VISION d__Jd) Seo,, o00®

Qrgswlldpy)l dAlooll

il il ajlj
KINGDOM OF SAUDI ARABIA - J Jq

_ Ministry of Education

aduabi|a3u] [ePyIY

.
L
— | .
: L
=
o
s i
Dear student o
There are significant efforts behind the completion of N
this book, in the process of its preparation, review, and 4 .
development, and there are funds spent to print it and §
deliver it to you, to support your learning and your S L
scientific and moral advancement, so, try to be faithful =
to this effort, appreciating it by preserving your book. 9 g
Q =
Q
o
" o, -
)
-+
S
s
)
<
0
)
<
ﬂ &
(1) - 2 «
3 Or
, i
- &

§ oege o °

: Artificial Intelligence
“nllfll"I e oo Dep?sit number: 1444/10749 E
TALEMIA ISBN: 978-603-511-481-3 %

g.

=

o il aylyjg

Third year A
g 14ds SChOOk o 1444 - 2023 Edition y I

Secondary stage - Pathways system binarylogic

Quranic verses ‘ . | preserve it

/4

®
l
o

Hadiths
Of the Prophet

‘ | don’t throw it away

National information

‘ I hand it over to
and knowledge school after exams

ot 2y
ey
Thed
Seconday fss

w

#Respect-the-textbook

Preserving your book is evidence of your awareness

pul il ajljg

Ministry of Education

2023 - 1445

(]] (bt 3139 £ g

i ’ Aagsull dupsIl dAlooll
(it (g Al § S| pul il ajljg

Artificial Intelligence

Secondary stage - Pathways system

Second year

pul il ajljg
Ministry of Education

202‘@1§1Q%%k is distributed freely and cannot be sold. 1444 - 2023 Edition

Publisher: Tatweer Company for Educational Services

Published under a special agreement between Binary Logic SA and Tatweer Education Services Company
(Contract No. 0003/2022) for use only in the Kingdom of Saudi Arabia

Copyright © 2023 Binary Logic SA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without permission in writing from the publishers.

Please note: This book contains links to websites that are not maintained by Binary Logic. Although
we make every effort to ensure these links are accurate, up-to-date and appropriate, Binary Logic
cannot take responsibility for the content of any external websites.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. Binary
Logic disclaims any affiliation, sponsorship, or endorsement by the respective trademark owners.
Tinkercad is a registered trademark of Autodesk Inc. “Python” and the Python logos are registered
trademarks of Python Software Foundation. Jupyter is a registered trademark of Project Jupyter.
CupCarbon is a registered trademark of CupCarbon. Arduino is a registered trademark of Arduino SA.

The above companies or organizations do not sponsor, authorize, or endorse this book.

The publisher has made every effort to trace all copyright holders, but if they have inadvertently
overlooked any they will be pleased to make the necessary arrangements at the first opportunity.

&9 binarylogic

1l a)ljg
Ministry of Education
2023 - 1445

© Miinistry of Education, 2023

: King Fahd National Library Cataloging-in-Publication Data b
Ministry of Education
Artificial Intelligence / Ministry of Education
Riyadh, 2023
346p.; 210*25.5cm
ISBN:
1- Artificial Intelligence 2- Curriculum [-Title
006.3 dc 1444/10749
- J

L.D. no.: 1444/10749
ISBN: 978-603-511-481-3

Educational Support Materials at “iEN Ethraia Platform”

ien.edu.sa

-

_

Dear students, parents and anyone interested in education, we welcome your
communication to improve our textbooks. Your suggestions are our top priorities.

fb.ien.edu.sa

~

)

-

Dear teachers and educational supervisors, we appreciate your participation in developing
the new textbooks. Your input will have a definite impact on supporting and improving the
educational process for our students.
cetle. Lettee i
oo.:°.°.°:.oo E 'E
pul il a)jljg [w] s
Mingg of Education fb.ien.edu.sa/BE

~

2023 =1445

Introduction:

The progress and development of countries is measured by the ability to invest in education, and the
extent to which their educational system responds to the requirements and changes of the generations.
Inthe interest of the Ministry of Education sustaining the development of its educational systems, and
in response to the vision of the Kingdom of Saudi Arabia 2030, the Ministry of education has taken
the initiative to adopt the “Secondary Education Pathways” system to bring about an effective and
comprehensive change in high school.

The secondary education pathways system provides a distinguished and modern educational model
for high school in the Kingdom of Saudi Arabia, which efficiently contributes to:

e Strengthening the values of belonging to our homeland “the Kingdom of Saudi Arabia” and loyalty
to its wise leadership “may God protect him” based on a pure belief supported by the tolerant
teachings of Islam.

e Strengthening the values of citizenship by focusing on them in school subjects and activities, in line
with the demands of sustainable development, and the development plans in the Kingdom of Saudi
Arabia that emphasize the consolidation of both values and identity, based on the teachings of
Islam and its moderation.

¢ Qualifying students in line with future specializations in universities or the required jobs; ensuring
the consistency of education outputs with the labor market requirements.

e Enabling students to pursue education in their preferred path at early stages, according to their
interests and abilities.

¢ Enabling students to join specific scientific and administrative disciplines related to the labor market
and future jobs.

e Participation of students in an enjoyable and encouraging learning environment in school based on
a constructive philosophy and applied practices within an active learning environment.

o Delivering students through an integrated educational journey from the primary level to the end
of the high school level and facilitating their transition process to post-general education.

¢ Providing students with technical and personal skills that help them deal with life and respond to
the requirements of their level.

e Expanding opportunities for graduate students through various options in addition to universities,
such as: obtaining professional certificates, joining applied faculties, and earning job diplomas.

The pathways system consists of nine semesters that are taught over three years, including a common
first year in which students receive lessons in various scientific and humanities fields, followed by two
specialized years, in which students study a general path and four specialized paths consistent with their
interests and abilities, which are: the Rightful path, Business Administration path, Computer Science
and Engineering path, Health and Life path, which makes this system the best for students in terms of:

e The existence of new study subjects that match the requirements of the Fourth Industrial Revolution
and development plans, and the Kingdom’s Vision 2030, which aims to develop higher-order thinking,
problem-solving, and research skills.

o Elective field programs that are consistent with the needs of the labor market and students» interests,
as they enable students to join a specific elective field according to a specific job skill.

e Scale asitensures the achievement of students» efficiency and effectiveness, and helps them identify
their tsndenues and |ntergs$s and reveal their strengths, which enhances their chances of success

in the‘u‘u;é- '...

. [)
Vqunteer wdrk de5|gr1ed speaﬁcally for students in line with the philosophy of activities in schools,
and is one of the graduation requirements; which helps to promote human values, and build society

dpthdfdand cohesion).

Mlmstfq of Education
2023 - 1445

e Bridging which enables students to move from one path to another according to specific
mechanisms.

e Proficiency classes through which skills are developed and the achievement level improved,
by providing enrichment and remedial mastery classes.

e The options of integrated learning and distance learning, which are built in the paths system
based on flexibility, convenience, interaction and effectiveness.

e The graduation project that helps students integrate theoretical experiences with applied
practices.

e Professional and skill certificates granted to students after completing specific tasks, and
certain tests compatible with specialized organizations.

Accordingly, the computer science and engineering path as one of the updated paths at the
secondary level contributes to achieving best practices by investing in human capital, and
transforming the student into a participating and productive individual for science and knowledge,
while providing him with the skills and experience necessary to complete his studies in fields that
meet his interests and abilities, or to join the labor market.

Artificial Intelligence is one of the main subjects in the Computer science and Engineering Pathway
as it contributes to clarifying the concepts of Artificial Intelligence and the technologies associated
with it, which are employed in several areas, such as smart cities, education, agriculture, medicine,
and other economic fields. This course aims to introduce the student to the importance of Artificial
Intelligence and its role in Industry 4.0. It focuses first on the basic building blocks of Artificial
Intelligence technologies and after that, there is a deep dive into advanced applications for rule-
based systems and Natural Language Processing systems. This course also includes projects and
practical exercises for what the student learns. There are also realistic exercises for the student
to solve that stimulate his cognitive levels under the guidance and supervision of the teacher.

The Artificial Intelligence book is characterized by modern engagement methods, which make
students can learn and interact with it through the various exercises and activities it provides.
This book also emphasizes important aspects of artificial intelligence education and learning,
which are:

e The connection between the content and real-life problems.

e Diversity of ways to display engaging content.

e Highlights the role of the learner in the teaching and learning processes.
e Attention to the contents> structure and coherence.

e The skill of employing appropriate techniques in different situations.

e The ability to employ various methods in evaluating students in proportion to their individual
differences.

To be on pace with global developments in this field, the Artificial Intelligence book will provide
the teacher with an integrated set of diverse educational materials that take into account the
individual differences between students, in addition to educational software and websites, which
provide students with the opportunity to employ modern technologies and practice-based
communication; This solidifies its role in the teaching and learning process.

As we present this book to our dear students, we hope it will capture their interest, meet their
reqmreme.ngs‘and make kegramg this material more enjoyable and useful.
00o,° o°,000
00, °,°,%° o000
pul il ajljg
Ministry of Education
2023 - 1445

God grants success

Contents

1. Basics of Artificial Intelligence 10 4.ImageRecognition 196
Lesson 1 Introduction to Artificial Intelligence.. 11 Lesson 1 Supervised Learning
EXercises ... 21 for Image Analysis 197
Lesson 2 Data Structuresin Al 23 EXICISES v 218
EXErcisescoooiiiiiiiii, 50 Lesson 2 Unsupervised Legrmng
for Image Analysis 220
Lesson 3 Non-Linear Data Structures 53 .
Exercises..............oiiiiiii 234
EXercises ... 63 . .
Lesson 3 Generating Visual Data................. 236
Project ... 68 .
Exercises...............oo 246
Project ... 248

2. Artificial Intelligence Algorithms .. 70

Lesson 1 Recursioncccoovieiiiiiiionnn. 71 5. Optimization & Decision-making
Exercises ... 77 Algorithmsccceevvvvvvnennnnnne. 250
Lesson 2 DFS/BFS Algorithms 79 Lesson 1 Resource Allocation Problem 251
EXErcisescooviiiiiiiiii 86 Exercises ...l 264
Lesson 3 Rule-based Decision Making 89 Lesson 2 Resource Scheduling Problem 267
EXErciSesocooviiiiiiiiiii, 105 EXErciSes........c.ooovviiiiiiiaii 279
Lesson 4 Informed Search Algorithms 107 Lesson 3 Route Optimization Problem 283
EXErcisesccooiviiiiiiiiiiiii, 128 EXErcisesccooviiiiiiiiiiiii, 294
Project ..ooii 130 Project oo 298
3. Natural Language 6.AlandSocietyccceeneeneneee.. 300
Processing(NPL)............................ 132 Lesson 1 Introduction to Al Ethics 301
Lesson 1 Supervised Learning 133 Exercises ... 310
Exercises ... 152 Lesson 2 Applications of Robotics | 312
Lesson 2 Unsupervised Learning 154 Exercises 326
EXGICISes ...ovoviviriiiiiiis 170 Lesson 3 Applications of RoboticsII............. 328
Lessoﬁ:;: ?er:tfr.ati.ng Ie:<t """"""""""""" 172 Exercises ... 336
°t 'Ex.e’rciS(;_s P 189 Project ..o 338

Ministry of Education
2023 - 1445

1l a)ljg
Ministry of Education
2023 - 1445

Part 1

Unit 1
Basics of Artificial Intelligence

Unit 2
Artificial Intelligence Algorithms

Unit 3
Natural Language Processing (NPL)

pul il ajljg
Ministry of Education

2023 - 1445

1l a)ljg
Ministry of Education
2023 - 1445

1. Basics of Artificial
Intelligence

In this unit, you will learn about the history and the applications of Artificial
Intelligence (Al). You will also learn more advanced data structures such as
queues, stacks, linked lists, graphs and binary trees. These are the structures
that you will use later to create Al projects.

Learning Objectives

In this unit, you will learn to:

> List the milestones of Al history.

> Cite examples of Al applications.

> Describe the operations of the stack data structure.
> Describe the operations of the queue data structure.

> Determine the differences between the stack and the queue
data structure.

> Describe the main operations on the data of a linked list.
> Explain the use of tree data structure.

> Determine the differences between the tree and the graph data
structure.

> Use Python programming language to explore complex data
structures.

Tools
> Jupyter Notebook

Link to digital lesson

Lessonl

Introduction to Artificial o
Intelligence

What is Artificial Intelligence (Al)?

Al is the field of Computer Science that deals with the design and
implementation of programs that are capable of imitating human
cognitive abilities. These programs display characteristics that we
usually attribute to human behavior, such as problem solving, learning,
decision making, reasoning, planning, taking actions, etc.

Al agents

An Al agent is a software
program that acts on a user's
or system's behalf by
perceiving its environment,
making decisions, and taking
actions based on those
decisions. An agent can be
simple or complex,
autonomous or
semiautonomous, and can
operate in various
environments, such as web-
based, physical, or virtual.

Al Agents Neural networks

Neural networks are a type of
computer program that are

Deep Neural designed to simulate the way
Learning Networks the human brain works. They
are made up of interconnected
"neurons and layers" that can
process and transmit

Artificial information.
Intelligence
Natural
Language
Processing

Computer
Vision

Ma-hine

. Robotics
Learning

e
Ministry of Education
2023 - 1445

Figure 1.1: Some Al fields

Al and Other Fields
Al also has strong connections to multiple other fields including:

Philosophy: Philosophy is the ancestor of modern science. Philosophy studied fundamental problems
that are central to Al, such as the origin and representation of knowledge, logical and rule-based
reasoning, goal-based analysis, and the connection between knowledge and action.

Mathematics: Mathematics as a field serves as the core of Al and provides it with fundamental building
blocks such as logic, computation, and probability theory.

Decision Theory: Decision theory studies logical and mathematical properties of the decision-making
process. It analyzes how decisions are made in a system where the decision environment is uncertain.
Theoretical frameworks and methods from this field have been consistently applied to Al problems.

Neuroscience: Neuroscience is defined as the scientific study of the human nervous system. The key
neuroscience finding that a collection of simple cells can lead to complex outcomes such as thought,
action, and consciousness has been a guiding principle for Al. In fact, artificial neural networks often
emulate actual neural architectures found in the human brain.

Cognitive Psychology: Cognitive Psychology is a branch of psychology, which is dedicated to studying
how people think. Advances in this field have consistently informed breakthroughs in Al, by providing
insight that can help computers emulate human thinking.

