translates to 19! = 121,645,100,000,000,000 different routes. Such a large number of routes is far
beyond the capabilities of the brute-force approach. However, by efficiently searching this massive
space of all possible solutions, the MIP solver can find the optimal route quickly.
Despite its advantages, mathematical programming also has its limitations. It requires a solid
understanding of mathematical modeling and may not be suitable for complex problems where the
objective function and constraints are hard to express via mathematical formulas. In addition, even
though mathematical programming is much faster than the brute-force approach, it might still be too
slow for large datasets. In such cases, the heuristic approach demonstrated in the previous two lessons
presents a much faster alternative.

293

1 Explain how mathematical programming can be used to solve complex optimization
problems.

Exercises

2 What are the advantages and disadvantages of the MIP approach for solving optimization
problems?

294

4 List three different optimization problems from the family of routing problems.

3 Analyze two optimization problems that can be solved with mathematical programming
and outline their state and decision variables.

295

5 You want to create a brute-force solver function for the Traveling Salesman Problem.
Complete the following code so that the solver function returns the best route and
best total distance.

from itertools import permutations

def brute_force_solver(dist_matrix, location_ids, startstop):

 # excludes the startstop location

 location_ids = - { }

 # generates all possible routes (location permutations)

 all_routes = ()

 best_distance = float('inf') # initializes to the highest possible number

 best_route = None # best route so far, initialized to None

 for route in all_routes: # for each route

 distance = 0 # total distance in this route

 curr_loc = # current location

 for next_loc in route:

 distance += [curr_loc, next_loc] # adds the distance of this step

 curr_loc = # goes the next location

 distance += [curr_loc,] # goes to

back to the startstop location

 if distance < best_distance: # if this route has lower distance than the best route

 best_distance = distance

 best_route = route

 # adds the startstop location at the beginning and end of the best route and returns

 return [startstop] + list(best_route) + [startstop], best_distance

296

6 You want to create an MIP solver for the Traveling Salesman Problem. Complete the
following code so that the decision variables and connectivity constraints are selected
correctly.

def MIP_solver(dist_matrix, location_ids, startstop):

 solver = () # creates a solver
 solver.verbose = 0 # setting this to 1 will print info on the progress of the solver
 # creates every transition from every location to every other location

 transitions = list((location_ids, location_ids))
 N = len(location_ids) # number of locations
 # creates an empty square matrix full of 'None' values
 x = numpy.full((N, N), None)
 # adds binary decision variables indicating if transition (i->j) is included in the route
 for i, j in transitions:

 x[i, j] = solver. (var_type=)

 # objective function: minimizes the distance

 solver.objective = (xsum(dist_matrix[i, j] * x[i][j] for
i, j in transitions))

 # Arrive/Depart Constraints
 for i in location_ids:

 solver += xsum(for j in location_ids - {i}) == 1

 solver += xsum(for j in location_ids - {i}) == 1

 # Adds a binary decision variable for each location

 y = [solver. (var_type=) for i in
location_ids]

 # Adds connectivity constraints for transitions that do not include the startstop
 for (i, j) in product(location_ids - {startstop}, location_ids -
{startstop}):
 if i != j: # ignores transitions from a location to itself
 solver += y[j] - y[i] >= (N + 1) * x[i, j] - N

 solver. () # solves the problem

297

Project

Suppose you work for a delivery company, and your manager has
asked you to find the most efficient route to deliver packages to
multiple locations in the city.
The goal is to find the shortest possible route that visits each location
exactly once and returns to the starting location. This problem is an
instance of the Traveling Salesman Problem (TSP).

You will create various instances of the TSP problem with 3 to 12
locations. Each instance will have a distance range of 5 to 20 units.

1

Create a plot function with the matplotlib library that graphs the
most efficient route that is outputted by the solver. Use this function
only for the instance with 12 locations.

2

Create a plot function with the matplotlib library that plots the
performance of both the brute-force and MIP solvers in comparison
with each other.

3

Write a brief report discussing your findings on the efficiency and
performance of both solvers, and the benefits and drawbacks of
each one.

4

298

Brute-Force Solver

Constraint Programming

 Greedy Heuristic
Algorithm

Greedy Solver

Heuristic Algorithm

Knapsack Problem

Linear Programming

Local Search

Mathematical
Programming

Integer Programming

Optimization Problem

Quadratic Programming

Scheduling Problem

Team Formation

Traveling Salesman
Problem

KEY TERMS

Wrap upWrap up

Now you have learned to:
> Select the appropriate optimization approaches to solve complex

problems.
> Solve resource allocation problems by applying Python code.
> Solve scheduling problems by applying Python code.
> Solve the Knapsack problem using different optimization algorithms.
> Solve the Traveling Salesman problem using different optimization

algorithms.

299

Learning Objectives
In this unit, you will learn to:
> Identify what AI ethics is.
> Interpret how bias and fairness impact the ethical use of

AI systems.
> Evaluate how the transparency and explainability problem

in AI can be solved.
> Analyze how large scale AI systems influence society and

how they are regulated.
> Program a drone device for autonomous movement.
> Develop an image analysis system for the drone used to

patrol an area.

Tools
> Webots
> OpenCV library

6. AI and Society
In this unit, you will analyze how AI ethics influence and guide the
development of sophisticated AI systems. You will evaluate how large
scale AI systems impact societies and the environment and how they
are regulated for ethical and sustainable use. Then, you will use Webots
simulator to program a drone for autonomous movement and patrolling
of an area with image analysis.

300

Link to digital lesson

Lesson 1

Introduction to AI Ethics

Overview of AI Ethics
As AI continues to advance, it has become increasingly important to consider
the ethical implications of this technology. As a citizen of the modern world, it
is important to understand the significance of AI ethics in developing and using
responsible AI systems.
One of the main reasons AI ethics is important is that AI systems can potentially
affect people's lives significantly. For example, AI algorithms can be used to
make hiring and medical treatment decisions. If these algorithms are biased
or discriminatory, they can lead to unjust outcomes that harm individuals and
communities.

Real-World Examples of Ethical Concerns in AI

Discriminatory algorithms
There were cases where AI systems have been found to perpetuate biases and discriminate against
certain groups of people. For example, a study by the National Institute of Standards and Technology
found that facial recognition technology has higher error rates for people with darker skin tones,
which can lead to false identifications and wrongful arrests. Another example is the use of AI algorithms
in the criminal justice system, where studies have shown that these algorithms can be biased against
minorities and lead to harsher sentences.

Invasion of privacy
AI systems that collect and analyze data can threaten personal privacy. For
example, in 2018, a political consulting firm, had harvested data from millions
of Facebook users without their consent and used it to influence political
campaigns. This incident raised concerns about using AI and data analytics
to manipulate public opinion and infringe on individuals' privacy rights.

Autonomous weapons
The development of autonomous weapons, which can operate without
human intervention, has raised ethical concerns about using AI in warfare.
Critics argue that these weapons can make life-or-death decisions without
human oversight and can be programmed to target specific groups of people,
which could violate international humanitarian law and lead to civilian
casualties.

Job displacement
The increasing use of AI and automation in various industries has raised
concerns about job displacement and the impact on workers' livelihoods.
While AI can improve efficiency and productivity, it can also lead to job losses
and exacerbate income inequality, which can have negative social and
economic consequences.

AI Ethics

AI ethics refers to the
principles, values, and
moral standards that guide
AI systems' development,
deployment and use.