Computer Science and Engineering: The field of Computer Science and Engineering has provided Al
with the necessary software and hardware platform it requires to go from theoretical concepts to
practical applications. Advances in Al have been consistently supported by breakthroughs in operating
systems, programming languages, storage, memory, and processing power.

Cybernetics: Cybernetics is defined as the study of systems that achieve a desired state by receiving
information from their environment and modifying their behavior accordingly. The key difference is
that Cybernetics uses mathematics to model closed systems that can be fully described by specific
variables, while Al uses logical inference and computation to overcome such limitations and study
complex problems such as the comprehension and generation of language and visual information.

Linguistics: Linguistics is the scientific study of human language. The comprehension and generation
of human language have been a key application area for Al, leading to the creation of subfields like
Natural Language Processing (NLP) and Computational Linguistics.

Vision Science: Vision Science is defined as the scientific study of visual perception. Teaching computers
how to understand and generate images, animations and videos are one of the most exciting
applications of Al and specifically in the Deep Learning and Computer Vision subfields.

INFORMATION
oo, 0000 A s e . .
00e,%°: «°, 000 The term "Artificial Intelligence"” was
0o, °, : %, 000 formally introduced in 1956, making Al one

of the youngest disciplines.

1l a)ljg
Ministry of Education
2023 - 1445

Turing Test

Perhaps the most famous method for defining Al,
which was proposed in 1950 is the Turing Test: an
experiment for determining whether a computer
is intelligent or not.

During the test, the computer has to answer some
written questions provided by a human interrogator.
The test is considered successful if the interrogator
cannot tell whether the written response came
from a person or from a computer.

To successfully pass the test, the computer needs
to have the capabilities shown in the following
table:

Computer
respondent

‘
‘
e —

Human interrogator

ReSPOndent 1

Turing Test

Turing Test tests the ability of a machine to
exhibit intelligent behavior equivalent to or
indistinguishable from that of a human.

Human
respondent

Respondent 2

Table 1.1: Computer capabilities to pass the Turing test

1 Natural Language Processing to enable it to understand and answer questions.

2 Knowledge Representation to organize, store and retrieve information during test performance.

3 Automated reasoning to use the stored information to answer the questions.

4 Machine Learning to adapt to new language constructs (e.g. different syntax or vocabulary) that
it has not seen before and is not in its stored information.

5 Computer Vision, so that the computer can respond to visual signals provided by the interrogator
via image and video feed.

6 Robotics, so that the computer can receive and process objects passed by the interrogator via a
hatch.

The above capabilities cover a large part of the broad field of Intelligence.

Let's define some of these capabilities.

Natural Language Processing (NLP), is a branch of Al which gives computers the ability to understand human
and natural language.

Knowledge representation in Al refers to the process of encoding human knowledge into a machine-readable
form that can be processed and used by Al based systems. This knowledge can take many forms, including
facts, rules, concepts, relationships, and processes.

Automated reasoning refers to the ability of an Al-based system to automatically deduce new knowledge
and make logical inferences based on a set of given rules and premises.

Computer vision is a field of Al that enables computers to interpret and understand visual information from
the world, such as images and videos.

Robotics is a branch of Al that deals with robot design, construction, and use. It involves the integration of
various technologies, such as machine learning, computer vision, and control systems, to create intelligent

1l a)ljg
Ministry of Education
2023 - 1445

Artificial Intelligence: 9 Decades of History

Despite being less than 100 years old, Al has had a rich history spanning from the 1940s until today.
Let's look at a timeline of the main Al milestones in each decade.

1940s Early days and the first artificial neurons

1943: The first model based on artificial neurons is
proposed. Each neuron could be in an active ("on") or
inactive ("off") state, depending on the stimulation that
it received from other neighboring neurons that it was
connected to.

1948: Elmer and Elsie, two autonomous robots, can
navigate their way around obstacles using light and
touch.

1950s The founding of Artificial Intelligence

1950: The Turing Test is introduced: a test of a machine's
ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of a human. A plethora of
key Al concepts is also introduced such as machine
learning, genetic algorithms, and reinforcement learning.

1951: Stochastic Neural Analog Reinforcement Computer
(SNARC), the first neural network computer is built.

1958: Lisp is developed, a programming language designed
specifically for Al. In the same year, a paper is published
for a hypothetical Advice Taker, an Al system capable of
learning from experience just like a human.

1960s & 1970s The First Al Winter

1964: ELIZA is the first NLP program and the ancestor
of today’s chatbots.

1974-1980: This period is referred to as the "First Al
Winter'". Funding for Al projects was reduced during
this time, due to the lack of progress and impact in
real-world applications. One major criticism was the
inability of Al techniques to address the combinatorial
explosion problem, which limited their applicability to
only very small problems and datasets.

19805.&. 1.95.905 ExperE S.ygtgms and the Second Al Winter

1980: fl':e'.ﬁ'.rst:su:cc.égsm commercial expert system
designed to emulate the decision-making ability of a

1987-1993: This period is referred to as the "Second Al
Winter". The rule-based nature of early Al systems
limits their applicability and makes them unable to
solve key real-life problems.

1997: The Deep Blue supercomputer beats world chess
champion Gary Kasparov. The first win of an Al program
over a world chess champion.

2000s Mainstream popularity, supported by Hardware
and Software breakthroughs

2005: Stanford University creates STANLEY, a self-driving
car that wins an autonomous vehicle challenge. The
U.S. military begins investing in autonomous robots.

2009: Deep-learning neural networks were trained with
graphics processing units (GPUs) for the first time. The
use of this specialized hardware rapidly accelerated the
training of complex networks on very large datasets,
ushering in a new age for deep learning and Artificial
Intelligence.

2010s & 2020s Golden Age

2011: The question-answering system Watson defeats
the world’s two greatest Jeopardy! players. Watson was
able to understand and successfully answer the questions,
marking a breakthrough in using artificial intelligence to
understand natural language.

2012: An Al system instantaneously translates spoken
English to spoken Chinese.

2021: A full self-driving system uses a neural network
trained on the behavior of hundreds of thousands of
drivers.

2022: ChatGPT (Generative Pre-trained Transformer) is a
chatbot built on top of large language models. The models
are fine-tuned with both supervised and reinforcement
learning techniques to mimic a human conversation.

p_._lﬁm_ﬁxéﬂrﬁgl released.

Ministry of Education
2023 - 1445

Applications of Al

Al is a rapidly evolving technology that has the potential to transform a wide range of fields and industries.
In this unit, you will explore the various applications of Al and how it is being used to lead to improvements
and innovations in a wide range of domains and industries.

Virtual Assistants

One of the most popular applications of Al has been in the area of virtual
assistants, that can communicate with users through voice or text-based

interactions. They are often accessed through devices such as smartphones, T
tablets, or smart speakers, and can be used for a wide range of tasks such
as setting reminders, answering questions, playing music, and placing
orders for products and services. One of the most well-known examples
of an Al-powered virtual assistant is Apple's Siri. Other companies have
also developed their own virtual assistants, including Amazon's Alexa,
Google's Assistant, and Microsoft's Cortana. These assistants have become
increasingly sophisticated over time, with the ability to understand and
respond to a growing number of commands and queries. For example
they can be used to control a wide range of smart home devices, such as
thermostats, lights, and appliances. Virtual assistants also come in the
form of specialized chatbots, typically designed to provide information
and answer questions in a particular domain.

An example of such a domain is customer service, where Al-powered
chatbots are used to answer questions about products or services,
troubleshoot issues, and provide information about orders and accounts.
Chatbots can be accessed through a variety of channels, such as websites, Figure 1.3: Conversation
messaging apps, and social media, and can provide assistance 24/7. You with chatbot

can see an example of a chatbot application in figure 1.3.

Robotics

Al has historically been linked to robotics. While a robot can be seen as the physical manifestation of an artificial
being, Al represents the robot’s software brain, providing it with the ability to sense its environment, make
decisions, and adapt to changing conditions. Intelligent robots can then apply these abilities to perform a wide
range of tasks without human intervention. These tasks can include manufacturing, exploration, search and
rescue, and many others. In figure 1.4, you can see a robot assembly line in a car factory

Ministry ¢
2023 -1

Figure 1.4: Robot assembly line in a car factory

One of the earliest examples of Al in robotics was the development of factory robots which were used
to perform tasks like welding, painting, and assembly. Since then, the use of Al in robotics has become
increasingly sophisticated, with the development of more advanced algorithms and the use of machine
learning to improve robot performance. One milestone in the use of Al in robotics was the development
of humanoid robots, like Honda's Advanced Step in Innovative Mobility (ASIMO), which was introduced
in 2000 and was capable of walking and performing basic tasks.

Humanlike Robots

Pepper and Nao are humanoid robots developed by Aldebaran
Robotics. Both robots are designed for human-robot interaction
and are widely used in research, education, and entertainment.
Pepper is a social robot designed to interact with people
naturally, using its cameras, microphones, and touch sensors
to perceive its environment and respond to people's actions
and emotions. Pepper has many features that allow it to
recognize faces, understand speech, and respond to gestures.
You can see the Pepper robot in figure 1.5.

Nao is a smaller, more compact robot designed for human
interaction. Like Pepper, Nao has a range of sensors that allow
it to perceive its environment, as well as cameras and
microphones for speech and facial recognition. Nao is highly
customizable and programmable, making it an attractive choice
for researchers and educators who want to study and develop
new applications for humanoid robots.

In 2017 the robot Sophia was the first robot to receive

Saudi citizenship and in 2023 Saudi Arabia’s first interactive
robot Sarah was introduced.

Figure 1.5: Pepper robot

Self-Driving Cars

Another milestone was the development of self-driving
cars (figure 1.6), which use Al to navigate roads and make
decisions about how to safely interact with other vehicles
and pedestrians. One of the key requirements of such
applications is the ability to process and understand visual
data, such as photos and videos, commonly referred to
as "Computer Vision". Computer Vision Algorithms can
be used to identify objects, people, and other features
in images and videos, as well as to understand the context
and meaning of the content. This has a wide range of
apphcatlel;s beyond ropobcs including facial recognition,
conten mode,ratlon e‘hg fhedia analysis. A key milestone
in the use of Ak in Tmage and video analysis was the
Tevelomnen‘f of deep learning algorithms, which can
~analyze Iaréejglmounts of data and identify complex i A
T\Z/I(I]m;t{_t) OF E duc |mages and videos. Figure 1.6: Self-driving car

Industries Affected by Al

Education

Over the past few decades, there have been several key milestones
in the use of Al in education. Early examples include the development Al benefits in education
of Al-powered tutoring systems, which used NLP to interact with

students and provide feedback on their work. Then, adaptive learning 2 UITHE-SEng for zeenzre)

platforms emerged, using machine learning algorithms to personalize plicifeEels.

learning for each student based on their strengths and weaknesses. * Al tutors can assist

Next, Al-powered grading systems were developed, which used NLP students.

and machine learning algorithms to grade written assignments and e Help teachers to become
provide feedback. learning motivators

More recently, virtual assistants and chatbots have been integrated * Al-driven functionality can
into education to provide personalized support to students and give feedback to students
answer their questions in real-time. Al can be used to analyze data and educators

about student performance, learning preferences, and other factors
to create personalized learning plans and recommend materials or
activities that are most likely to be effective for each student.

Healthcare

Healthcare is another field that has consistently enjoyed innovation thanks to advances in Al. The
first innovations came in the form of Al-powered diagnostic systems and the use of Al in drug discovery.
Next, Al was integrated into electronic health records to extract relevant information, and in the
2010s, Al-powered telemedicine systems were developed. Today, modern Al is used to create
personalized treatment plans and power wearable devices that track a person's health. Al has played
a significant role in the healthcare industry, enabling doctors and other healthcare professionals to
analyze large amounts of data and make more informed decisions about patient care. Such data can
come from diverse sources including medical records, lab tests, and even images such as X-rays and
CT scans. Modern computer vision algorithms are nowadays routinely used to detect abnormalities
and assist with diagnosis.

—— Y — . n..
p /_/_;-na';"'— -

L LA :/'/

0ol .,%//‘/’,/77:,;, =

Ministry of Education Figure 1.7: Analyzing health data
2023 - 1445

Agriculture and Climate Modeling

In agriculture, Al is used to optimize crop yields and improve the efficiency of farming practices. This
is achieved by continuously analyzing data about soil conditions, weather patterns, and other factors
to predict the best time to plant, irrigate, and harvest crops. Al can also be used to monitor crops in
real time and identify problems, such as pests or diseases, allowing farmers to take corrective action
before yields are significantly impacted. One of the earliest examples of Al in agriculture was the use
of simple decision-making algorithms to optimize irrigation schedules. Another key milestone was
the use of sensor networks to monitor crops and automatically calibrate the application of key
treatments such as fertilizers and pesticides. More recently, the use of drones and satellite imagery
has been used to analyze crops at a larger scale.In figure 1.8, you can see an autonomous drone to
fertilize a field.

Figure 1.8: Fertilizing with autonomous drone

Another area that is closely related to agriculture and has also been significantly influenced by Al is
climate modeling. Applications in this area started early, with the development of Al-powered weather
forecasting systems. Later, Al was used to analyze large amounts of data on climate change and make
Ql%dldi;ons aboaﬂture trends. Such data can come from various sources, including satellite imagery,
woatﬁer s‘ta'ﬂon @bservations, and computer simulations. Today, Al is being used in a wide range of
cllmate modeling applications, including predicting the impacts of climate change on specific regions,
Pl — uHdérstanding the causes of extreme weather events, and identifying the most effective strategies

Ministry ofenmitigating or adapting to climate change.
2023 - 1445

Energy

Al has had a significant impact on the energy industry, enabling companies to optimize energy use, reduce
waste, and improve efficiency. One of the earliest examples was the use of machine learning algorithms to
analyze data on energy use and identify ways to reduce waste and optimize consumption. In the 1990s, Al
was used to predict the potential output of renewable energy sources and optimize their use. This was an
important development as it allowed energy companies to better plan for the integration of renewable
energy sources into their operations.

Figure 1.9: Clean electrical energy from solar photovoltaic panels

The 2000s saw the integration of Al into smart grids, which used machine learning algorithms to analyze
data on energy use and adjust supply and demand in real-time. This helped to improve the efficiency of
energy distribution and reduce waste. In the 2010s, Al was used to develop energy storage systems that
could store excess energy and release it when needed. This was an important development as it allowed
energy companies to better manage the intermittent nature of renewable energy sources, such as solar and
wind. Figure 1.9 shows solar photovoltaic panels. In recent years, Al has been used to increase energy
efficiency by analyzing data on energy use and identifying ways to reduce waste. This has included the
development of Al-powered systems that can optimize the energy use of buildings, factories, and other
large energy consumers. Al has also been used in the oil and gas industry to analyze data on drilling and
production and optimize operations.

Law Enforcement

In law enforcement, Al is actively used to help predict and
prevent crimes. Specifically, Al can be used to analyze data
from sources such as crime records, social media, and
surveillance cameras to identify and predict patterns and
trends in criminal activity. Early examples include the
development and the use of Al in facial recognition
(figure 1.10). Later, Al was integrated into police dispatch
systems and used to monitor social media platforms for
potential threats. More recently, Al has been used to
do\ebp drone;ﬁxourvelllance and to analyze footage
fr:JﬁPdey. Wptrﬁ 2dmeras worn by law enforcement
officers. Al has played asignificant role in law enforcement,
e gencies to analyze large amounts of data,
|dent|f3ﬁ)&rterns and trends, and make more informed

Mlnlstr of Educati
J Jecmons about how to prevent and respond to crime.

Figure 1.10: Face recognition and
2023 - 1445 personal identification technologies

Read the sentences and tick v/ True or False. True

1. Mathematicians set the groundwork for understanding computation and
reasoning about algorithms.

2. The Turing Test determines whether a computer has humanlike behavior.

3. ElImer and Elsie were the first robots to navigate obstacles using light and
touch.

4. Al has only been used in the manufacturing industry for robots.

5. Al has not had any impact on the energy industry.

o What is Artificial Intelligence (Al)?

False

e Briefly explain some applications that Al is used for in real life.

pul —itegtjg
Ministry of Education

2023 - 1445

22

Provide the key historical events that influenced the evolution of Al during the 1940s
and 1950s.

e Outline how, in the 2010s, commercial applications of Al technologies were introduced.

Summarize how Al applications can combat climate change through climate modelling
and enhancements in the energy industry.

Pl il a)ljg
Ministry of Education
2023 - 1445

Link to digital lesson

Lesson2

Data Structuresin Al

www.ien.edu.sa

The Importance of Data Structuresin Al

Dataiis critical in Al as it is the foundation for training machine learning models.

The quality and quantity of data available determine the accuracy and Data Structure
effectiveness of Al models. Without sufficient relevant data, Al algorithms A Data Structure is a
cannot learn patterns, make predictions or perform tasks effectively. Hence, technique to store and

data plays a crucial role in shaping Al systems' decision-making abilities and organize data in the
capabilities. memory so that it can
Data structures are important in Al because they provide an efficient way to be used efficiently.

organize and store data that allows for efficient retrieval and manipulation.
They determine the complexity and efficiency of algorithms used to process
data and thus directly impact the performance of Al systems. For instance,
using an appropriate data structure can improve the speed and scalability of
Al algorithms, making them more suitable for real-world applications.
Additionally, well-designed data structures can help reduce memory usage
and make algorithms more memory-efficient, enabling the processing of
larger datasets.

Computers store and process data with extraordinary speed and accuracy. So, it is highly essential that the
data is stored efficiently and can be accessed in a fast way.

Data Structures can be classified as follows: . .
Simple data is also

¢ Primitive Data Structures. called primitive,
¢ Non-Primitive Data Structures. raw, or basic data.

The diagram in figure 1.11 visualizes the classification of data structures.

Data Structures

Non-Primitive Data Structures

Primitive Data Structures

[Boolean [Character [Float][Integer

[Linear Data Structures Non-Linear Data Structures

®oe, e00® I_I I_l
:::.::.::.::: [Graphs][Trees]
NniNa | I] |
Mi;istfgo;'ggi\nﬂgﬁﬁ;][Queue][Stack][Dictionary][Tuple][Array][List]
2023 - 1445

Figure 1.11: Data structures diagram

Primitive Data Structures

Primitive Data Structures are also referred to as basic data structures in Python.
This type of structure contains simple values of data. Simple data types tell Different types of data

the compiler which type of data to store in it. structures are used for
different computer

The basic data structures in Python are: applications and tasks, based
on the requirements of the
project and the restrictions

* Numbers (Numbers are used to represent numeric data) RINEINUNY:
- Integers
- Floating point number

e Strings (Strings are collections of characters and words)
¢ Boolean (A Boolean data type takes one of two values True or False)

Non-Primitive Data Structures

Non-Primitive Data Structures are specialized structures which store a group
of values. They are created by the programmer and they are not defined by
Python like the primitives.

Non-primitive data structures can also be divided into two categories:

e Linear or sequential data structures.
The linear data structures store the data elements in a sequence

¢ Non-linear data structures.
Non-linear data structures do not have a sequential linking between
data elements. Any pair or group of data elements can be linked to
each other and can be accessed without a strict sequence

Linear Data Structures

Linear data structures store the data elements in a sequence. In this lesson,
you will learn about some linear data structures such as stack and queue.
These are two of the most common structures you will come across in
your daily life.

A stack can actually be represented by a group of books stacked on top
of each other, as shown in figure 1.12. To group a stack, you have to put

the books one on top of another. When you want to use a book, you Figure 1.12: A stack of
hgve to pick up th.e.book at the top of the stack. To access the other books as a real-life example
be&s !n-t.he,s;tgc:(.wu will have to remove the books from the top of
thesstack. "+, ¢ *®

Last In First Out (LIFO) rule

A stack can either have a fixed size or it can have a sense of dynamic The element which is
resizing. Python implements stacks using lists. added last, is accessed first.

Operations on the stack
There are two main operations on the stack:

¢ Push: This operation is used to add an element to the top of the stack.
¢ Pop: This operation is used to remove an element from the top of the stack.

Push Operation

The operation of adding a new element on the stack is called a

push.
Push el t
The stack uses a pointer called Top. The pointer points to the
element on the top of the stack. When a new element is added \i/
to the stack: |
Top element
¢ The value of the top pointer is increased by one to show the E
new position the element will be placed in.
¢ The new element is added to the top of the stack. D D D
C C C
Stack Overflow
The stack has a specific capacity that depends on the B B B
computer's memory. If that capacity is full, adding a new A A A
element will cause the stack overflow. The stack should be
checked for fullness before adding any element. Initial Stack Final Stack

Figure 1.13: Push operation

Pop Operation

The operation of removing an element from the stack is called a A
:
pop. |
When removing an element from the stack: l
. E
e The element at the top of the stack is removed. E l
¢ The value of the top pointer is decreased by one to show the D D D
element on the top of the stack.
C C C
Stack Underflow B B B
° .Iiyou want tg gegnove an element from the stack, you must
° Oahetk first thaQ !he stack contains at least one element; If A A A

*the sta.c'k is empty, you will cause a stack underflow. N ,
Initial Stack Final Stack

pul il a)jljg Figure 1.14: Pop operation

Ministry of Education
2023 ="1445

StackinPython

Stacks are represented in Python using Lists which in turn provide some ready-to-use operations with stacks.

Table 1.2: Stack operations

Operation Description

listName.append(x) Adds the x element to the end of the list.

Removes the last element from the list.

listName.pop()

Let's see an example of the implementation of a stack in Python.
The push operation of the stack is

@ Create a stack to store a set of numbers (1, 21, 32, 45). implemented in Python by using the
append function.

© Use the pop operation twice to remove the last two elements
(45, 32) from the stack.
@) Use the push operation to add a new element (78) to the stack.

Push element

Push el t N
- o
element
Push element 45 4 N—
Push element - B
R 32 32
21
’ ’ .
1 1 1 1 1

45 -
3

45
78
32 32 Pop element 73
o 21 21 21 21
oo::° . >‘
o0, °_.°
RS 1 1 1 1

O |

pul —il1@ylig

Ministry of Education

2023 - 1445
Figure 1.15: Stack Example

Jupyter Notebook

In this unit, you will write a Python code using Jupyter Notebook.
Jupyter Notebook is an online web application to create and
share computational documents. Each document, called a
notebook, includes your code, comments, raw and processed
data, and data visualizations. You will use the offline version
of Jupyter Notebook.

{0 ANACONDA

— Jupyter

The easiest way to install it locally is through Anaconda, an
open-source distribution platform, which is free for students
and hobbyists. Download and install Anaconda from here:
https://www.anaconda.com/products/distribution. @ s & Ciock

Python and Jupyter Notebook will be installed automatically. i Anocondas (64-bit @

nda Navigator (Anaconda3)

e /%d be Acrobat DC

= Anaconda Powershell Prompt (Anac...

New

O @

To open Jupyter Notebook:

= Anaconda Prompt (Anaconda3)

Bl

~ Jupyter Notebook (Anaconda3)

> Click Start €, click Anaconda3. &
> Select Jupyter Notebook. €

&

. Reset Spyder Settings (Anaconda3)

G

Qg Spyder (Anaconda3) 7

New

> The Jupyter Notebook home page opens in the browser.
L 92 MW

B | O HomePage-Selectorcreatear X | - = D X
C m @ localhost:8888/tree A s B 3 Y= 2
~ Jupyter auit | | Logout
Files Running Clusters
Select items to perform actions on them. Upload || New v || &
o |~ m/ Ju pyter Notebook Name + | | Last Modified File size
O O 3D Objects home page ayear ago
[0 ([Anaconda3 2 hours ago
O O Contacts a year ago
[0 O Creative Cloud Files 2 hours ago
[0 [Desktop 26 minutes ago
(0 0 Documents 2 hours ago
(0 O Downloads 2 hours ago
O O Favorites ayear ago
O O Links a year ago
0O O Music a year ago
p. ;xj :)-neDri\fe e e0® 2 years ago
?.h. E’xczu:es. : . : : : 2 hours ago
0O O Searches ° 2 months ago

p.I_I_ng]I EJVIjea a month ago

Minjistry of Education

2023=1445
Figure 1.16: Jupyter Notebook's home page

To create a new Jupyter Notebook:

> At the top right corner of your screen, click New. €

> Select Python 3 (ipykernel). @ You can Upload
. . a notebook from
> Your Notebook opens in a new tab in your browser. ©
your computer.
7~ Home Page - Select or createa r X l —+ i o X
G m (D) localhost:8888/tree A @ {3 B \ R 3
— Jupyter Quit | | Logout
Files Running Clusters 1
Select items to perform actions on them. Upload <
Notebook:
|)
Qo0+~ | my Name ¥ PYthon 3 (ipykernel) o
3
O 0 3D Objects Other: F"'ate 2
| TextFile
O ([Anaconda3 L
Folder
O O cContacts Terminal
O [Creative Cloud Files 4 hours ago
O [Desktop 2 hours ago
O ([Documents 3 hours ago
| __ Home Page - Selectorcreatear X | & Untitled - Jupyter Notebook b3 [-+ = o X
C ®w (@ localhost:8888/notebooks/Untitled.ipynb... A @ {g B 0| o= -4
" jupyter Untitled @ Logout
~ J py (unsaved changes) ~ g
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 (ipykernel) O
+ (< @ B2 ¥ | pRun B | C | MW | Code v
an [12

o9, ...-0-0

00e.°. «°, 000
LN T e e '. DR
Code cell. You can type text, a math Notebook The default name of the
1 b)ﬁbjtjsgjon or a Python command. toolbar. notebook is Untitled.

Ministry of EQUCatON

2023 - 1445 Figure 1.17: Create a new Jupyter Notebook

Now that your notebook is ready, it's time to
write and run your first program in Jupyter
Notebook.

You can have as many different cells as you

need in the same Notebook. Each cell contains
its own code.

: J U pyter U ntltled (unsaved changes)

File Edit View Insert Kernel

B+ s @A|B |42 ¥ | »Run

In [1]: | print ("Welcome to Jupyter Notebook") o

Welcome to Jupyter Notebook e

Widgets

H | C|» | Code v

To create a program in Jupyter Notebook:

> Type the commands inside the code cell. €
> Click the Run button. @

> The result is displayed under the commands. €

A

Trusted | ¢ |Py’(h0n3(ipykernel) (@]

Logout

Help

When you run your

In[]:

program, a new code cell

is automatically added.

r

Figure 1.18: Create a program in Jupyter Notebook

You can run your program by pressing Shift + Enter ' .

It's time to save your Notebook.

To save your Notebook: When you are working, the Notebook is autosaved.

> Click File. @

> Select Save as. @

> Type a name for your Notebook. €

> Press Save. @ \

" Jupyter My first notebook Gutesave)

File Edit View Insert Cell Kernel
B |+ < & B2 ¥ | PR B C))
L X T boo
o, o ®
00, °_°, 0 (X)
e "o o,
L]

oj pyte I Untitled @utosaveq)

File Edit View Insert Cell Kernel Widgets
New Notebook » | pRun |l C | P Code
Open...

|
Make 3 CORY... ne to Jupyter Motebook")
Save as... f
apyter Notebook
Rename...

Save and Checkpoint [crr1-cl |
Save As

Revert to Checkpoint

Enter a notebook path relative to notebook dir

1 T ﬂ]'tpfthe
mingstnotebaakdhaschanged.
2023=1775S

My first notebook e

Cancel

Figure 1.19: Save your Notebook

Let's see the example of figure 1.15 in Jupyter.
1. Create a stack to store a set of numbers (1, 21, 32, 45).
2. Use the pop operation twice to remove the last two elements from the stack.

3. Use the push operation to add a new element to the stack.

myStack=[1,21,32,45]

pr%nt(“Initial stack: ", myStack) The print(myStack.pop())
print(myStack.pop()) ¢ L. .

. unction is used to display
print(myStack.pop()) ¢
print("The new stack after pop: ", myStack) the value returned bythe
myStack.append(78) myStack.Pop() function.

print("The new stack after push: ", myStack)

Initial stack: [1, 21, 32, 45]

45

32

The new stack after pop: [1, 21]

The new stack after push: [1, 21, 78]

myStack=[1,21,32,45] e

print("Initial stack:", myStack) The len function returns

amyStack) the length of the stack.

print("size of stack",a)

empty the stack e

for i in range(a): This statement is
myStack.pop() used to delete all

print(myStack) elements of the stack.

myStack.pop()

Initial stack: [1, 21, 32, 45]
size of stack 4

[]

IndexError Traceback (most recent call last)
Input In [3], in O
7 myStack.pop()

The error appeared because the stack
is empty and you typed a command to
delete an element from the empty stack

8 print(myStack)
----> 9 myStack.pop()

IndexError: pop from empty list

®oe, e00®
jrtd'éxEr‘ror o5 e

You WI|| notice that an error appears. You typed a command to delete an element from the empty
Pl idfackiéng this caused underflow to the stack. You should always check that there are elements in
Ministey of thestack before trying to delete an element from it.