301

Bias and Fairness in AI
Bias can occur in AI systems when the data used to train the algorithm is
unrepresentative or contains underlying prejudices. Bias in AI systems can
occur on any data that the system outputs represent, like products, opinions,
communities, and trends, among others.
An example of a biased algorithm is an automated hiring system that uses AI
to screen job candidates. Suppose the algorithm is trained on biased data,
such as historical hiring patterns that favor certain demographic groups. In
that case, it may perpetuate those biases and unfairly screen out qualified
candidates from the groups, ignoring categories that are not well represented
in the data set. For example, suppose the algorithm favors candidates who
attended elite universities or worked at prestigious companies. In that case,
it may disadvantage candidates who did not have access to those opportunities
or who come from less privileged backgrounds. This can lead to a lack of
diversity in the workplace and perpetuate systemic inequalities. Therefore,
it is important to develop and use AI hiring algorithms that are based on fair
and transparent criteria and do not perpetuate biases.
Fairness in AI refers to how AI systems produce unbiased outcomes and treat
all individuals and groups fairly. Achieving AI fairness requires identifying and
addressing biases in the data, algorithms, and decision-making processes.
For example, one approach to achieving fairness in AI is to use a process called
"debiasing," where biased data is identified and removed or modified to
ensure that the algorithm produces more accurate and unbiased outcomes.

Biased training data

AI algorithms learn from the data they are trained on, so if the data is
biased or unrepresentative, the algorithm may produce biased outcomes.
For example, if an image recognition algorithm is trained on a dataset that
predominantly features lighter-skinned individuals, it may have difficulty
in recognizing individuals with darker skin tones accurately.

Lack of diversity in
the development

teams

If the development team is not diverse and does not represent a range of
cultural and technical varieties, they may not recognize the biases in the
data or the algorithm. A team that only consists of individuals from a
particular geographic region or culture leads to a lack of consideration for
other regions or cultures that may be represented in the data used to train
the AI model.

Lack of oversight and
accountability

The lack of oversight and accountability in the development and deployment
of AI systems can lead to the perpetuation of biases. Without adequate
oversight and accountability mechanisms from companies and governments,
testing for bias in AI systems may not be carried out and there may be no
recourse for individuals or communities harmed by biased outcomes.

Lack of experience
and knowledge in the

development team

Development teams lacking experience may not identify or address biases
indicators in the training data. A lack of knowledge in designing and testing
AI models for fairness may perpetuate existing biases.

Table 6.1: Factors that contribute to biased AI

AI Bias

In the context of AI, bias
refers to the tendency of
machine learning algorithms
to produce outcomes that
systematically favor or
disfavor certain alternatives
or groups, leading to
inaccurate predictions and
potential discrimination
against certain products or
populations.

302

Reducing Bias and Promoting Fairness in AI Systems

Diverse and representative data
This involves using data that reflects the diversity of the group it
represents. Additionally, it is important to regularly review and
update the data used to train AI systems to ensure that it remains
relevant and unbiased.

Debiasing techniques
Debiasing techniques involve identifying and removing biased
data from AI systems to improve accuracy and fairness. This can
include techniques such as oversampling, undersampling, and
data augmentation to ensure the AI system is exposed to various
data points.

Explainability and transparency
Making AI systems more transparent and explainable can help to
reduce bias by allowing users to understand how the system
makes decisions. This involves clarifying the decision-making
process and allowing users to explore and test the system's
outputs.

Human-in-the-loop design
Incorporating human-in-the-loop design into AI systems can help
to reduce bias by allowing humans to intervene and correct the
system's outputs when necessary. This involves designing AI
systems with a feedback loop enabling humans to review and
approve the system's decisions.

Ethical principles
Incorporating ethical principles, such as fairness, transparency,
and accountability, into the design and implementation of AI
systems, ensuring that they are developed and used ethically and
responsibly. This involves establishing clear ethical guidelines for
using AI systems and regularly reviewing and updating these
guidelines as necessary.

Regular monitoring and evaluation
Regularly monitoring and evaluating AI systems is essential for
identifying and correcting bias. This involves testing the system's
outputs and conducting regular audits to ensure it operates fairly
and accurately.

Evaluating user's feedback
User feedback can help identify bias in the system, as users are
often more aware of their own experience and can provide better
insights into potential bias than AI algorithms can. For example,
users can provide feedback on how they perceive the AI system’s
performance or provide helpful suggestions for ways to improve
the system and make it less biased.

Oversampling

Oversampling in machine learning
is increasing a class's samples in a
dataset to improve the model's
accuracy. It is done by randomly
duplicating existing points from
the class or generating new points
from the same class.

Undersampling

Undersampling is the process of
reducing the size of the dataset by
deleting a subset of the larger
dataset to focus on the more
important data points. This is
particularly useful if the dataset
contains an imbalance of classes
or different data groups.

Data Augmentation

Data augmentation is the process
of generating new training data
from existing data to enhance the
performance of machine learning
models. Examples include image
flipping, rotation, cropping, color
changing, affine transformation,
and noise addition.

303

The Problem of Moral Responsibility in AI
The problem of moral responsibility when using advanced AI systems
is a complex and multifaceted issue that has attracted significant
attention in recent years.
One of the key challenges with advanced AI systems is that they can
make decisions and take actions that can have significant positive
or negative consequences for individuals and society. However, who
should be held morally responsible for these outcomes is not always
clear.
One perspective is that the developers and designers of AI systems
should bear responsibility for any negative outcomes that result

from their use. This view emphasizes the importance of ensuring
that AI systems are designed with ethical considerations and

that developers are held accountable for any harm their
creations may cause.
Others argue that the responsibility for AI outcomes should
be shared among broader stakeholders, including
policymakers, regulators, and technology users. This
view highlights the importance of ensuring that AI
systems are used in ways that align with ethical principles
and that the risks associated with their use are carefully
evaluated and managed.
Another view is that AI systems are moral agents
responsible for their actions. This theory holds that

advanced AI systems can have agency and
autonomy, making them more than tools and

requiring them to be accountable for their own
acts, but there are various problems with this

theory.
AI systems can make judgments and act but

are not moral agents for multiple reasons.
First, AI systems lack consciousness and
subjective experiences, which are essential
for moral agency.
Moral agency usually involves reflecting
on one's ideals and actions. Second,
people train AI systems to follow specified
rules and goals, which limits their moral
judgment. AI systems can replicate moral
decision-making but lack free will and
personal autonomy.
Finally, AI system creators and deployers
are responsible for their acts. Thus, AI
systems can aid ethical decision-making
but are not moral agents.

304

Transparency and Explainability in AI and the
Black-Box Problem
The black-box problem in AI is the challenge of understanding how an
AI-based system makes decisions or produces outputs. This can make
it difficult to trust, explain, or improve the system. Lack of openness
and explainability might affect people's trust in the model. Medical
diagnosis and autonomous vehicle judgments can be especially
challenging. Biases in machine learning models are another black box
concern. The biases in the data these models are trained on can lead
to unfair or discriminating results.
Additionally, the accountability for decisions made by a black box
model can be difficult to determine. It can be challenging to hold
anyone responsible for those decisions, particularly with the need for
human oversight, such as in the case of autonomous weapons systems.
The lack of transparency in AI decision-making makes it challenging
to identify and fix problems with the model. It can be difficult to make
improvements and ensure it functions correctly without knowing how
the model makes its decisions. There are several strategies to
addressing the black box problem in AI.
One strategy is to use explainable AI techniques to make machine
learning models more transparent and interpretable. This can involve
techniques such as natural language explanations or visualizations to
aid in understanding the decision-making process. Another approach
is to use more interpretable machine learning models, such as decision
trees or linear regression. These models may be less complex and
easier to understand, but they may not be as powerful or accurate as
more complex models. Addressing the black box problem in AI is crucial
for building trust in machine learning models and ensuring they are
used ethically and fairly.

Black-Box System

A black-box system is one that does
not reveal its internal working
processes to humans. An input is
fed and an output is produced
without knowing how it works, as
depicted in figure 6.1.