2023 - 1445

In the following program, you will create a stack and you will add or remove elements from it.
The program displays a menu which asks you about the action you want to do each time.

¢ To add an element to the stack, you have to press the number 1 in the program menu.

e To remove an element from the stack, you have to press the number 2 in the program
menu.

¢ To exit the program, you have to press the number 3 in the program menu.

def push(stack,element):
stack.append(element)
def pop(stack):
return stack.pop()
def isEmpty(stack):
return len(stack)==0
def createStack():
return []

newStack=createStack()
while True:
print("The stack so far is:",newStack)
print("------------mmmm oo ")
print("Choose 1 for push")
print("Choose 2 for pop")
print("Choose 3 for end")
pEilfE("==esssessssssssssssssassaaa= ")
choice=int(input("Enter your choice: "))
while choice!=1 and choice!=2 and choice!=3:
print ("Error")
choice=int(input("Enter your choice: "))
if choice==1:
x=int(input("Enter element for push: "))
push(newStack, x)
elif choice==2:
if not isEmpty(newStack):
print("The pop element is:",pop(newStack))
else:
print("The stack is empty")

else:
print("End of program")
break;
(XY (X J
oo::’. .‘::oo
00, °,°,° o000

pul il ajljg
Ministry of Education

2023 - 1445

Execute the previous program as follows:

¢ Create a stack of three numbers, and

e Add elements to the stack.

Push
element

¥

Push
element
v 23
Push
element 1
v 18
26 26 26

Figure 1.20: Pushing elements

Now, you will remove two elements from
the stack and then exit the program.

g

Ministry of Education

Pop
element
n
N Pop
element
23 "
23
18
18
Lbe0®
:’ of e 00
° 26 26

2023 - 1445 Figure 1.21: Popping elements

The stack so far is: []
Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 1

Enter element for push: 26
The stack so far is: [26]
Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 1

Enter element for push: 18
The stack so far is: [26, 18]
Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 1

Enter element for push: 23
The stack so far is: [26, 18, 23]

Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 2

The pop element is: 23
The stack so far is: [26, 18]
Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 2

The pop element is: 18
The stack so far is: [26]
Choose 1 for push

Choose 2 for pop

Choose 3 for end

Enter your choice: 3

End of program

The next data structure you are going to explore is the queue. We often
come across queues in our everyday life. The most common queue is the
gueue of cars waiting at a traffic light. When the traffic light turns green,
the car that entered first in the queue will be the one which exits first. A
queue is a data structure that follows the First In First Out (FIFO) rule,
meaning that each element in the queue is served in the order it reaches
the queue.

y 4

o
%\K‘/ -
(Firstln First Out rule) \\R"/‘ -~
\\‘g/.

There are two main operations on the queue:

Operations on the Queue:

¢ Enqueue: This operation is used to add an element to the rear of
the queue.

¢ Dequeue: This operation is used to remove an element from the
front of the queue.

Queue Pointers

The queue has two pointers:

¢ Front pointer: Points to the first element of the queue.
e Rear: points to the last element of the queue.

First In First Out (FIFO) rule

The first element added in the
list is processed first and the
newest element is processed
last.

The difference between the stack
and the queue is that in the
stack, the addition and the

deletion of an element are done
from the same side. In the

queue, the addition is done on

one side and the deletion is done
on the other side. So, in the
stack, when deleting, the last
added element is deleted, while
in the queue, the first added
element is deleted.

Pointer

The pointer is a variable which
stores or points to the address
of another variable. The
pointer is like a page number
in the index of a book that
drives the reader to the
required content.

Index

Index is a number that
describes the position of an
element in a data structure.

Rear pointer

Dewg% 000 Enqueue
LY ° * o ¢ E E
L 1 9 (17|43 |21| 7 |12|56|23| 4 |14 31 @
1 1

Mirmer—WG on 0 1 2 3 4 5 6 7

2023 - 1445 Figure 1.22: Operations on the Queue

Enqueue Operation

The operation of adding a new element in the queue is called Enqueue.
To insert a new element into the queue: You cannot add or

remove an element from
the middle of the queue.

e the value of the rear pointer is increased by one and points to the
position of the new element to be entered.

e the element is inserted.

S S S S S s
A B C A B C |€1| D A B C D
0 1 2 0 1 2 0 1 2 3
Before Enqueue After

Figure 1.23: Enqueue operation

Dequeue Operation

The operation of removing an element of a queue is called dequeue.

Before any action you must

To remove an element from the queue: check if there is free space in

¢ the element indicated by the front pointer is removed. g to 2eLie) new
element and if there is at

e the value of the front pointer is increased by one to point to the least one element for export.

next available element of the queue.

i i) i
A|lB|C|D Al Bl cCc|D B|C|D
0 1 2 3 0 1 2 3 0 1 2
Before Dequeue After

Figure 1.24: Dequeue operation

pul il ajljg
Ministry of Education

2023 - 1445

QueueinPython

In Python, the queue can be represented in several ways, including lists. This is due to the fact that a
list represents a group of linear elements and also to the possibility of adding an element at the end of
the list and the possibility of deleting an element from its beginning.

Below you will learn the general formulas for some of the operations that can be performed on a queue:

Table 1.3: Queue methods
Method

listName.append(x) Enqueue the element x to the list representing the queue.

Description

listName.pop(0) Dequeue the first element from the list.

The listName.pop() method can be used for both stack and queue data structures. When it is
used with a stack, the method has no arguments. When it is used with a queue, the method
needs a zero to be added in the arguments: listName.pop(0). The difference between the two
functions is presented in table 1.4 below.

Table 1.4: listName.pop() vs listName.pop(0) method
Description

listName.pop() If the function argument is empty, the last element is removed from the
end of the list that represents the stack.

listName.pop(0) If the function argument is zero, the first element of the list representing
the queue is removed.

Let's see an example of the implementation of a queue in Python.

¢ Create a queue to store the set of numbers (1, 21, 32, 45).
¢ Use the dequeue operation twice to remove the first two elements from the queue.
¢ Use the enqueue operation to add a new element to the queue.

= = = == S

[} [} [} [} [} [}

1 | 21|32] 45 1 |« 21 | 32 | 45 21 |<¢| 32 | 45

0 1 2 3 Dequeue 0 1 2 Dequeue
)) N))

ul il ajljg 0 1 Enqueue 0 1 2

Ministry of Education

2023 - 1445

oo, '.:,°..o 32 45 |(<1-| 78

Figure 1.25: Queue graphical example

To program the above steps in Python, you will use a Python list to implement the queue structure,
as you did with the stack.

myQueue=[1,21,32,45]

print("Initial queue: ", myQueue)
myQueue.pop(0)

myQueue.pop(0)

print("The new queue after pop: ", myQueue)
myQueue.append(78)

print("The new queue after push: ", myQueue)

Initial queue: [1, 21, 32, 45]
The new queue after pop: [32, 45]
The new queue after push: [32, 45, 78]

Let's see what happens if you try to remove an element from an empty queue. First you have to empty
the queue.

myQueue=[1,21,32,45]
print("Initial queue: ", myQueue)
a=len(myQueue)
print("size of queue ",a)
empty the queue
for i in range(a):
myQueue.pop(0)
print(myQueue)
myQueue.pop(0)

Initial queue: [1, 21, 32, 45]
size of queue 4

[]

IndexError Traceback (most recent call last)
Input In [6]1, in O

7 myQueue.pop()

8 print(myQueue)
----> 9 myQueue.pop()

IndexError: pop from empty list

You should always check that there are elements The error appeared because you tried to

in tbe queue Yetore trying to delete an element.

delete an element from an empty queue.

1l a)ljg
Ministry of Education
2023 - 1445

Queue Applications

One example of a queue in Computer Science is the printing queue. For example, you have a computer lab
with 30 computers connected to one printer. When students want to print, their print jobs create a queue.
The tasks are queued to be processed using a First In First Out (FIFO) method. Tasks will be printed in the
chronological order they were submitted. The task that was submitted first will be printed before the one
that was submitted after. The task at the end of the queue will not be printed until all tasks before it have
been printed. When the printer completes a job it will look in the queue to see if there are any jobs left to
process.

Stack and Queue Using Queue Module

A list in Python can act as a queue and a stack as well. Python offers the Queue module which is another
way to implement these two data structures. The Queue module includes some ready-to-use functions that
can be used with both stack and queue.

Table 1.5: Queue module methods
Methods

Description

queueName=queue.Queue() Creates a new queue named queueName.

gueueName.put(x) Adds the element x to the queue.

gueueName.gsize() Returns the size of the queue.

gueueName.get() Gets and removes the first element from the queue and the last

element from the stack.

gueueName.full() Returns True if the queue is full and False if the queue is empty.
Can be applied to the stack as well.

gueueName.empty() Returns True if the queue is empty and False if the queue is full.
Can be applied to the stack as well.

The methods of the Queue library can be used from queue import xe———

with both the stack and the queue.

myQueue = Queue()
add the elements in the queue

You will use the Queue module to create a queue. myQueue.put("a")

In this example you should: myQueue.put("b")
e Import the queue library to use the queue's myQueue.put("c")
methods. myQueue.put("d")

myQueue.put("e")

¢ Create an empty queue named myQueue.

v
¢ Add the elements a, b, ¢, d, e to myQueue # print the elements of the queue
queue. for element in list(myQueue.queue):
¢ Print queue elements. print(element)
%o, 000
ooy Maport fheQJeue module a
) e . 00
at the’béginning of your code. b
c
1l ajljg d
Ministry of Education e

2023 - 1445

Create a queue in which five values are entered by the user during program execution,
and then print these values and finally print the size of the queue

from queue import =
myQueue = Queue()

the user enters the elements of the queue for i in range(5):
for i in range(5):
element=input("enter queue element: ")
myQueue.put(element)

print the elements of the queue
for element in list(myQueue.queue):
print(element)

print ("Queue size is: ",myQueue.qsize())

enter queue element: 5
enter queue element: f
enter queue element: 12
enter queue element: b
enter queue element: 23
5

f

12

b

23

Queue size is: 5

Create a program to check if the queue is empty or full.

from queue import »

myQueue = Queue()
myQueue.put("a")
myQueue.put("b")
myQueue.put("c")
d")
e")

myQueue.put("
myQueue.put("e"

checkFull=myQueue.full()

print("Is the queue full? ", checkFull)
;heckEmpty— mxgyeue empty()

ps;rft(Is othg.queue empty? ", checkEmpty)

il il chyljehe queue full? False

Ministry oFEduEéU&He queue empty? False
2023 - 1445

As mentioned before, the Queue module includes some ready-to-use methods that can be used with
a stack or a queue. The table 1.6 shows the module methods that can be used with the stack data
structure.

Table 1.6: Queue module methods used for the stack

Description

stackName=queue.LifoQueue() | Creates a new stack named stackName.

stackName.get() Pops the last element from the stack.

Let's use the Queue module to create an empty stack.

from queue import =

Remember that operations in
myStack = LifoQueue() the stack operate according
to the LIFO rule.

myStack.put("a"
myStack.put("b"

)
)

myStack.put("c g When using the get function
)

myStack.put("d" with a queue, the fetching

myStack.put("e"

and printing operations will
be based on the FIFO rule.

for i in range(5):
k=myStack.get()
print(k)

empty the stack
checkEmpty= myStack.empty()
print("Is the stack empty?", checkEmpty)

H Y TN QO ®

s the stack empty? True

Example: Print

In the following example, you will see a simulation of the printer's print queue. When users send print
jobs, they are added to the print queue. The printer uses this queue to find out what file to print next.

¢ Suppose the capacity of the printer is only 7 files, but at the same time you need to print 10 files
from file A to file J.

[XY X J
4 th‘fé. a pfgg.rar?:hat captures the print queue from the start of the first print job A until all print
¢ Jobs are.completed.

== ¢ mg:ljmﬁ block that confirms that the print job queue is empty.

Ministry of Education
2023 - 1445

You can use the following algorithm:
1 Create a print job queue

2 Insertfiles from Ato G into the print
job queue

3 Output file A and insert file H

4 OQutput file B and insert file |

5 Output file Cand insert file J

6 Output files that have been printed
(D-E-F-G-H-I-J) one by one.

import the queue library
from queue import =
import the time library to use the sleep function
import time
initialize the variables and the queue
printDocument = " "
printQueueSize = 0
printQueueMaxSize = 7
printQueue = Queue(printQueueMaxSize)
add a document to print the queue
def addDocument(document):
printQueueSize = printQueue.qgsize()
if printQueueSize == printQueueMaxSize:
print("!! ", document,
print("The print queue is full.")
print()
return
printQueue.put(document)
time.sleep(0.5) #Wait 5.0 seconds
print(document, "
printQueueSizeMessage()
:ﬁzozhzt.a.do.cu/:rerzﬁom the print queue
eoder priftDqcumehit():
priﬁtQueueSize = printQueue.qsize()

[2)

L) () (=)

was not sent to print queue.")

sent to print queue.")

pul o 1l AffcprintQueueSize ==

Ministry of Education print("!! The print queue is empty.")

2023 - 1445

print()
return
printDocument = printQueue.get()
time.sleep(1) # wait one second
print ("OK - ", printDocument,
printQueueSizeMessage()
print a message with the size of the queue
def printQueueSizeMessage():
printQueueSize = printQueue.qgsize()

is printed.")

if printQueueSize == 0:
print ("There are no documents waiting for printing.")
elif printQueueSize == 1:
print ("There is 1 document waiting for printing.")
else:
print ("There are ", printQueueSize, " documents waiting for printing.")

print()
the main program
send documents to the print queue for printing
addDocument("Document A")
addDocument("Document B
addDocument("Document C
addDocument("Document D"
addDocument("Document E
addDocument("Document F
addDocument("Document G
printDocument()
addDocument("Document H")
printDocument()
addDocument("Document I")
printDocument()
addDocument("Document
addDocument("Document
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()
printDocument()

Document A sent to print queue.
There is 1 document waiting for printing.

:::ro.um.entzlzgent to print queue.
oo .'[he,re, aj"e @edocuments waiting for printing.

| "||éj$ﬁ%§ment C sent to print queue.
- e?e are 3 documents waiting for printing.
Ministry of Education
2023 - 1445

Document D sent to print queue.
There are 4 documents waiting for printing.