Methods for Enhancing the Transparency and Explainability of AI Models

LIME
LIME (Local Interpretable Model-Agnostic Explanations), which you have used previously
for NLP tasks, is a technique that generates local explanations for individual predictions
made by a model. LIME creates a simpler, interpretable model approximating the complex
black-box model's behavior around a specific prediction. This simpler model is then used
to explain how the model arrived at its decision for that particular prediction. The advantage
of LIME is that it provides human-readable explanations that non-technical stakeholders
can easily understand, even for complex models like deep neural networks.

SHAP
SHAP (SHapley Additive exPlanations) is another method for explaining the output of
machine learning models. SHAP is based on the concept of Shapley values from game
theory and assigns a value (or weight) for each feature's contribution to the prediction.
SHAP can be used with any model, and it provides explanations in the form of feature
importance scores, which can help to identify which features are the most influential in
the model's output.

Input

Output

Black-Box
?

?

Output

Output

Figure 6.1: Black-Box System

305

Value-Based Reasoning

Value-based reasoning in AI
systems refers to the process
by which artificial intelligence
agents make decisions or
derive conclusions based on a
predefined set of values,
principles, or ethical
considerations.

Value-Based Reasoning in AI Systems
The goal is to create AI systems more aligned with human values and
ethics, ensuring that they act in beneficial, fair, and responsible ways.
The first step in value-based reasoning involves understanding and
representing ethical values within AI systems. These systems must
be capable of interpreting and internalizing values or ethical guidelines
provided by their human creators or stakeholders. This process may
involve learning from examples, human feedback, or explicit rules.
By clearly understanding these values, AI systems can better align
their actions with the desired ethical principles.

The second aspect of value-based reasoning focuses on evaluating decisions or actions based on
internalized values. AI systems must assess the potential outcomes of different decisions or actions
by considering each option's consequences, risks, and benefits. This evaluation process should consider
the underlying values the AI system has been designed to uphold, ensuring that it makes informed
and value-aligned choices.
Lastly, value-based reasoning requires AI systems to make decisions that align with established
values. After evaluating various options and their potential outcomes, the AI system should select
the decision or action that best reflects the ethical principles and goals it was designed to follow. By
making value-aligned decisions, AI agents can act in ways consistent with the ethical guidelines set
by their creators, promoting responsible and beneficial behavior. For example, AI systems are being
used in healthcare to assist with diagnosis and treatment decisions. These systems must be able to
reason about the ethical implications of different treatments, such as the potential side effects or the
impact on quality of life, and make decisions prioritizing patient well-being. Another example is AI
systems used in finance to assist with investment decisions.

Another technique for improving AI explainability such as decision trees and decision rules, which
are interpretable models that can be easily visualized. Decision trees partition the feature space based
on the most informative feature and provide explicit rules to make decisions. Decision trees are
particularly useful when the data is tabular and there are a limited number of features. However,
these models are also limited as the interpretability of the generated decision tree decreases with
the tree size. For example, it is difficult to understand trees consisting of thousands of nodes and
hundreds of levels.
Finally, another approach uses techniques such as sensitivity analysis to help understand how input
changes or assumptions can impact the model's output. This approach can be particularly useful in
identifying the sources of uncertainty in the model and in understanding the model's limitations.

Input OutputAI Model Predefined values

Figure 6.2: Representation of Value-Based Reasoning

306

These systems must be able to reason about the ethical implications of different investments, such
as the impact on the environment or social welfare, and make decisions that align with the investor's
values.
It is important to note that responsibility does not solely rely on the AI system, but rather a collaboration
between the AI and human experts. The AI system will assist in decision-making by summarizing the
case and presenting the tradeoffs to the user expert, who ultimately takes the final decision. This
ensures that the human expert retains control and is accountable for the final outcome, while also
benefiting from the insights and analysis provided by the AI system.

Potential risk or harm
However, there are also concerns about the environmental impact
of AI itself. The development and use of AI systems require significant
energy and resources, which can contribute to greenhouse gas
emissions and other environmental impacts. For example, training a
single AI model can require as much energy as several cars use in
their lifetimes. Additionally, producing electronic components in AI
systems can contribute to environmental pollution, such as using toxic
chemicals and generating electronic waste.
Moreover, AI can potentially change our relationship with the
environment in ways that are not always positive. For example, using
AI in agriculture may lead to more intensive and industrialized farming
practices, negatively impacting soil health and biodiversity. Similarly,
the use of AI in transportation may lead to more reliance on cars and
other modes of transportation, which can contribute to air pollution
and habitat destruction.

Conclusion
Overall, the impact of AI on the environment and our relation to the
environment depends on how we develop and use AI systems. It is
important to consider AI's potential environmental impacts and
develop and use AI systems in ways that prioritize sustainability,
efficiency, and the planet's health.

Figure 6.3: AI systems require
significant energy and resources

Figure 6.4: AI analyzing large amounts of data

AI and Environmental Impact
The impact of AI on the environment and our relation to
the environment is complex and multifaceted.

Potential benefits
On the one hand, AI has the potential to help us better
understand and address environmental challenges, such as
climate change, pollution, and biodiversity loss. AI can help
us in analyzing vast amounts of data and predict the impact
of different human activities on the environment. It can
also help in designing more efficient and sustainable
systems, such as energy grids, agriculture, transportation
systems, and buildings.

307

Regulatory Frameworks and Industry Standards
Regulatory frameworks and industry standards are critical in promoting ethical AI applications. Regulations
and standards can help ensure that organizations developing and using AI systems are accountable for their
actions. By setting clear expectations and consequences for non-compliance, regulations, and standards
can incentivize organizations to prioritize ethical considerations when developing and using AI systems.

Transparency
Regulations and standards can promote transparency in AI systems by requiring organizations to disclose
how their systems work and what data they use. This can help build trust with stakeholders and reduce
concerns about potential biases or discrimination in AI systems.

Risk assessment
The risk of unintended consequences or negative outcomes from using AI can also be reduced with appropriate
regulations and standards. By requiring organizations to conduct risk assessments. This means identifying
potential risks and hazards and implementing appropriate safeguards, regulations and standards can help
minimize potential harm to individuals and society.

Clear AI developing and deploying frameworks
Regulations and standards can also encourage innovation by providing a clear framework for developing
and using AI systems. Using regulations and standards to establish a level playing field and providing guidance
on ethical considerations, can help organizations develop and deploy AI systems in ways that are consistent
with ethical and social values.
Regulatory frameworks and industry standards are important in promoting ethical AI applications. By
providing clear guidance and incentives for organizations to prioritize ethical considerations, regulations
and standards, ensuring that AI systems are developed and used in ways that are aligned with social and
ethical values.

Sustainable AI Development in the Kingdom of Saudi Arabia
AI technologies and systems are expected to become a major disruptor in the
financial sectors of many countries and may significantly affect the job market.
It is predicted that in the coming years, about 70% of the routine work currently
performed by workers will be fully automated. The AI industry is expected to
create 97 million new jobs and add 16 trillion US dollars to global GDP.
The Saudi Data and Artificial Intelligence Authority (SDAIA) has developed
strategic goals for the Kingdom to use sustainable AI technologies for its
development. KSA will be a worldwide hub for Data & AI. They also hosted the
first Global AI summit in KSA, where global leaders and innovators can discuss
and shape AI's future for society's benefit. Another aim is to transform the
Kingdom's workforce by developing a local Data & AI talent supply. As AI is
transforming labor markets globally, most sectors need to adapt and integrate
Data & AI into education, professional training, and public knowledge. By doing
so, KSA can gain a competitive advantage in terms of employment, productivity,
and innovation.
The final goal is to attract companies and investors through flexible and stable regulatory frameworks
and incentives. Regulations will focus on developing policies and standards for AI, including ethical
use. The framework will promote and support ethical development of AI research and solutions while
providing data protection and privacy standards guidelines. This will provide stability and direction
for stakeholders operating in the Kingdom.