Document E sent to print queue.
There are 5 documents waiting for printing.

Document F sent to print queue.
There are 6 documents waiting for printing.

Document G sent to print queue.
There are 7 documents waiting for printing.

OK - Document A is printed.
There are 6 documents waiting for printing.

Document H sent to print queue.
There are 7 documents waiting for printing.

OK - Document B is printed.
There are 6 documents waiting for printing.

Document I sent to print queue.
There are 7 documents waiting for printing.

OK - Document C is printed.
There are 6 documents waiting for printing.

Document J sent to print queue.
There are 7 documents waiting for printing.

Il Document K was not sent to print queue.
The print queue is full.

OK - Document D is printed.
There are 6 documents waiting for printing.

OK - Document E is printed.
There are 5 documents waiting for printing.

OK - Document F is printed.
There are 4 documents waiting for printing.

OK - Document G is printed.
There are 3 documents waiting for printing.

OK - Document H is printed.
There are 2 documents waiting for printing.

OK - Document I is printed.

There is 1 document waiting for printing.
.....
::pK.—:-D:ocurﬁe:1£ J is printed.

There are no documents waiting for printing.

pul il aylige print queue is empty.

Ministry of Education
2023 - 1445

Static and Dynamic Data Structures
As mentioned before, a data structure is a way to efficiently store and organize data. You also learned
about the classification of data structures into primitive and non-primitive.

Data structures can also be classified into Static and Dynamic.
Static Data Structure

In a static data structure, the size of the structure is fixed. The elements of the data are allocated to
contiguous memory location. The most representative example of a static data structure is the Array.

Dynamic Data Structure

In a dynamic data structure, the size is not fixed and it can be modified during the execution of the
program, depending on the operations performed on it. The dynamic data structures are designed
to facilitate the change in size of the data structures during run time. The most representative example
of a dynamic data structure is the Linked List.

Table 1.7: Static Data Structures vs Dynamic Data Structures

Static Dynamic
The size can be changed during
run time.

. Fixed memory size.
Memory size

The elements are stored in contiguous | The elements are stored in random

Types of memory storage
yp y g locations in the main memory. places in the main memory.
Data access speed Faster to access. Slower to access.

Memory Allocation
Linked lists belong to dynamic data structures. This means that the nodes of the linked list are not stored
in contiguous memory locations like the data of arrays. This is the reason you need to store the pointer from

one node to another.

I:' = one byte of used memory I:' = one byte of used memory
112(3]4]s 1|~
0 AN s kN o R o | ,: 3
A
2 S L i
]
I,l
5
..:.0 o.::;E (_," ,:"‘
°. 1.%. °. o ©® 4 | | ..--
pu_dmagjq\f\&d a contiguous block of memory. Linked lists don't need to be contiguous

Minlistry of Education in memory, they can grow dynamically.

2023 -1445

Figure 1.26: Example of static and dynamic memory allocations.

Linked List

A Linked List is a linear data structure, and it is one of the most popular data
structures in programming. A linked list is like a chain of nodes. Each node
contains two fields: the data field where the data are stored and a field containing
the pointer to the next node. This excludes the last node in which the address
field does not carry any data.

One of the advantages of the linked list is that it can dynamically increase or
decrease its size by adding or deleting nodes.
A Linked List

‘a-a-a-a’

Figure 1.27: Graphical representation of a linked list

Node
Each node in the linked list consists of two parts.

¢ The first section contains the data.

Linked List

A Linked List is a linear
data structure, which is
like a chain of nodes.

Node

Node is an individual
block of a data structure
which contains data and
one or more links to
other nodes

e The second part contains a pointer pointing 1 2 """" >
to the next node.
To read the content of a specific node, you (Data field) (A pointer to the next node)

must pass through all previous nodes.

Here you can see an example of an integer linked list.
The linked list consists of five nodes.

G E-EH R B

Figure 1.29: Graphical representation of an integer linked list
LY 'Y 000
o0, : e o : e0 0@

Figure 1.28: Graphical representation of node

Null means having no
value, not defined or
empty. Although
sometimes we use the

number 0 to symbolize
null, 0 is a specific number
and can be a real value.

The noa’esjn'a. lis? 8o not have names. What you know about the node is the address (memory
location) at which it is stored. To access any node of the list, you only need to know the address of
Pl _cpdlar gde. Then you follow the chain of nodes to reach the node you need.

Ministry of Education
2023 - 1445

For example, if you want to access the third node of the
list, to process the data it contains, you have to start from
the first node of the list. From the first node to access the

second, and from the second to reach the third. :
* The address of the first node is stored in a special ®l 15 | -5 25 },-9 30 |®
(independent) variable that is usually called the Head.
e The pointer of the last node of the list is null and is m_ -
Second Node

represented with the symbol ®.

e When the list is empty, the head pointer points to a Figure 1.30: Access the third node of the linked list
null value.

Let's see a graphic example of a linked list in figure 1.31. As mentioned earlier, each node consists of data
and a pointer pointing to the next node. Each node is also stored in memory at a specific address.

Specific node example: Let's connect the previous node with the next node
with data value 42, which in turn points to the third
and last node at address 30 with data value 37.

e The node data is number 15.
e The address of the node in memory is 10.
¢ The next node will be at address 20. I I I

20

0 15 [ao[> 1] 42 |30

Next Address

Figure 1.31: Pointers in a linked list

Table 1.8: Differences between list and linked list

Differences Linked List

Memory storage Contiguous locations in the memory. | Random locations in the memory.

method

The structure Each element can be accessed by | Its elements can be accessed through the
the index number. pointer.

Each element is stored one after the | Objects are stored as nodes containing

other. the data and the address of the next
element.
Memory usase Only data is stored in memory. Data and pointers are stored in memory.
Data arcess wype Random access to any list element. | Sequential access to elements.
— The speed of Adding and removing elements is | Faster addition and removal.
addition and slower.

Ministry o
2023 - 14 removal

Linked Listin Python

Python does not provide a predefined data type for linked lists. You have
to create your own data type or use additional python libraries that provide
a representation of this data type. To create a linked list, you can use Python
classes. In the following example, figure 1.32, you will create a linked list
with three nodes each containing a day of the week.

Monday | [~ > Tuesday | [- > Wednesday |®

Figure 1.32: Linked list example

You will first create a node using Class.

single node
class Node:
def __init__(self, data, next=None):
self.data = data #node data
self.next = next # Pointer to the next node

Create a single node
first = Node("Monday")
print(first.data)

Monday

The next step is to create a single-node linked list, this time
you will use the head pointer to point to the first node.

single node
class Node:
def _init__(self, data = None, next=None):
self.data = data
self.next = next

linked list with one head node
class LinkedList:
def __init_ (self):
self.head = None

list linked with a single node
Linkedlistl = LinkedList()
Q_Q'-Iqeglist.].heﬁ = Node("Monday")
:J%f.rrt(girjlsed}zszl.head.data)

Pl 1l aghigay
Ministry of Education
2023 - 1445

Class

A class is a user defined data
structure that holds its own
data members (properties)
and methods (behavior).
Classes are used as a template
for creating objects.

Now add more nodes to your linked list.

single node
class Node:
def __init__(self, data = None, next=None):
self.data = data
self.next = next

an empty linked list with a head node.
class LinkedList:
def __init__(self):
self.head = None

the main program

linked_list = LinkedList()

the first node

linked_list.head = Node("Monday")

the second node

linked_list.head.next = Node("Tuesday")

the third node

linked_list.head.next.next = Node("Wednesday")

print the linked list

node = linked_1list.head

while node: e
print (node.data)
node = node.next

(The while statement is used to
Lmove from one node to another.

Monday
Tuesday
Wednesday

Add a Node to a Linked List

The actions required to add the new node are: N)
¢ The pointer of the first node must point to the address of the 12 _ 99

new node, so that the new node becomes the second node. m
¢ The pointer of the new (second) node must point to the TR
address of the third node.
1. Create the 37 o @
In this way, you do not have to shift the elements if a new element new node.

is added in the middle. The process is limited to changing the

address values in the node, that makes the addition faster in the
case of linked lists compared to the case of sequential lists. S 3 2 o 2 2 99
e ® o0
Y L]

Iou gam k list of two elements: 12, 99. You want to insert 2. Link the 37 node to the 99 node.
“the e emen s a second element. In the end, you willhavea 3. Link the 12 node to the 37 (new

Miny is ”é%?lftfgee eI'ements 12, 37, 99. node created).

single node
class Node:
def __init__(self, data = None, next=None):
self.data = data
self.next = next

linked list with one head node
class LinkedList:
def __init__(self):
self.head = None

def insertAfter(new, prev):
create the new node
new_node = Node(new)
make the next of the new node the same as the next of the previous node
new_node.next = prev.next
make the next of the previous node the new node
prev.next = new_node

create the linked list
L_list = LinkedList()

add the first two nodes
L_list.head = Node(12)
second = Node(99)
L_list.head.next = second

insert the new node after node 12 (the head of the list)
insertAfter(37, L_list.head)

print the linked list

node = L_list.head

while node: 12 L2 37 [2] 99 |e
print (node.data)
node = node.next [node|

1. Link the 12 node pointer to 99 node.
12
37 2. Delete node 37

99 . .
12 r """" Q> 995

Delete a Node from a Linked List i) (2] | -
A

To delete a node, you must change the pointer of its predecessor to

point to the node following the deleted node. The deleted (second)

node is busglgss datal".wddhe memory space it occupies is allocated)

for othe} Q%s..'.‘. ...:: 3. Final result

E ample'Iél I 12 [[T 21| 99 t ©
J You ﬁave a Iinke,hﬂist of three elements: 12, 37, 99. You want to delete - -

;Aé{g%t% gﬁnﬁil?ﬂ the end, you will have a list of two elements: 12, 99. [node|

single node
class Node: If you want to delete

def init_(self, data = None, next=None): the first node of a linked

self.data = data list, you must move the

self.next = next head to the second
node of the list.

linked list with one head node
class LinkedList:
def _init_ (self):
self.head = None

def deleteNode(key, follow):

store the head node
temp = follow.head

find the key to be deleted,
the trace of the previous node to be changed
while(temp is not None):
if temp.data == key:
break
prev = temp
temp = temp.next

unlink the node from the linked list
prev.next = temp.next
temp = None

create the linked list
L_list = LinkedList()

add the first three nodes
L_list.head = Node(12)
second = Node(37)

third = Node(99)
L_list.head.next = second
second.next = third

delete node 37
deleteNode(37,L_list)

print the linked list
node = L_list.head
while node:
print (node.data)
node = node.next

Qoo o0

oo.:’. .‘:.oo

00, °,°, % o000
12 -

Pl ill 43fg

Ministry of Education
2023 - 1445

Read the sentences and tick v/ True or False. True

1. Python defines non-Primitive Data Structures.

2. Linear Data Structures store data items exclusively in random order.
3. Adding and removing items in a linked list is slower than a list.

4. The items in a list can only be accessed through their index number.

5. The size of a static data structure can be modified during the execution of
a program.

e State the differences between static and dynamic data structures.

Static data structures ‘ Dynamic data structures

False

e Write two examples of uses for linked lists.

pul il ajljg

Ministry of Education
2023 - 1445

You have a stack with six empty spaces. S

e You will add the following letters C, E, B, Aand D in
positions 0 to 4.

e Fill the stack indicating the position of the top cursor.
¢ Execute the following operations:

|pop g pop gd push X ud push K g pop g

Show the final output after performing the above
operations, indicating the position of the top cursor.

Write a program that creates the stack shown above,
and then perform the above operations using the
standard queue library.

You have the following number sequence: 4, 8, 2,5, 9, 13.

e What is the process used to add the above elements into the queue?

Final Output

e Complete the queue after adding the elements.

e What is the process used to remove elements from the queue?

e How many times should the above operation be performed to remove the element

with value 57

1 I-CWr'T-{e Python code to create the previous queue.

Ministry of Education

2023 - 1445

51

52

Given the following nodes, draw the linked list and then write the values in the list in
the correct order.

Head =3 5

0 Create a list with the following numbers: 5, 20, 45, 8, 1.

e Draw the nodes of the linked list.

e Describe the process of adding the number 7 after the number 45.

e Draw the new list.

e Describe the process required to delete the second node of the list.

ospraw thq fi@al linked list.
o) .:':'.°::::

P il ajljg
Ministry of Education
2023 - 1445

Link to digital lesson

Lesson3

Non-Linear Data Structures

www.ien.edu.sa

In the previous lessons, you learned about some linear data structures. In linear data structures, each
element follows the other element in a linear manner. Can you think of any case in which things do
not proceed linearly? For example, can an element be followed by more than one element?

Non-Linear Data Structures

A data structure can be characterized by the possibility of linking an element to more than one other
element at the same time. An element of a non-linear data structure could be connected to more
than one element. Representive examples of non-linear data structures are trees and graphs. Figure
1.33 illustrates the linear and the non-linear data structures.

Linear data structure Non-linear data structure

LN
T LN LN

Figure 1.33: Graphical representation of linear and non-linear data structures

Table 1.9: Differences between Linear and Non-linear Data Structures

Linear Non-linear

Data elements are arranged in a linear order where | Data elements can be attached to many other
®aesly elemeny s®®ached to its previous and its next | elements.

.ejémerfts “*ee

ﬁlements can be traversed in a single pass. Data elements cannot be traversed in a single pass.

Ministry of EFhedhplementation is easier. The implementation is more complicated.
2023 - 1445

Trees

Trees are non-linear data structures. A tree consists of a collection of nodes
that are arranged in a hierarchical order. Each node can associate with one
or more nodes. Nodes are connected with edges in a form of parent-child
relationship. Trees are used in many areas of Computer Science, including
operating systems, graphics, database systems, games, Al, and computer
networks.

Figure 1.34: Relationships of a tree

Tree Terminology Used in the Tree Data Structure

Root: The first and only node in the tree that does not have a parent and is at the first level of the tree.
(A node in figure 1.35)

Child: A node directly connected to a node at a higher level. (Node H is the child of node D and nodes B and
C are the children of node A)

Parent: A node that has one or more children at a lower level. (Node B is the parent of nodes D and E)
Leaf: A node that does not have any child nodes. (Node F is a leaf node)

Siblings: All child nodes that have the same parent node. (Nodes D and E are siblings)

Edges: The links that connect tree nodes.