308

The Kingdom of Saudi Arabia plans to use AI systems and technologies
as the base of its NEOM and THE LINE megacity projects. The NEOM
project is a futuristic city that will be powered by clean energy, have
advanced transportation systems, and provide high-tech services.
It will be a platform for cutting-edge technologies, including AI, and
will use smart city solutions to optimize energy consumption, traffic
management, and other urban services. AI systems will be used to
enhance the quality of life for residents and to improve sustainability.
Similarly, THE LINE will be a linear, zero-carbon city built with AI
technologies. THE LINE will use AI systems to automate its infrastructure
and transportation systems, creating a seamless, efficient experience for
residents. The city will be powered by clean energy and will prioritize
sustainable living. AI-powered systems will be used to monitor and
optimize energy usage, traffic flow, and other urban services. Overall,
AI systems and technologies will play a crucial role in developing these
megacity projects, enabling them to become sustainable, efficient, and
innovative cities of the future.

Example

International AI Ethics Guidelines
As illustrated in the table below, UNESCO has developed a guideline document detailing the values
and principles with which new AI systems and technologies should be developed and maintained.

Table 6.2: Values and principles of AI ethics
Values Principles

• Respect, protection and promotion of human
dignity, human rights and fundamental
freedoms

• Environment and ecosystem flourishing

• Ensuring diversity and inclusiveness

• Living in harmony and peace

• Proportionality and doing no harm

• Safety and security

• Fairness and non-discrimination

• Sustainability

• Privacy

• Human oversight and determination

• Transparency and explainability

• Responsibility and accountability

• Awareness and literacy

• Multi-stakeholder and adaptive governance
and collaboration

309

2 	 	Describe	how	AI	and	automation	might	lead	to	job	displacement.

1

Read the sentences and tick True or False. True False

1. AI ethics is only concerned with the development of AI systems.

2. AI and automation have the potential to lead to job displacement.

3. A lack of diversity in AI development teams can lead to biases being
overlooked or unaddressed.

4. Incorporating ethical principles into AI systems can help ensure their
responsible development and use.

5. Human-in-the-loop design requires that AI systems work without any
human intervention.

6. The black box problem in AI refers to the difficulty in understanding how AI
algorithms arrive at their decisions or predictions.

7. AI models can be designed to adapt their decisions or outcomes according
to established ethical values.

8. The widespread use of AI only has positive implications on the
environment.

Exercises

310

3 Outline how biased training data can contribute to biased AI outcomes.

4 	 Define	the	black-box	problem	in	AI	systems.

5 	 	Compare	how	AI	systems	can	have	both	positive	and	negative	impact	on	the	environment.

311

Lesson 2

Applications of Robotics I

Revolutionizing the World with Robotics
Robotics is a rapidly growing field that is revolutionizing the way people work,
live, and interact with their environment. It has a wide range of applications,
from industrial manufacturing to space exploration, medical procedures to
home cleaning, and entertainment to military missions.
A key advantage of robotics is their ability to perform repetitive tasks with a
high degree of accuracy and precision. Robots can work tirelessly and without
error, making them ideal for tasks that are too dangerous or difficult for humans
to perform. For example, in the manufacturing industry, robots are used to
perform tasks such as welding, painting, and assembling products. In the
medical field, robots are used to perform surgeries with greater precision, and
in space exploration, robots are used to explore and study distant planets.

Figure 6.5: Simulation of industrial arms

Robotics

Robotics is the study of
robots, which are machines
that can perform a variety
of tasks autonomously,
semi-autonomously, or
under human control.

Robotics and Simulators
Two significant challenges in robotics include the cost and time required
to build and test physical robots; this is where simulators come in.
Simulators are widely used in robotics research, education, and industry, as
they provide a cost-effective and safe way to test and experiment with robots.
Simulators allow developers to create virtual environments that mimic
real-world scenarios, allowing them to test their robots' abilities and
performance in a variety of situations. They can simulate different
weather conditions, terrains, and obstacles that robots may encounter
in the real world. Simulators can also simulate the interactions between
multiple robots and between robots and humans, allowing developers to
study and refine the ways in which robots interact with their environment.

Simulator

Software that allows
developers to test and
refine their robot designs
and algorithms in a virtual
world before building
physical robots.

Link to digital lesson

312

Webots
Webots is a powerful software tool that can be used to simulate robots and their
environments and an excellent platform for introduction to the world of robotics
and artificial intelligence AI. With Webots, students can design, simulate, and test
their own robotic systems and algorithms without the need for expensive hardware.
Using Webots in AI is particularly useful because it allows students to experiment
with machine learning algorithms and test their performance in a simulated
environment. By creating virtual robots and environments, students can explore the
capabilities and limitations of AI, and learn how to program intelligent systems that
can make decisions based on real-time data.

Another advantage of simulators is that they allow developers to easily modify and test different
robot designs and algorithms without the need for expensive hardware. This allows for faster iteration
and experimentation, leading to faster development cycles and more efficient designs.
In general, robotics is a rapidly growing field with a wide range of applications and simulators which
play a crucial role in robotics development by allowing developers to test and refine their robot designs
and algorithms in a safe, cost-effective, and efficient way. As technology continues to advance, the
applications of robotics and the use of simulators are only expected to grow, paving the way for a
more automated and interconnected world.

Figure 6.6: A Webots drone project

You can download Webots from this link:
https://github.com/cyberbotics/webots/releases/download/R2023a/webots-R2023a_setup.exe

313

Area Surveillance
During this lesson and the next one, you will use Webots to
run a simulation of a drone patrolling over a house and you
will upgrade it to detect human silhouettes to act as surveillance.
The simulation consists of a drone taking off from rest on the
ground and commencing a patrol around the house. In the next
lesson, you will also be adding computer vision capabilities to
the drone using its camera with the OpenCV library. This will
make it possible to analyze images taken by the camera.
The drone is controlled through a Python script; it is responsible
for controlling all of the drone's devices, including the motors
of the propellers, camera, GPS (Global Positioning System), etc.
It also contains the code to synchronize all the motors to move
the drone to various waypoints and stabilize it in the air.

Starting with Webots
In this lesson, you will be introduced to Webots in order to become familiar with its environment.
Webots simulation consists of two components:

• The	definition	of	one	or	more	robots and their environments in a Webots world	file.
• One or more controller	programs	for	the	mentioned	robots.
A Webots world is a 3D description of a robot's attributes. Every object is defined, including its location,
orientation, geometry, appearance (such as color or brightness), physical characteristics, type, and
more. Objects can contain other objects in the hierarchical systems that make up worlds. A robot
might, for instance, have two wheels, a distance sensor, a joint that houses a camera, etc. A world
file just specifies the name of the controller that is necessary for each robot; it does not contain the
controller code for the robots. Worlds are saved in ".wbt" files. Each Webots project has a "worlds"
subdirectory where the ".wbt" files are stored.
A Webots controller is a computer program that controls a robot specified in a world file. Any of the
programming languages that Webots supports for controller development, such as C++ and Java, can
be used, however for this project, you will use Python (.py). Webots launches each of the given
controllers as a separate process when a simulation begins, and it associates the controller processes
with the simulated robots. Although several robots can share the same controller code, each robot
will run its own process. Each controller's source and binary files are stored together in a controller
directory. Each Webots project contains a controller directory under the "controllers" subdirectory.

The Webots Environment
When you open the program you will notice several fields and windows. The key components of the Webots
interface include:
Menu bar: Located at the top of the interface, the menu bar provides access to various commands and
options for working with the simulation, such as creating or importing a robot model, configuring the
simulation environment, and running simulations.
Toolbar: The toolbar is a collection of buttons located under the menu bar that provides quick access to
frequently used functions, such as adding objects to the scene, starting and stopping the simulation, and
changing the camera view.