Sub-Tree: Smaller trees that can be found within a larger tree. (A tree with node D as a parent and node H
and | as children)

m\ Tree

A tree is a non-linear data

First level . .
structure. It is a collection
of nodes arranged
hierarchically.

Second level
Edge

Parent Node An Edge connects nodes
N “ in a tree data structure.

Third level @ @

k 4 j You can have a simple tree,
-~ which consists of a single

node. This node is also the
Leaf Node root of this simple tree,
because it has no parent.

Fourth level

oo
00
I K VA °

pul il ajljg

Ministry of Education
2023 - 1445 Figure 1.35: Tree data structure

Here is an example of a tree data structure.

A node can be both a
child and a parent: a child
of the previous node and
a parent of the next node.

Vertebrates

Invertebrates

| | | |
(Birds > (Fish > (Mammals) (Insects) (Arachnids)

Child Node

A

! |
Cem)

Figure 1.36: Example of a tree data structure

Tree Data Structure Features
e They are used to represent a hierarchy.

e They are flexible, it is very easy to add or
remove an element from a tree.

e |t is easy to search for an element in a tree.

e They reflect structural relationships
between the data.

al
¥ .

19 < | Python Projects

This PC
) 3D Objects [HelloWorld
[H) Desktop [# infinite

Documents

@Dv";a?ish.'.". o0
)Music ¢ ° ‘

B Pistyes o 1
P b |

Home Share View

v 4 > ThisPC > Documents > Python Projects

Example

The organization of files in the operating system is a
practical example of a tree. As you can see in figure 1.37,
inside the "Documents" folder is another folder called
"Python Projects" which contains two other files.

This PC

7~ Name) [30 Objectsj [Desktopj [Documents] [Downloadsj [Musicj [Picturesj

Alice

Fos | Se20e

Ministry of Education
2023 - 1445 Figure 1.37: Organization of files in the operating system

(Alice) (Python Projects)
I
| |
HelloWorld.py infinite.py

Tree Data Structure in Python

Python does not provide a predefined data type for the tree
data structure. However, trees are easily built out of lists and
dictionaries. A very simple implementation of a tree using a
dictionary is shown in figure 1.38.

In this example, you will create a tree using a Python dictionary.
The keys of the dictionary are the nodes of the tree. For each
key, the corresponding value is a list containing the nodes that
are connected by a direct edge from this node.

myTree = {
"a": ["b", "c"1, #node
"b": ["d", "e"],
"c": [None, "f"I,
"d": [None, None],
"e": [None, None],
"f": [None, None],
}
print(myTree)
{'a': ['b", 'c'], 'b': ['d"', 'e']l, 'c': [None,
'd': [None, None], 'e': [None, Nonel],

Figure 1.38: Python dictionary tree

",

"f': [None, Nonel}

In the following example, you will create
a tree like the one in figure 1.39.

(=) (@)
| —

myTree = {["Data Structures"|:[["Linear"],["Non-linear]"],

"Linear":["Stack
"Non-linear":["Tree", "Graph"l}

for parent in myTree:

print(parent, "has",len(myTree[parent]),"nodes")

for children in myTree[parent]:
print(" ",children)

Data structures has 2 nodes
Linear
Non-linear
Linear has 3 nodes
Stack
o5t saueue 2200
® o, Iirfked, hise
Non-Tinear has 2 nodes
pul o ill a)ljge
Ministry of Educogggph
2023 - 1445

,"Queue","Linked List"],

Data Structures
(Linear) (Non-linear)

—

(e) G

_I
(Stack) (Queue) (Linked List)

Figure 1.39: Data structures tree

Binary Tree
There is a special category of trees called binary trees. A binary tree is a tree where each node has two children
at most, called Right Child and Left Child. In figure 1.40 you can see an example of a tree and a binary tree.

Binary Tree

-——-9
-—-e

Lot chia Il Right Child

Figure 1.40: Tree and Binary tree

Table 1.10: Types of binary tree data structures

Description Structure drawing

Full binary tree Each node, other than "leaves", has
either 0 or 2 "children".

Complete Binary Every level of the tree is fully filled, e o 0

Tree except for possibly the last level. All
the nodes in the last level are filled
from left to right. e ° °
Perfect Binary Allinternal nodes have two children 0

Tree and all leaves are at the same level.

®oe, e00®

[] ° [] Y .. .
E):ahp[es,olfﬂppllcatlons of Tree Data Structures:
« Store hierarchical data, such as folder structures.

Prl—=Ubeilata in HTML.
ISty of F e Mentation of indexing in databases.
2023 - 1445

Decision Tree Does the university

The decision statement (if a: else b) is one of the most frequently provide the course | want?
used statements in Python. By nesting and combining these code

statements, you can build a decision tree. ’_m_l L@—‘

Decision trees are used in Al through a machine learning technique,

called decision tree learning. The end nodes of the trees in this Discard Do my scores meet
technique, also known as leaves, contain possible solutions to a the admission
problem. Each node, with the exception of the leaves, is associated requirements?
with a logical condition from which the possibilities of answering

yes or no branch out. Decision trees are easy to understand, use, ’_mJ L@_‘
visualize, and verify. For example, figure 1.41 shows a decision tree

that determines whether to apply for a certain university or not [Discard] [Apply]
based on two criteria: courses provided by the university and

meeting admission requirements. Figure 1.41: Decision tree example
Graphs

The most important feature of non-linear data structures is that like arrays
and linked lists, their data does not follow a sequence, and its elements

Graph
can each be associated with more than one element. A rooted tree starts g)
with a root node, which can be connected to other nodes. Trees follow A grafph is a data structure that
certain rules: the tree nodes must be connected, and the tree must be free consists of a set of nodes and a

set of lines, that connect all or

of loops and self loops.
some of the nodes.

But what will happen if you don't follow the rules of trees? Then, you are
not talking about trees but about a new dynamic data structure called
Graphs. In fact, trees are actually a type of graph. The graph is the most
general data structure, in the sense that all previous structures presented
can be considered special cases of graphs. figure 1.42 illustrates a graph
with six nodes and ten edges.

A tree is a graph but the reverse is

not true as not all graphs are trees.

Table 1.11: Differences between Trees and Graphs

Nodes attached in Nodes attached in
hierarchical model. network model.
There is a unique node There is not a unique or
called the root (in rooted root node.
trees).

Nodes are connected with | There is no parent-child

a parent-child relationship. relationship between
the nodes.
®oe, .0® (X J
® o e o 0 P)

tecsare stmpler structures Graphs are more

.. corppared to graphs. complex structures.
L Lyl
o . . Figure 1.42: An example graph with six nodes

Ministry ofF Edogeldsrare not allowed. Can contain cycles. 8 pleerep

and ten edges

2023 - 1445

Types of Graphs

e Directed Graph: In a directed graph, nodes are connected by directed edges — they only go in one
direction.

¢ Undirected graphs: In undirected graphs, the connections have no direction. This means that the
edges indicate a two-way relationship where each edge can be traversed in both directions.

Figure 1.43 shows a simple directed and undirected graph with six nodes and six edges.

O O

Directed Graph Undirected Graph

Figure 1.43: Directed and Undirected Graph

Graphsin Everyday Life
World Wide Web

The most representative example of graphs is the World Wide Web. The World Wide Web can be considered
as a directed graph, in which the vertices represent web pages, and the directed edges the hyperlinks. Web
structure mining is the discovery of useful knowledge from the structure of the World Wide Web represented
though hyperlinks. A person can form a graph structure of such hyperlinks and the relationships they create
between different web pages. You can see a graphical representation of the World Wide Web in figure 1.44.
By accessing such graphs, someone can calculate the relative importance of a web page.

o 0o

(G s)
(o) =
— =
— =
0 —
—

Figure 1.44: World Wide Web

Pl il ﬁ\ﬂjﬁders the search result according to this importance. This algorithm used by Google is

Ministry of EdLIJ(goo[\IAC/JH as the PageRank algorithm, and was invented by the Google founders.

2023 - 1445

Facebook

Facebook is another example of an undirected graph. As you can
see in figure 1.46, the nodes represent Facebook users, while the
edges represent friendship relationships. When you want to add
a friend, he has to accept your request; that person cannot be
your friend on the network without accepting your friend request.
The relationship here between two users (two nodes) is a two-
way relationship. The Facebook's friend suggestion algorithm uses
graph theory. Social network analysis studies social relationships
using graphs or network theory from Computer Science.

Friendship
Relationship

Figure 1.46: Facebook's undirected graph
Google Maps
Google maps and all other similar applications use graphs for showing transportation systems to
calculate the shortest path between two locations. These applications use graphs that contain a very
large number of nodes and edges that cannot be distinguished by the human eye.

A C,X\mpx/\ /%;V/
\G %

/\1 -

Childre: /Q
&
<

\\ et A i . 'm,e%\
AV e \(/«\w‘ \ / ‘ ; ‘T‘?m\m

e T \ L rnte®
7 Lpsa A | \

Figure 1.45: Google maps
Neural Network

A neural network is a machine learning graph that imitates the human brain. A neural network can
be directed and undirected based on the learning objective. It consists of neurons and weights,
distributed in different layers. The neurons are represented by nodes and the weights are represented
by edges. Signal flows are computed and optimized throughout the neural network structure to
minimize the error. It is used in many intelligent applications such as machine translation, image
classification, object detection, and object recognition. Figure 1.47 shows an example of a neural
network structure.

:::-:'.;IJ-_:)“

1l a)ljg
Ministry of Education
2023 - 1445

————--e

input layer hidden layers output layer

Figure 1.47: Neural Network Structure

GraphsinPython

Since Python does not provide a predefined data type for trees,
it does not provide a predefined data type for graphs (remember
that trees are a special case of graphs). However, graphs can also
be built out of lists and dictionaries.

In the following example, you will do the following:

1. Create a directed graph like the one shown in figure 1.48.

2. Create a function to add a node to the graph.

3. Create a function containing all paths of the graph. Figure 1.48: Graph example

myGraph = { "a" : ["b","c"],
"b" : ["c", "d"I,
"c" ¢ ["d", "e"I,
"d" : [1,
"e" : [1,
}

print(myGraph)

{'a": ['b', 'c'], 'b': ['c’, 'd'], 'c': [Md, el
AL, e [0}

Then the main program will:
1. Create the graph.

2. Print the graph.

3. Call the add function.

4. Print all the graph's paths.

You will use a dictionary whose keys are the nodes of the graph. For each key, the corresponding value
will be a list containing nodes connected by a direct edge of this node.

function for adding an edge to a graph
def addEdge(graph,u,v):
graph[u].append(v)

function for generating the edges of a graph
def generate_edges(graph):
edges = []

for each node in graph

o....for n.o.deo:'m graph:
0o, ¢ ,00
oo, °_.°

° (X]
e '#fo; each neighbouring node of a single node

wvi for neighbour in graph[node]:
Pl a)ljg

Ministry of Education
2023 - 1445

if edge exists then append to the list
edges.append((node, neighbour))
return edges

main program
initialisation of graph as dictionary

myGraph = {" - ["b" "C"],
b i ["c", "d"],
"c" ¢ ["d", "e"],
"d" . [1,
"e" : [1,
}

print the graph contents
print("The graph contents")
print(generate_edges(myGraph))

add more edges to the graph
addEdge(myGraph,'a','e")
addEdge(myGraph, 'c','f")

print the graph after adding new edges
print("The new graph after adding new edges")
print(generate_edges(myGraph))

The graph contents

[('a" lbl)' (IaI' 'c')' (IbI' 'c')' (IbI' ldl)' (ICI' ldl)' (ICI' 'e')]
The new graph after adding new edges

[('a" lbl)' (IaI' lcl)' (IaI' 'e')' (IbI' lcl)' (IbI' ldl)' (ICI' ldl)'
(‘c'y te'), (e’ 'F)]

1l a)ljg
Ministry of Education
2023 - 1445

Read the sentences and tick v/ True or False. True False

1. An item of a nonlinear data structure could be connected to more than one
item.

2. The implementation of linear data structures is more complicated than the
implementation of nonlinear data structures.

3. The leaves in a decision tree learning contain the answers to a problem.

4. The Google PageRank algorithm calculates the relative importance of a web
page on the World Wide Web.

5. Neural networks are a graph used to visualize other problems.

o State the difference between trees and graphs.

Trees ‘ Graphs

9 Describe how graph algorithms are utilized in commercial applications.

LA L Ad
oo.:'. .‘:.oo

Pl ~illra)ljg

Ministry of Education
2023 - 1445

64

0 Fill in the blanks with the correct names of the parts of the tree.

Q)¢

------------.)

\

\
1
[}
1

P il ajljg
Ministry of Education
2023 - 1445

e In the following image, you can see the book's contents page.

e Complete its tree representation.

Book
C1
Cl.1
C1.2
C2
c2a1...
c211..
c212_
C2.2
C2.3
C3

e |s it a binary tree? Justify your answer.

I [X J
o:::°. .‘::oo
P 1l a)ljg
MiniStlguf Education
2023 - 1445

65

e Draw the tree that will result from the following information:

Node A has children B and C.

Node D and E have the same parent which is node B.

Node F has a sibling which is node G, and they have the same parent which is node C.
Node H has two child nodes, | and J, and has a parent, node F.

What type of tree is described above?

pulc il ajljg

Ministry of Education
2023 - 1445

Using the dictionary in Python, write the appropriate program to represent this tree
and print the parents and children.

Pl il a)ljg
Ministry of Education
2023 - 1445

67

68

Service is provided to bank customers based on
their time of arrival at the branch. The bank has
one cashier and the average service time per
customer is 2 minutes.

The queue cannot exceed 40 people in the bank.

Create a Python program which will get one of
the import values: "ENTRY" or "NEXT".

e If you enter the value "ENTRY", it will read
the name of the customer and immediately
after that will show the number of people
waiting in front of him. If the queue is full,
then the message "The branch is full. Come
another day." will be displayed.

e If you enter the value "NEXT", the name of
the next customer to be served should be
displayed.

Repeat the above process until there are no
customers waiting for service.

Finally the program will display on the screen:
e The number of people served.
e The average customer waiting time.

pil =il ajlig

Ministry of Education

2023 - 1445

e

Binary Tree Index Push
(o 111 Leaf Rear
Data Structure Linear Root
Decision Tree Linked List Siblings
Dequeue Non-Linear Stack
Directed Graph Non-Primitive Sub-Tree
Dynamic Null Top
Front Pointer Underflow
Graph Pop Undirected Graph
L ET Primitive
\

Ministry of Education

69

70

2. Artificial Intelligence
Algorithms

In this unit, you will learn about some fundamental algorithms used in Al. You
will also create a simple rule-based medical diagnosis system with multiple
programming approaches and compare their results. Finally, you will learn
about search algorithms and how to solve maze puzzles when taking multiple
parameters into account.