Waypoint

Specific geographical location
in 3D space that a drone is
programmed to fly to and pass
through. They are used to
create predefined flight paths
for the drone to follow and can
be set using GPS coordinates
or other location-based
systems.

314

Scene tree: The scene tree is a hierarchical representation of the objects in the simulated environment.
It allows users to easily navigate and manipulate the scene, such as adding or deleting objects, changing
object properties, and grouping objects for easier management.
Field editor: The field editor is a graphical interface for editing the properties of objects in the simulated
environment. Users can use it to adjust object parameters such as position, orientation, size, material,
and physical properties.
3D window: The 3D window is the main view of the simulated environment, showing the objects and
their interactions in a 3D space. Users can navigate the 3D window using various camera controls,
such as pan, zoom, and rotate.
Text editor: The text editor is a tool for editing source code or other text-based files used in the
simulation. It provides syntax highlighting and other helpful features for writing and debugging code,
such as auto-completion and error highlighting.
Console: The console is a window that displays text-based output from the simulation, including error
messages and debugging information. It is useful for troubleshooting problems that may arise during
the simulation.

Figure 6.7: The Webots window

Menu bar Toolbar Text editor

3D window

Console

Field editor

Scene tree

315

1

2

3

4

5

To install OpenCV:

 > On PyCharm window, click on Packages. 1

 > Type opencv to the search bar. 2

 > Select opencv-python 3 and click Install. 4

 > A	message	will	inform	you	that	the	installation	is	done.	 5

First, you have to install the necessary libraries you will use in your
project. To install the OpenCV library via PyCharm:

Likewise, you can install the Pillow
library, by searching for "pillow".

Figure 6.8: Installing OpenCV

316

To open a Webots world:

 > Click File > Open World... from the Menu bar. 1

 > Find the drone_world.wbt	file	in	the	worlds
directory 2 and open it. 3

1

Let's take a look at the project! First you will have to find and load the Webots world file:

Figure 6.9: Opening a Webots world

2

3

317

To open a controller script:

 > Click File > Open Text File... from the Menu bar. 1

 > Find the drone_controller.py	file	in	the	controllers,
drone_controller directory 2 and open it. 3

1

Next open the Python script file that will be used to control the drone:

Figure 6.10: Opening a Webots controller script

3

2

Object Position and Rotation
X, Y, and Z are three-dimensional coordinates used to represent the position of an object in space. X represents
the horizontal axis, Y represents the vertical axis, and Z represents the depth axis. They are similar to the
real world coordinates of latitude, longitude and altitude, used to describe a location on Earth.
Pitch, roll, and yaw are rotational orientations that can be used to describe the movement of an object
relative to a reference frame, as shown in figure 6.11. Pitch is the rotation of an object around its X-axis,
which tilts the object up or down relative to a horizontal plane. Roll is the rotation of an object around its
Y-axis, which tilts the object sideways or from side to side. Yaw is the rotation of an object around its Z-axis,
which turns the object left or right relative to a reference frame.
Together, these six values (X, Y, Z, pitch, roll, and yaw) can be used to describe the position and orientation
of an object in three-dimensional space. They are commonly used in robotics, navigation systems, and other
applications that require precise positioning and control.

318

Drone Devices
The drone is equipped with several sensors,
allowing it to collect input from its environment.
getDevice() and enable() are functions provided by
the simulator to interface with various sensors and
actuators of a simulated robot.

The getDevice() function is used to get readings
from a device, such as a sensor or an actuator, from
the Webots robot model. It takes a string argument
that specifies the name of the device to be accessed.
The enable() function is used to activate a device
so that it can start providing data or performing an
action.

Figure 6.11: Rotational axes

Pitch Axis

Roll Axis Yaw Axis

The IMU (Inertial Measurement Unit) can measure the drone's linear
acceleration and angular velocity; it measures forces such as gravity, in
addition to the rotational forces acting on the drone. It can provide
information about the drone's attitude (pitch, roll, and yaw), which is
critical for stabilization and control.
The GPS (Global Positioning System) is a satellite-based navigation system
that provides precise location information to the drone. GPS enables the
drone to know its current position, altitude, and velocity relative to the
earth. This information is important for drone navigation and control.

Sensors are devices that detect physical quantities or environmental
conditions and measure it, and convert them into an electrical signal

for monitoring or control.

Actuators are devices that convert electrical signals into mechanical
motion to perform a specific action or task.

In contrast to linear speed, which measures the distance traveled in
unit time, angular speed is a measure of the change in the central

angle of a rotating object with respect to time. It is usually measured
in radians per second (rad/s) or degrees per second (°/s).

Camera
IMU

GPS
Gyroscope

Figure 6.12: Drone with
sensors and camera

319

Moving to a Target
To move from one location to the other, the drone uses the move_to_target() function; it contains
the control logic. It takes a list of coordinates as argument, in the form of pairs [x, y], to be used as
waypoints.
At first, it checks if the target position has been initialized, and if not, sets it to the first waypoint.
Then, it checks if the drone has reached the target position with a precision of target_precision and
if so, the function proceeds to the next target waypoint.
The angle between the current position of the drone and its target position has to be computed, in
order to know how sharp it has to turn in the next step. This value is also normalized to the range of
[-π, π].
Next, it computes the yaw and pitch disturbances required to turn the drone towards the target
waypoint and adjust the drone's pitch angle, respectively.

Motor Calculations
Lastly, the velocity that has to be set to the motors must be calculated. This is done by initially reading
the sensor values: the roll, pitch and yaw from the IMU, and getting values of the x, y and z positions
from the GPS while getting values of the roll and pitch accelerations from the gyroscope.
The various constants defined early in the code are used to make calculations and adjustments in
conjunction with the sensor inputs and finally the correct thrust is set.

By controlling the speed and direction of these four propellers, the quadcopter can move in any
direction and maintain stable flight. For example, by increasing the speed of the two rotors on one side

and decreasing the speed of the other two rotors, the drone can tilt and move in a specific direction.

INFORMATION

The gyroscope is a sensor that measures angular velocity, or the rate of rotation around a specific
axis. The gyroscope is especially useful in detecting and correcting small changes in the drone's
orientation, which is important for maintaining stability and control during flight.
The drone's camera will be used to capture images during flight. It can be mounted on the drone and
by adjusting the camera pitch angle with the setPosition() function, the drone can capture images
from different perspectives and angles. In this project, the position is set to 0.7, which is about 45
degrees looking downwards.

The drone's four propeller devices are actuators that
control the rotational speed and direction of the quadcopter.
Quadcopters are drones that are equipped with four rotors,
with two rotors rotating clockwise and the other two
rotating counterclockwise. The rotation of these rotors
generates lift and allows the drone to take off and maneuver
in the air. Just like the rest of the devices, the motors are
retrieved and set into position but the setVelocity() function
is also used to set an initial velocity to the propellers.

Figure 6.13: Four propeller drone device

Propellers

320

from controller import Robot
import numpy as np # used for mathematic operations
import os # used for folder creation
import cv2 # used for image manipulation and human detection
from PIL import Image # used for image object creation
from datetime import datetime # used for date and time

auxiliary function used for calculations
def clamp(value, value_min, value_max):
 return min(max(value, value_min), value_max)

class Mavic (Robot):

 # constants of the drone used for flight
 # thrust for the drone to lift
 K_VERTICAL_THRUST = 68.5
 # vertical offset the drone uses as targets for stabilization
 K_VERTICAL_OFFSET = 0.6
 K_VERTICAL_P = 3.0 # P constant of the vertical PID
 K_ROLL_P = 50.0 # P constant of the roll PID
 K_PITCH_P = 30.0 # P constant of the pitch PID

 MAX_YAW_DISTURBANCE = 0.4
 MAX_PITCH_DISTURBANCE = -1
 # precision between the target position and the drone position in meters
 target_precision = 0.5

 def __init__(self):
 # initializes the drone and sets the time interval between updates of the simulation
 Robot.__init__(self)
 self.time_step = int(self.getBasicTimeStep())

 # gets and enables devices
 self.camera = self.getDevice("camera")
 self.camera.enable(self.time_step)

 self.imu = self.getDevice("inertial unit")
 self.imu.enable(self.time_step)

 self.gps = self.getDevice("gps")
 self.gps.enable(self.time_step)

 self.gyro = self.getDevice("gyro")
 self.gyro.enable(self.time_step)

 self.camera_pitch_motor = self.getDevice("camera pitch")
 self.camera_pitch_motor.setPosition(0.7)

 self.front_left_motor = self.getDevice("front left propeller")
 self.front_right_motor = self.getDevice("front right propeller")
 self.rear_left_motor = self.getDevice("rear left propeller")
 self.rear_right_motor = self.getDevice("rear right propeller")
 motors = [self.front_left_motor, self.front_right_motor,
 self.rear_left_motor, self.rear_right_motor]
 for motor in motors: # mass initialization of the four motors
 motor.setPosition(float('inf'))
 motor.setVelocity(1)

Imports of libraries needed
for calculations and processing

Constants found
empirically used in

calculations for flight
and stabilization

The controller library
contains the Robot class,
whose methods will be

used to control the drone.

321

 self.current_pose = 6 * [0] # X, Y, Z, yaw, pitch, roll
 self.target_position = [0, 0, 0]
 self.target_index = 0
 self.target_altitude = 0

 def move_to_target(self, waypoints):

 # Moves the drone to the given coordinates
 # Parameters:
 # waypoints (list): list of X,Y coordinates
 # Returns:
 # yaw_disturbance (float): yaw disturbance (negative value to go on the right)
 # pitch_disturbance (float): pitch disturbance (negative value to go forward)

 if self.target_position[0:2] == [0, 0]: # initialization
 self.target_position[0:2] = waypoints[0]

 # if the drone is at the position with a precision of target_precision
 if all([abs(x1 - x2) < self.target_precision for (x1, x2)
 in zip(self.target_position, self.current_pose[0:2])]):

 self.target_index += 1
 if self.target_index > len(waypoints) - 1:
 self.target_index = 0
 self.target_position[0:2] = waypoints[self.target_index]

 # computes the angle between the current position of the drone and its target position
 # and normalizes the resulting angle to be within the range of [-pi, pi]
 self.target_position[2] = np.arctan2(
 self.target_position[1] - self.current_pose[1],
 self.target_position[0] - self.current_pose[0])
 angle_left = self.target_position[2] - self.current_pose[5]
 angle_left = (angle_left + 2 * np.pi) % (2 * np.pi)
 if (angle_left > np.pi):
 angle_left -= 2 * np.pi

 # turns the drone to the left or to the right according to the value
 # and the sign of angle_left and adjusts pitch_disturbance
 yaw_disturbance = self.MAX_YAW_DISTURBANCE * angle_left / (2 * np.pi)
 pitch_disturbance = clamp(
 np.log10(abs(angle_left)), self.MAX_PITCH_DISTURBANCE, 0.1)

 return yaw_disturbance, pitch_disturbance

 def run(self):

 # time intevals used for adjustments in order to reach the target altitude
 t1 = self.getTime()

 roll_disturbance = 0
 pitch_disturbance = 0
 yaw_disturbance = 0

Initialization of the drone's
position (x, y, z) and

rotation (roll, pitch, yaw)

322

 # specifies the patrol coordinates
 waypoints = [[-30, 20], [-60, 30], [-75, 0], [-40, -10]]
 # target altitude of the drone in meters
 self.target_altitude = 8

 while self.step(self.time_step) != -1:

 # reads sensors
 roll, pitch, yaw = self.imu.getRollPitchYaw()
 x_pos, y_pos, altitude = self.gps.getValues()
 roll_acceleration, pitch_acceleration, _ = self.gyro.getValues()
 self.current_pose = [x_pos, y_pos, altitude, roll, pitch, yaw]

 if altitude > self.target_altitude - 1:
 # as soon as it reaches the target altitude,
 # computes the disturbances to go to the given waypoints
 if self.getTime() - t1 > 0.1:
 yaw_disturbance, pitch_disturbance = self.move_to_target(
 waypoints)
 t1 = self.getTime()

 # calculates the desired input values for roll, pitch, yaw,
 # and altitude using various constants and disturbance values
 roll_input = self.K_ROLL_P * clamp(roll, -1, 1) +
 roll_acceleration + roll_disturbance
 pitch_input = self.K_PITCH_P * clamp(pitch, -1, 1) +
 pitch_acceleration + pitch_disturbance
 yaw_input = yaw_disturbance
 clamped_difference_altitude = clamp(self.target_altitude -
 altitude + self.K_VERTICAL_OFFSET, -1, 1)
 vertical_input = self.K_VERTICAL_P *
 pow(clamped_difference_altitude, 3.0)

 # calculates the motors' input values based on the
 # desired roll, pitch, yaw, and altitude values
 front_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
 - yaw_input + pitch_input - roll_input
 front_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
 + yaw_input + pitch_input + roll_input
 rear_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
 + yaw_input - pitch_input - roll_input
 rear_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
 - yaw_input - pitch_input + roll_input

 # sets the velocity of each motor based on the motors' input values calculated above
 self.front_left_motor.setVelocity(front_left_motor_input)
 self.front_right_motor.setVelocity(-front_right_motor_input)
 self.rear_left_motor.setVelocity(-rear_left_motor_input)
 self.rear_right_motor.setVelocity(rear_right_motor_input)

robot = Mavic()
robot.run()

The waypoints of the route
the drone will be flying

323

To insert a controller and run the simulation:

 > Click Mavic2Pro "Mavic 2 Pro" in the Scene tree 1 and click
controller "mavic2pro". 2

 > Click Select... in the Field editor. 3

 > Select drone_controller 4 and click OK. 5

 > Click Run the simulation in real-time from the Toolbar. 6

Now it's time to insert the script into the drone and run the simulation:

When making changes to your
scripts, do not forget to save

them by pressing Ctrl + S.

Figure 6.14: Inserting the controller script and running the simulation

5

3

6

4

2

1

324

When you start the simulation, the drone's motors will power up and it will take off. Then it will follow
the predeterminded route around the house, passing through the waypoints.

Figure 6.15: The drone taking off

Human objects have been
pre-positioned in the Webots
environment, to serve as your

detection objective.

325

1 	 	Analyze	the	move_to_target()	function	and	explain	how	the	drone	calculates	its	next	
position	in	the	waypoints	list.	How	can	the	drone's	trajectory	be	optimized	to	minimize	
flight	time	between	the	waypoints?

Exercises

2 	 	Evaluate	the	limitations	of	the	current	drone	control	algorithm	when	faced	with	external	
factors such as wind, obstacles, or GPS inaccuracies. Propose and discuss improvements
to the control algorithm that would make the drone more resilient to these challenges.

326

4 	 	Add	a	feature	that	logs	the	drone's	position,	altitude,	and	orientation	at	regular	intervals	
during	its	flight.	Write	down	any	patterns	that	you	may	find	in	the	log	data.

3 	 	Explore	the	ethical	implications	of	autonomous	aerial	drones	in	real-world	applications,	
such	as	surveillance,	package	delivery,	and	search-and-rescue	operations.	Write	down	
potential	privacy	concerns,	safety	issues,	and	the	potential	for	misuse	of	this	technology.

5 	 	Experiment	with	different	 values	 for	 the	PID	 controller	 constants	 (K_VERTICAL_P,	
K_ROLL_P,	and	K_PITCH_P).	Observe	how	these	changes	affect	the	drone's	stability	and	
responsiveness.	Discuss	the	trade-offs	between	stability	and	responsiveness.