Learning Objectives
In this unit, you will learn to:
> Create recursive code.

> Differentiate between the Breadth-first search and Depth-first
search algorithms.

> Describe search algorithms and their application.
> Compare search algorithms.
> Describe what a rule-based system is.

> Train artificial intelligence models so they can learn to solve
complex problems.

> Evaluate the results of your code and the efficiency of your program.
> Develop programs to solve simulations of real-life problems.
> Compare search algorithms.

Toois
> Jupyter Notebook

Lesson1

Recursion

Dividing the Problem

In this lesson, you will use recursive functions to make your program more intuitive and efficient.

If your parents brought you a gift and you were eager to know what it was, but when you opened
the box you found a new box inside that box, and thereafter there were boxes inside boxes, you
would not know in which of those boxes the gift was.

Recursion

Recursion is one of the ways to solve problems in computer science, by dividing
a problem into a group of small problems similar to the original problem so that
you can use the same algorithm to solve those problems. Recursion is used by the
operating system and by other applications, and most programming languages
support it as well.

Recursion occurs when the same

Open the box

instructions are repeated but with
different data and less complexity.

Is there a box
inside?

[NoJ
¥

\ You have found the
gift and finished the
Ny recursion

Figure 2.1: An example of recursien.

&)lig

ducation

Link to digital lesson

www.ien.edu.sa

VA

Let's look at an example of a function that calls another.

def mySumGrade (gradeslList):
sumGrade=0
1=Tlen(gradesList)
for i in range(1l):
sumGrade=sumGrade+gradesList[i]
return sumGrade

def avgFunc (gradesList): The mySumGrade
s=mySumGrade(gradesList) function is called.
1=Tlen(gradesList)
avg=s/1

return avg

The len() function takes a list
as an input argument, which

program section counts and returns the
grades=[89,88,98,95] number of items in the list.
averageGrade=avgFunc(grades)

print ("The average grade is: ",averageGrade)

The average grade is: 92.5

Recursive Function

In some cases, it is possible for a function to call itself,
and this property is called recursive calls. Main program

The general syntax of the recursive function:

recursive function
def recurseFunction():
if (condition): # base case

statement recurseFunction()

else:
H#recursive call
recurseFunction() @

main program

normal function call
recurseFunction()
.........

oo,:0 \l/

A recursive call is the process statement

by which a function calls itself.

.) Figure 2.2: Representation of a recursive call
Ministry of Education

2023 - 1445

The recursive function consists of two states:
Base case

It is the state in which the function stops calling itself, and access to
the base case is verified through a conditional statement. Without
the base case, the self-recall process will be infinite.

Recursive case

Itis the state in which the function calls itself when the stop condition
is not met, and the function remains in this self-recalling state until
it reaches the base state.

Recursion Common Examples

One of the most common examples of using recursion is the process of calculating the factorial
of a specific number. The factorial of a number is defined as the product of all natural numbers
smaller than or equal to that number. The factorial is expressed by the number followed by the
symbol "!". For example, the factorial of 5 is 5! and 5!=5%4*3*2*1,

Table 2.1: Factorials from 0! to 5! You notice that the process of calculating

0l=1 the factorial is based on the rule below

11 | 11=1*1=1 . (

21 | 21=2%1=2 Nl 21-11%2 7 1 if n=0,
</ / I * A

31 | 31=3*2%1=6 or EEIEPIRE! (n 1) n If n>0

41 | 41=4*3%2%1=24 or EGIEEIR L(Recurswecase)

5! | 51=5%4*3%2*1=120 |or

Figure 2.3: The rule of calculating the factorial

Let's create a factorial loop that calculates the factorial of the number using the for iteration.

calculate the factorial of an integer using iteration

def factoriallLoop(n):
result = 1
for i in range(2,n+1):
result = result = i

return result

main program
num = int(input("Type a number: "))
f=factorialLoop(num)

.pgx.nis Ih,e:f%c:corlal of ", num, " is:", f)

..I | é;me a number: 3

factorial of 3 is:6
Ministry of Education

2023 - 1445

Now let's calculate the factorial of a number using a factorial function.

calculate the factorial of an integer using a (factorial(3))

recursive function
def factorial(x): \
I () =
return 1 *(factorial(2)
else: . :
return (x * factorial(x-1)) Recursive \

case
main program *(factorial(1)

num = int(input("Type a number: "))
f=factorial(num)

print("The factorial of ", num, " is: ", f)
*(factorial(0)

Type a number: 3

The factorial of 3 is: 6

Figure 2.4: Recursion tree

Table 2.2: Advantages and disadvantages of recursion

Disadvantages

Advantages

e Recursive functions reduce the code segment to a

. . e Sometimes it is difficult to follow the logic of
smaller number of instructions.

recursive functions.
¢ Atask can be broken down into a set of sub-problems

. . e Recursion requires more memory and time.
using recursion.

¢ |tis not easy to define cases in which recursive

e Sometimes it's easy to use recursion to replace nested .
functions can be used.

duplicates.

Recursion and Iteration

Recursion and iteration are both involved in executing a set of instructions a number of times, and
the main difference between recursion and iteration is the way in which a recursive function is
terminated. A recursive function calls itself and ends its execution when the base state is reached.
An iteration is executed repeatedly until a specific condition is met or a specific number of iterations

has elapsed.
Here some of the differences are reviewed between recursion and iteration in the following table.

Table 2.3: Recursion and Iteration

Iteration Recursion
Fast execution. Slower execution compared to iteration.
!naqd.s less rpema@ry. It needs more memory.
fhe-sT‘ze.o:f.thé exde is larger. The size of the code is smaller.
=Y1 Cﬂg&’ﬁéﬂgg'ig:ﬁ:ﬁ?peaﬁw (LR It expires upon reaching the base state.
Ministry oF EdUcation
2023 - 1445

74

When do you use recursion?

¢ In many cases it is considered as a more intuitive way of dealing with a problem.
e Some data structures are easy to explore using recursion.
e Some sort algorithms, such as quick sort, use recursion.

In the following example, you will extract the largest number in a list of numbers using a recursive
function. Also shown in the last line of the example is another function using iteration for the purpose
of comparison.

def findMaxRecursion(A,n):

if n==1:

m = A[n-1]
else:

m = max(A[n-1],findMaxRecursion(A,n-1))
return m

def findMaxIteration(A,n):

m = A[0]
for i in range(1,n): The max() function returns the

m = max(m,A[i]) element with the highest values (the
return m largest valued element in mylList).

main program

myList = [3,73,-5,42]

1 = len(myList)

myMaxRecursion = findMaxRecursion(mylList,1)
print("Max with recursion is: ", myMaxRecursion)
myMaxIteration = findMaxIteration(mylList,1)
print("Max with iteration is: ", myMaxIteration)

Max with recursion is: 73
Max with iteration is: 73

(max(A[3], findMaxRecursion(A, 3)))

< (max(A[Z], findMaxRecursion(A, Z)D
\
oo, c0®® @ < (max(A[l], findMaxRecursion(A, 1)@
00 ° © o M P [X J n

\
pul il ajljg @ = @
Ministry of Education

2023 - 1445 Figure 2.5: The recursion tree of the function to extract the largest number in a list of numbers

In the next program, you will create a recursive function to calculate the power of a number.

The program will accept a number (base) and an index (power) from the user, and you will use the
powerFunRecursive() recursive function which will use these two arguments to calculate the power
of the base number to the exponent. The same can also be achieved with iteration and an example

is included.

def powerFunRecursive(baseNum,expNum):

if(expNum==1):

return(baseNum)

else:

return(baseNum+powerFunRecursive(baseNum,expNum-1))

def powerFunIteration(baseNum,expNum):

numPower = 1

for i in range(exp):

numPower

return numPower

main program

numPower+*base

base = int(input("Enter number: "))

exp = int(input("Enter exponent: "))

numPowerRecursion

print("Recursion:

numPowerIteration

print("Iteration:

Enter number: 10
Enter exponent: 3

Recursion: 10 raised to 3
Iteration: 10 raised to 3

powerFunRecursive(base,exp)

, base, raised to ", exp, " = ",numPowerRecursion)
powerFunIteration(base,exp)
, base, " raised to ", exp, " = ",numPowerIteration)
= 1000
= 1000

Infinite Recursive Function

You have to be very careful when implementing a recursive call, you must provide a way to stop
repeating by finding a specific condition to avoid unlimited redundancy occurring. During infinite
recursion, the system stops responding due to too many function calls which leads to memory overflow
and application termination.

1l a)ljg
Ministry of Education
2023 - 1445

Read the sentences and tick v/ True or False. True

1. Recursive functions have two states.

2. A recursive function calls another function.
3. Recursive functions are faster to execute.
4. Calling functions makes the code block smaller.

5. Writing repetitive code requires less recursion.

e What are the differences between iteration and recursion?

False

e When should recursion be used?

pul il ajljg

MinistrgofEducation

2023 - 1445

77

0 List the advantages and disadvantages of using recursion.

e Write a Python recursive function to calculate the n' largest number in a list.

e Write a Python recursive function to calculate the sum of all the even numbers in a list.

Pl o1l ajljg
Ministryof Education

2023 - 1445
78

Lesson2

DFS/BFS Algorithms

Searching in Graphs

There are cases in which you need to find a specific node in a graph (e.g. a person searching the
destination city they want to travel to) or visit every node in a graph to perform a certain operation
(e.g. printing the graph nodes). In order to achieve this, you need to visit every node in the graph
until you find the one you need. This procedure is called graph search or graph traversal, and there
are many search algorithms that help implement it, including:

¢ Breadth-first search (BFS) algorithm
¢ Depth-first search (DFS) algorithm

Link to digital lesson

www.ien.edu.sa

(Broadcasting node) .

Broadcasting
node's neighbors

BFS example: Network broadcasting

Breadth-first search (BFS) algorithm Level 0

The Breadth-first search (BFS) explores the graph level by
level. You start from a root node (start node), then you visit
the nodes that are directly connected with it, one by one.

When all the nodes of the level have been visited, you move tevell
on to the next level, following the same procedure as shown
in figu®2e6, ,e0°®
00o0,° o°,000
To keef ttatk of the'not&sYou have visited, you use a queue.
When a node is explored, you enqueue its child. Then, you Level 2
Helhekt node to be explored.
Ministry of Education
2023 - 1445

Figure 2.6: BFS Algorithm

The following example shows how the BFS algorithm works. Using the
following diagram, determine which nodes to visit to get from root node

Ato node F.

(note: use the appropriate data structure)

Graph

@ starting from the root node
(node A). Add the root node
to the queue.

A

0
LX) o0
oo::'. .‘::oo

1l a)ljg
Ministry of Education
2023 - 1445

Queue

@ Remove the root node from
the queue and process it.
Next, add the children of
the this node to the queue
(nodes B and C).

You must traverse all the nodes

in layer 1 before you move on
to the nodes in layer 2

€ Remove the node at the
front of the queue (node B)
from the queue and process
it. Next, add the children of
the this node to the queue
(nodes D and E).

e
c|p|E
2

@ Remove node C and © Remove node D
process it, then add and process it.
its children. (it has no children).

@ Remove node F and process it. The queue
is now empty and the search is terminated.

The nodes visited using the BFS

algorithm are: A, B,C, D, E, F

Let's see how you can implement the BFS algorithm in Python.

graph = {
uAu . ["B","C"],
llBll . [llDll'llEll]’

"cr o [UE,
0" ¢ [,
e : [,
"Fr e (]

visitedBFS = [] #List to keep track of visited nodes

®qugue = [.]. e ®® #nitialize a queue
00o,%c o ,00
00, *.,°.° 00

bfs function
il ilbef)lpep(visited, graph, node):
Ministry of Educatudsited.append(node)
2023 - 1445

@ Remove node E
and process it.
(it has no children).

81

queue.append(node)

while queue:
n = queue.pop(0)
print (n, end = " ")

for neighbor in graph[n]:
if neighbor not in visited:
visited.append(neighbor)

queue.append(neighbor)

main program
bfs(visitedBFS, graph, "A")

ABCDEF

Practical Applications of the BFS Algorithm
= BFS is used by peer-to-peer networks to find all neighbor nodes in order to
establish communication.
~

@\@/@ Social media use BFS to connect nodes of users that are related such as those
@ ______ ; @ with similar interests or a common location.

| GPS navigation systems use BFS to find neighboring places so they can create
' routes for the user.

To achieve network broadcasting of some packets, BFS is used.

The (BFS) algorithm can be developed by defining the starting point (Initial State)
and the target point (Goal State) to determine the path between them.

Ministry of Educatio
2023 - 1445

Depth-first search (DFS) algorithm

In Depth-first search (DFS), you keep following the edges,
going deeper and deeper into the graph. DFS uses a recursive
procedure to traverse through the nodes. When you reach
a node that has no edges to any new node, you go back to
the previous node and continue the process. The DFS
algorithm uses a stack data structure to keep track of the
exploration trail. When a node is explored, it is pushed into
the stack. When you need to go back, you pop the node
from the stack as illustrated in figure 2.7.

The following example shows how the Depth-first
search (DFS) algorithm works. Using the following
diagram, trace the order of traversal followed by the
DFS algorithm. (note: use appropriate data structure)

Graph Stack

@ Process node B and add it to
the stack.

@ Process node E and add it to the stack. A
visited node that has no children is removed
from the stack. (remove node E).

E N
B B
A A

2023 - 144

Level 0

Level 1

Level 2

Figure 2.7: DFS Algorithm

@ Process root A and add it to the stack.

© ©® © L

€@ Process node D and add it to the stack. A
visited node that has no children is
removed from the stack. (remove node D).

D N
B B
A A

The first version of the Depth-First Search
(DFS) algorithm was developed in the 19th
century by a French mathematicianas a
strategy for solving mazes.

84

© Remove node B. @ Process node Cand add it to the stack.