327

Lesson 3

Applications of Robotics II

Robotics, Computer Vision and AI
Computer vision and robotics are two cutting-edge fields of technology that together are rapidly changing
the way people live and work. When combined, they open up a vast array of possibilities for automation,
manufacturing, and developing other applications.
AI is a key component of both computer vision and robotics, enabling machines to learn and adapt to their
environment over time. By using AI algorithms, robots can analyze and interpret vast amounts of visual data,
allowing them to make decisions and take actions in real time. AI also enables robots to improve their
performance and accuracy over time, as they learn from their experiences and adjust their behavior
accordingly. This means that robots with computer vision and AI capabilities can perform increasingly complex
tasks with greater efficiency and accuracy.

In this lesson, you will upgrade the initial drone project from the previous lesson to use computer
vision in order to detect human figures near the house. These figures can be perceived as hostile in
a real life scenario and the drone, using its camera, acts as surveillance system. This example can
easily be applied and implemented to various other buildings, infrastructure, private and company
properties, such as factories and energy plants.
To detect the human figures, you will be using the OpenCV
library for Python. OpenCV (Open Source Computer Vision
Library) is an open-source computer vision library that
provides a range of computer vision and image processing
algorithms as well as a set of programming tools for
developing applications in these areas.
OpenCV can be used in robotics for tasks such as object detection and tracking, 3D reconstruction,
and navigation. Its features also include object detection and recognition, face detection and
recognition, image and video processing, camera calibration, machine learning, and more.
OpenCV is widely used in research and development projects in fields such as robotics, automation,
surveillance, and medical imaging. It is also used in commercial applications such as face recognition,
video surveillance, and augmented reality.

Link to digital lesson

Figure 6.16: Real-time Humans detection

328

Let's take a look at the changes you will be making to add computer vision functionalities to your drone.

Adding a Timer
Capturing, processing and saving an image can be computationally expensive if calculated for every
frame of the simulation. This is why you will be adding a timer that will be used so these actions are
only performed every 5 seconds.

Creating a Folder
The captured images in which human figures are detected will be saved in a folder. This is done as
part of the security surveillance archive, so the images can be examined in the future.
First you must retrieve, with the getcwd() function, the path of the controller's current working
directory (the folder the controller is in) in order for the program to know where to place the new
folder. The new folder is named "detected" and the path's name is concatenated with the folder's
name string with the path.join() function. The last step is to check whether the folder already exists
and if not, the folder is created.

gets the current working directory
cwd = os.getcwd()
sets the name of the folder where the images
with detected humans will be stored
folder_name = "detected"
joins the current working directory and the new folder name
folder_path = os.path.join(cwd, folder_name)

if not os.path.exists(folder_path):
creates the folder if it doesn't exist already
 os.makedirs(folder_path)
 print(f"Folder \"detected\" created!")
else:
 print(f"Folder \"detected\" already exists!")

Image Processing
Now it is time to retrieve (read) the image from the device so as to process it before attempting
detection. Notice that everything related to the image processing and up to its saving happens only
every 5 seconds as it is inside the "self.getTime() - t2 > 5.0" condition.

initiates the image processing and detection routine every 5 seconds
if self.getTime() - t2 > 5.0:

 # retrieves image array from camera
 cameraImg = self.camera.getImageArray()

time intervals used for adjustments in order to reach the target altitude
t1 = self.getTime()
time intervals between each detection for human figures
t2 = self.getTime()

329

After the image is checked that it was retrieved successfully, the algorithm proceeds to modify some
properties of the image. The image is 3-dimensional; it has dimensions of height, width and the color
channels. The drone's camera captures images of 240 pixels in height and 400 pixels in width. It also
uses 3-color channels to save the image information: red, green and blue.
In order to be used for detection, the image has to be manipulated first. For the functions to be
applied properly later, it has to fit a particular structure. In this case, the sequence of the dimensions
has to change from (height, width, color channels) to (color channels, height, width) by using the
transpose() function. This function is given as arguments the camera image cameraImg and the new
sequence (2, 0, 1), assuming the original order was (0, 1, 2).
The dimension sizes have to be adjusted too after the change in sequence. The reshape() function is
used in the same manner, but with the respective dimension sizes (3, 240, 400) as the second argument.

 # reshapes image array to (channels, height, width) format
 cameraImg = np.transpose(cameraImg, (2, 0, 1))
 cameraImg = np.reshape(cameraImg, (3, 240, 400))

Figure 6.17: The dimensions' sequence change

Figure 6.18: The dimensions of the image

400

400

24
0

24
0

Original color image RGB matrix

color channelswidth

height

3

height 240 width 400color channels 3

1

1

0

0

2

2

height 240 width 400 color channels 3

330

Next, the image has to be changed into grayscale, as needed by the detection, but before that it must
be stored in an Image object and have its 3 color channels combined. Here the color channels have
to be merged and stored with the merge() function in reverse sequence, meaning in BGR (Blue, Green,
Red) instead of RGB (Red, Green, Blue), (2, 1, 0) instead of (0, 1, 2) respectively.

 # creates RGB image from merged channels
 img = Image.new('RGB', (400, 240))
 img = cv2.merge((cameraImg[2], cameraImg[1], cameraImg[0]))

Human Silhouette Detection
For the detection, you will use the Haar Cascade classifier. The Haar Cascade classifier is a machine
learning-based object detection algorithm used to identify objects in images or videos. To use it, you
need to train a machine learning model with a set of images that have the object you want to find,
and others that do not. The algorithm looks for certain patterns in the pictures to determine where
the object is. This algorithm is often used to find things like faces or people walking in a video. However,
it might not work well in some situations where the object is partially/fully occluded or exposed to
low illumination.
The classifier in your project is particularly trained for human detection. The haarcascade_fullbody.
xml file provided to you is the pre-trained machine learning model you will use and part of the OpenCV
library. It is given as argument to the CascadeClassifier() object and the function detectMultiScale()
is called after to perform the detection.

 # loads and applies the Haar cascade classifier to detect humans in image
 human_cascade = cv2.CascadeClassifier('haarcascade_fullbody.xml')
 humans = human_cascade.detectMultiScale(gray)

Figure 6.19: An example of human silhouette detection

Finally, the image is converted to grayscale with the cvtColor() function using the COLOR_BGR2GRAY
argument, to change from BGR to grayscale.

 # converts image to grayscale
 gray = cv2.cvtColor(np.uint8(img), cv2.COLOR_BGR2GRAY)

original image extracted silhouette

331

 # loop, through detected human images, annotates them with a bounding box
 # and prints a timestamp and an info message on the console
 for (x, y, w, h) in humans:

 # the image, the top left corner, the bottom right corner, color and width of the rectangle
 cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
 current_time = datetime.now()
 print(current_time)
 print("Found a person in coordinates [{:.2f}, {:.2f}]"
 .format(x_pos, y_pos))

 # saves annotated image to file with timestamp
 current_time = current_time.strftime("%Y-%m-%d_%H-%M-%S")
 filename = f"detected/IMAGE_{current_time}.png"
 cv2.imwrite(filename, img)

 t2 = self.getTime()

Drone Report and Saving of the Detected Images
The final addition to your controller is a simple report
system given by the drone in the form of printing a message
on the console when a human form is detected and saving
the image to the folder you created before.
The variable humans holds the rectangles (bounding boxes)
inside which humans are detected, if they are found. The
rectangles are defined by 4 variables: the pair of x and y,
the two coordinates in the picture of the top left corner of
the rectangle, and the pair of w and h, the width and height
of the rectangle. For all detections found in the image, the
function rectangle() marks the humans with a blue
rectangle. The function takes as parameters the image, the
top left corner (x, y) and bottom right corner (x+w, y+h)
of the rectangle, and the rectangle's color and its width.
Here, the rectangle is blue (B=255, G=0, R=0) and its width
is 2.
The report system will retrieve the current date and time
by using the datetime.now() function and print it on the
console, along with the drone's coordinates at the time of
the report.
The date and time format is slightly modified by inserting
dashes (-) and undersores (_) to be used as part of saved file's name and then saved in the folder with
the function imwrite(). When everything is completed, the getTime() function resets the timer.

Figure 6.20: The variables of the rectangle

w

h

(x, y)

(x+w, y+h)

In a string, the notation {:.2f} is used as a
placeholder for a floating-point number with

two decimal places. Here, two placeholders are
used for the two variables, x_pos and y_pos.

332

def run(self):

 # time intervals used for adjustments in order to reach the target altitude
 t1 = self.getTime()
 # time intervals between each detection for human figures
 t2 = self.getTime()

 roll_disturbance = 0
 pitch_disturbance = 0
 yaw_disturbance = 0

 # specifies the patrol coordinates
 waypoints = [[-30, 20], [-60, 30], [-75, 0], [-40, -10]]
 # target altitude of the drone in meters
 self.target_altitude = 8

 # gets the current working directory
 cwd = os.getcwd()
 # sets the name of the folder where the images
 # with detected humans will be stored
 folder_name = "detected"
 # joins the current working directory and the new folder name
 folder_path = os.path.join(cwd, folder_name)

 if not os.path.exists(folder_path):
 # creates the folder if it doesn't exist already
 os.makedirs(folder_path)
 print(f"Folder \"detected\" created!")
 else:
 print(f"Folder \"detected\" already exists!")

 while self.step(self.time_step) != -1:

 # reads sensors
 roll, pitch, yaw = self.imu.getRollPitchYaw()
 x_pos, y_pos, altitude = self.gps.getValues()
 roll_acceleration, pitch_acceleration, _ = self.gyro.getValues()
 self.current_pose = [x_pos, y_pos, altitude, roll, pitch, yaw]

 if altitude > self.target_altitude - 1:
 # as soon as it reaches the target altitude,
 # computes the disturbances to go to the given waypoints
 if self.getTime() - t1 > 0.1:
 yaw_disturbance, pitch_disturbance = self.move_to_target(
 waypoints)
 t1 = self.getTime()

 # initiates the image processing and detection routine every 5 seconds
 if self.getTime() - t2 > 5.0:

 # retrieves image array from camera
 cameraImg = self.camera.getImageArray()

 # checks if image is successfully retrieved
 if cameraImg:

After adding all these functionalities, the run() function of your controller should look like this:

333

 # reshapes image array to (channels, height, width) format
 cameraImg = np.transpose(cameraImg, (2, 0, 1))
 cameraImg = np.reshape(cameraImg, (3, 240, 400))

 # creates RGB image from merged channels
 img = Image.new('RGB', (400, 240))
 img = cv2.merge((cameraImg[2], cameraImg[1], cameraImg[0]))

 # converts image to grayscale
 gray = cv2.cvtColor(np.uint8(img), cv2.COLOR_BGR2GRAY)

 # loads and applies the Haar cascade classifier to detect humans in image
 human_cascade = cv2.CascadeClassifier('haarcascade_fullbody.xml')
 humans = human_cascade.detectMultiScale(gray)

 # loop, through detected human images, annotates them with a bounding box
 # and prints a timestamp and an info message on the console
 for (x, y, w, h) in humans:

 cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
 current_time = datetime.now()
 print(current_time)
 print("Found a person in coordinates [{:.2f}, {:.2f}]"
 .format(x_pos, y_pos))

 # saves annotated image to file with timestamp
 current_time = current_time.strftime("%Y-%m-%d_%H-%M-%S")
 filename = f"detected/IMAGE_{current_time}.png"
 cv2.imwrite(filename, img)

 t2 = self.getTime()

 # calculates the desired input values for roll, pitch, yaw,
 # and altitude using various constants and disturbance values
 roll_input = self.K_ROLL_P * clamp(roll, -1, 1)
 + roll_acceleration + roll_disturbance
 pitch_input = self.K_PITCH_P * clamp(pitch, -1, 1)
 + pitch_acceleration + pitch_disturbance
 yaw_input = yaw_disturbance
 clamped_difference_altitude = clamp(self.target_altitude
 - altitude + self.K_VERTICAL_OFFSET, -1, 1)
 vertical_input = self.K_VERTICAL_P * pow(clamped_difference_altitude, 3.0)

 # calculates the motors' input values based on the desired roll, pitch, yaw, and altitude values
 front_left_motor_input = self.K_VERTICAL_THRUST
 + vertical_input - yaw_input + pitch_input - roll_input
 front_right_motor_input = self.K_VERTICAL_THRUST
 + vertical_input + yaw_input + pitch_input + roll_input
 rear_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
 + yaw_input - pitch_input - roll_input
 rear_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
 - yaw_input - pitch_input + roll_input

 # sets the velocity of each motor based on the motors' input values calculated above
 self.front_left_motor.setVelocity(front_left_motor_input)
 self.front_right_motor.setVelocity(-front_right_motor_input)
 self.rear_left_motor.setVelocity(-rear_left_motor_input)
 self.rear_right_motor.setVelocity(rear_right_motor_input)

334

Now, run the simulation to see your drone taking off and patroling around the house. Notice the new
console outputs and the images created in the folder.

Figure 6.21: Console outputs

Figure 6.22: Folder creation and images saved containing detections

The folder has
been created.

335

1 Modify your controller to not check if the folder already exists in the path. Does it create
any	complications	in	the	execution	of	the	simulation?	

Exercises

2 	 	Modify	your	controller	to	perform	a	detection	every	10	seconds.	Do	you	notice	any	
difference	in	the	frequency	of	the	console	prints	and	the	images	saved?

336

4 	 	Experiment	with	the	fourth	and	fifth	arguments	of	the	rectangle()	function.	Write	down	
your	observations	below.

5 	 	Modify	your	controller	to	also	print	the	drone’s	roll,	pitch	and	yaw	values	when	detecting	
a person.

3 What would happen to the image output if you merged the color dimensions in the
normal	sequence	instead	of	the	reversed	one?	Write	down	your	observations	below.

337

Project

Nowadays there are numerous large scale AI integration projects
being developed for various industries and sectors of a country. One
of the most important adopters of AI technologies is the healthcare
industry. But this also means that projects in this industry need to
be developed with the consideration of AI ethics.

Research existing AI-powered healthcare systems and their ethical
implications and Identify the potential benefits and risks of
implementing an AI-powered IT system in a healthcare setting.

1

Analyze the ethical concerns that arise when using AI to make
decisions that impact patient health outcomes and develop a set of
ethical guidelines for the use of AI in a healthcare system that
prioritize patient safety and well-being.

2

Create a presentation that outlines the proposed ethical guidelines
and the reasoning behind them, present the guidelines to the class,
and engage in a discussion on the merits and challenges of the
proposed guidelines.

3

338

Wrap up

Now you have learned to:
> Provide an overview of AI ethics.
> Examine how bias and lack of fairness can lead to misuse

of AI systems.
> Outline the methods to mitigate the transparency and

explainability problem in AI.
> Evaluate how government regulations and standards guide

the ethical and sustainable use of AI systems.
> Program an aerial drone to move through an environment

without human intervention.
> Modify an aerial drone's system to include surveillance

capabilities through image analysis.

AI Ethics

Bias

Black-Box Problem

Debiasing

Drone Surveillance

GPS
(Global Positioning

System)

Gyroscope

Human Detection

IMU
(Inertial Measurement

Unit)

Motor

OpenCV

Pitch

Propeller

Robotics

Roll

Simulator

Value-Based Reasoning

Yaw

KEY TERMS

339