. C
C <
A A

6 The stack is empty and the DFS accordingly
terminates.

The nodes
Let's see how you can implement the Depth-first search (DFS) algorithm in Python. wstl:‘(—.;dDqusmg
algorithm are:
graph = { A,B,D,ECF
"A" : ["B","C"],
IIBII : ["D","E"],
“C“ : [IIFII]'
IIDII : [] ,
n E n : [] ,
n Fll : []
}

visitedDFS = [] #list to keep track of visited nodes

dfs function
def dfs(visited, graph, node):
if node not in visited:

print(node, end = " ")
visited.append(node)
for neighbor in graph[node]: A stack is used indirectly
dfs(visited, graph, neighbor) through the runtime stack
for tracking recursive calls.
3 proqram°::

cdfg('yi%iteqh%s,o graph, "A")

pul il gl

- AJB’% ECF
Ministry of Education

2023 - 1445

Practical Applications of the DFS Algorithm

DFS algorithm is used in Path finding to explore different paths in depth for maps
and roads and find the best.

DFS is used to solve mazes, by traversing all possible routes.

Table 2.4: Comparison of the BFS and DFS algorithms

Comparison criteria

Implementation
method

Data structure

Search method

Firet visitea ncdes

Ministry of Education
2023 - 1445

Traverses according to tree depth.

Cycles in a graph can be detected using DFS by the presence of a back edge,
that is passing through a node twice.

Traverses according to tree level.

Uses the stack data structure to
keep track of the next location to
visit.

Uses queue data structure to keep
track of the next location to visit.

Better when the structure of the
graph is narrow and long.

Better when the structure of the
graph is wide and short.

Goes to the bottom of a subtree,
then backtracks.

Finds the path to the destination
with the least number of edges.

Children are visited before siblings.

Siblings are visited before children.

85

Read the sentences and tick v/ True or False. True

1. The BFS and DFS are implemented with the use of recursion.

2. The BFS and DFS cannot be used on tree data structures.

3. The BFS algorithm is implemented with the help of a linked list data structure.

4. The DFS algorithm can be implemented with the help of a stack data
structure.

5. The BFS algorithm cannot be used in network broadcasting.

e Explain how the BFS algorithm and the DFS algorithm work.

False

e Compare the differences between the BFS and DFS algorithms.

ST
p..l'_I_I_LII g
Ministry of Education

2023 - 1445
86

o In the diagram to the right, you want to go from
the start node (A) to the target node (G). Apply
BFS and DFS algorithms using the appropriate
data structure (stack/queue), indicating which
nodes are visited.

®oe, pr Y 1

00,e,% %, 000

00, ° °,° o000
Pl il ajljg
Ministry of Education
2023 - 1445

87

e Write a Python function that performs BFS on a graph to check if there is a path between
two given nodes.

e Write a Python function that uses DFS to find the shortest path in a graph.

pul o1l ajljg
Ministryof Education

2023 - 1445
88

Link to digital lesson

Lesson3

Rule-based Decision Making

www.ien.edu.sa

Rule-Based Systems

Rule-based Al systems focus on using a set of predefined rules to make decisions and solve problems.
Expert systems are the most well-known example of rule-based Al. They were one of the first forms of
Artificial Intelligence ever developed and were particularly popular in the 1980s and 1990s. They were
often used to automate tasks that would normally require human expertise, such as diagnosing medical
conditions or troubleshooting technical problems. Nowadays, rule-based systems are no longer considered
to be state-of-the-art and are often outperformed by more modern Al approaches. However, they maintain
their popularity in many application domains due to their ability to combine reasonable performance with
an intuitive and interpretable decision-making process.

Knowledge Base
One of the key components of any rule-based Al system is the knowledge

base, which is a collection of facts and rules that the system uses to Expert systems

make decisions. These facts and rules are typically entered into the An expert system is a type
system by human experts, who are responsible for identifying the most of Al that mimics the
important information and defining the rules that the system should decision-making ability of a
follow. To make a decision or solve a problem, the expert system begins human expert. It uses a

by examining the facts and rules in its knowledge base and applying knowledge base of rules and
them to the situation at hand. If the system is unable to find a match facts and inference engines
between the facts and rules in its knowledge base, it may ask the user to provide advice or solve
for additional information or refer the problem to a human expert for problems in a specific
further assistance. Some of the main advantages and disadvantages of domain of knowledge.

rule-based systems are shown in table 2.5:

Table 2.5: Main advantages and disadvantages of rule-based systems

Advantages Disadvantages
* They can make decisions and solve problems | e They are only as good as the knowledge and rules
more quickly and accurately than humans, that have been entered into their knowledge base,
especially when it comes to tasks that require and they may not be able to handle situations that
a large amount of knowledge or data. are outside of their area of expertise.
LY ° e00®
©0e °. «° o000 . . .
o 8 TQey.argaplfetaoperate consistently, without | e They are not able to learn or adapt in the same way
the biases or errors that can sometimes that humans can and this makes them less applicable
pul il ,ﬁmﬂ}u@pce human decision-making. to dynamic scenarios where both the input data
Ministry of Education and logic can change significantly with time.

2023 - 1445

In this lesson, you will be introduced to rule-based systems in the context of one Rule-based Al System

of their key applications: medical diagnosis. The system will provide a medical RERIEaEEEE
diagnosis, based on the patient's symptoms, as seen in figure 2.8. Beginning
with a simple rule-based diagnostic system, you will then discover some more Disease 1

intelligent systems and how each iteration leads to improved results. Symptoms (@) (b) (€) (d

Disease 2
m Symptoms e f ‘g 'h
In this first iteration, you will build a simple rule-based system that can diagnose Disease 3
three possible diseases: kidney stones, appendicitis, and food poisoning. The Symptoms (i (j k(I
input to your system will be a simple knowledge base that maps each disease

to a list of possible symptoms. This is provided in the format of a JSON file, which | L
you load and display below.

import json #a library used to save and load JSON files

Patient 1 Patient 2
the file with the symptom mapping Sy?n;tr:)ms Sy?n:tr:)ms
symptom_mapping_file="symptom_mapping_v1.json' B @G 6 YYY
open the mapping JSON file and load it into a dictionary \L_J L—J
with open(symptom_mapping_file) as f:
mapping=json.load(f) Disease| [Disease| [Disease
1 2 3

print the JSON file

print(json.dumps(mapping, indent=2))

Figure 2.8: Medical diagnosis
by Rule-based Al System

"diseases": {

"food poisoning": [
"vomiting",
"abdominal pain",
"diarrhea",
"fever"

1,

"kidney stones": [
"lower back pain",
"vomiting",
"fever"

1,

"appendicitis": [
"abdominal pain",

oot svomitingle
oo, 'feVer’ s o0

]
pu = dlajljg
Ministry ¢ Education
2023 - 1445

This first rule-based system will follow a simple rule: if the patient has at least 3 of all the possible
symptoms of a disease, then the disease should be added as a possible diagnosis. Below you can find
the Python function that uses this rule to make a diagnosis, given the above knowledge base and the
patient's symptoms.

def diagnose_vi(patient_symptoms:list):
diagnosis=[] #the list of possible diseases
if "vomiting" in patient_symptoms:
if "abdominal pain" in patient_symptoms:
if "diarrhea" in patient_symptoms:

1:vomiting, 2:abdominal pain, 3:diarrhea
diagnosis.append('food poisoning')

elif 'fever' in patient_symptoms:

1:vomiting, 2:abdominal pain, 3:fever
diagnosis.append('food poisoning")
diagnosis.append('appendicitis')

elif "lower back pain" in patient_symptoms and 'fever' in patient_symptoms:

1:vomiting, 2:lower back pain, 3:fever
diagnosis.append('kidney stones')

elif "abdominal pain" in patient_symptoms and\
"diarrhea" in patient_symptoms and\
"fever" in patient_symptoms:\
1:abdominal pain, 2:diarrhea, 3:fever
diagnosis.append('food poisoning"')

return diagnosis

In this case, the knowledge base is hard-coded inside the function in the form of IF statements. These
statements utilize the common symptoms among the three diseases to gradually arrive at a diagnosis
is.quickly as poss.igle. For instance, the "vomiting" symptom is shared by all diseases. Therefore, if
w:'i!st IF stat}eﬁvent is True, then 1 of the three required symptoms for all diseases has already been
Sc%dun’ted for Pht®, you will proceed to check for "abdominal pain", which is associated with two of
the diseases and continue in the same manner until all possible symptom combinations have been

Pl i hhsidbired.

Ministry of Education

2023 - 1445

You can then test this function with three different patients:

Patient 1

my_symptoms=['abdominal pain', 'fever', 'vomiting']
diagnosis=diagnose_vi1(my_symptoms)

print('Most likely diagnosis:',diagnosis)

Patient 2

my_symptoms=['vomiting', 'lower back pain', 'fever' 1]
diagnosis=diagnose_vi1(my_symptoms)

print('Most likely diagnosis:',diagnosis)

Patient 3

my_symptoms=['fever', 'cough', 'vomiting']
diagnosis=diagnose_vi1(my_symptoms)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: ['food poisoning', 'appendicitis']
Most likely diagnosis: ['kidney stones']
Most likely diagnosis: []

Patient 1 Patient 2 Patient 3
Symptoms Symptoms Symptoms
e abdominal pain ® vomiting o fever

o fever ¢ |lower back pain e cough

e vomiting o fever e vomiting

Rule-based Al System Diagnosis | symptom_mapping_v1.json

Food poisoning or Appendicitis | | Kidney stones | | ?

Figure 2.9: Representation of the first iteration

For Patient 1, both food poisoning and appendicitis are included in the diagnosis because the patient's
three symptoms are associated with both diseases. Patient 2 is diagnosed with kidney stones, which
is the only disease that matches the 3 symptoms. Finally, a diagnosis cannot be made for Patient 3,
as none of the three diseases have all the 3 of the patient's symptoms.

The benefits of this first rule-based version are that it is intuitive and explainable. It is also guaranteed
to consistently use its knowledge base and rules to provide a diagnosis, without bias or deviation
from the standard I|ne However, this version also has significant disadvantages. First, the "at least 3
smpﬁdms |;ulé Lsﬁa oversimplified representation of how a human expert would actually make a
n?edlcal d1agnosls *Stcond, the knowledge base for this version is hard-coded in the function. Even
though it was easy to create simple IF statements for such a small knowledge base, this task would
JEIJIﬁtreasmgly more complex and time-consuming for cases with many more diseases and
Ministry syidptoimsn
2023 - 1445

In this second iteration, you will be enhancing the flexibility and applicability of your rule-based system by
making it capable of dynamically reading the knowledge base directly from a JSON file. This will eradicate
the process of manually engineering symptom-specific IF statements inside the function. This is a significant
improvement that will make your system applicable to larger knowledge bases with arbitrary numbers of
diseases and symptoms. An example of such a knowledge base can be found below.

symptom_mapping_file='symptom_mapping_v2.json'

with open(symptom_mapping_file) as f:
mapping=json.load(f)

print(json.dumps(mapping, indent=2))

{ "headache",
"diseases": { "tiredness",
"covid19": ["stuffy nose",
"fever", "sneezing",
"headache", "sore throat",
"tiredness", "cough",
"sore throat", "runny nose"
"cough" 1,
1, "allergies": [
"common cold": ["headache",
"stuffy nose", "tiredness",
"runny nose", "stuffy nose",
"sneezing", "sneezing",
"sore throat", "cough",
"cough" "runny nose"
1,]
"flu": [}
"fever", }

This new knowledge base is only slightly larger than the previous one. However,

it is clear that trying to manually create IF statements in this case would be 1 .F
significantly harder. For instance, the previous knowledge base had one disease

with four symptoms and two diseases with three symptoms. Given the "at least se
3 symptoms" rule that you applied in version 1, this led to 6 possible symptom iteration 1
triplets to consider. In the new knowledge base above, the four diseases have !
5,5, 8, and 6 symptoms. This leads to 96 possible triplets! In a case where you itera‘{{on 2
would have to deal with hundreds or even thousands of diseases, it would be

impossible to create a system like the one in the first version. /1
m.addition, the.rg‘s no valid medical reason for being limited to symptom '\\ 'FO r
i’bﬁe}s’. .Thefe:ferepyou will also make the diagnosis logic more versatile by .

Eoﬁntmgi;he.mfm'oﬁr of matching symptoms for each dlseasg and allowing the Figure 2.10: The second
user to specify the number of matching symptoms that a disease must have

| iteration has no hard-coded
Pl g IhGuded in the diagnosis.

IF statements
Ministry of Education

2023 - 1445

def diagnose_v2(patient_symptoms:list,
symptom_mapping_file:str,
matching_symptoms_lower_bound:int):

diagnosis=[]

with open(symptom_mapping_file) as f:
mapping=json.load(f)

access the disease information
disease_info=mapping['diseases']

for every disease
for disease in disease_info:

counter=0
disease_symptoms=disease_info[disease]

for each patient symptom
for symptom in patient_symptoms:

if this symptom is included in the known symptoms for the disease

if symptom in disease_symptoms:
counter+=1

if counter>=matching_symptoms_lower_bound:
diagnosis.append(disease)

return diagnosis

This version has no hard-coded IF statements. After loading the symptom mapping from the JSON
file, it proceeds to consider every possible disease via the first FOR loop. The loop checks each of the
patient's symptoms with the known symptoms for the disease and increases a counter every time it

finds a match.

pul il ajljg
Ministry of Education

2023 - 1445

Patient 1

my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v2(my_symptoms, 'symptom_mapping_v2.json' , 3)
print('Most likely diagnosis:',diagnosis)

Patient 2

my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v2(my_symptoms, 'symptom_mapping_v2.json' , &)
print('Most likely diagnosis:',diagnosis)

Patient 3

my_symptoms=["'fever', 'cough', 'vomiting']
diagnosis=diagnose_v2(my_symptoms, 'symptom_mapping_v2.json' , 3)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: ['common cold', 'flu', 'allergies']
Most likely diagnosis: ['common cold']
Most likely diagnosis: []

Patient 1 Patient 2 Patient 3
Symptoms Symptoms Symptoms
e Stuffy nose e Stuffy nose o fever
e Runny nose e Runny nose e cough
* Sneezing ® Sneezing e vomiting
e Sore throat e Sore throat
\?@6 symptom_mapping_v2.json @
$ | |
Common cold or Flu or Allergies | | Common cold | | ?

Figure 2.11: Representation of the second iteration

Observe that this second iteration is a generalized version of the first iteration. However, this iteration
is much more widely applicable, as it can be used as-is with any other knowledge base of the same
format, even if it includes thousands of diseases with an arbitrary number of symptoms. It also allows
the user to make the diagnosis more or less strict by tuning the matching_symptoms_lower_bound
pargmpeter. Thissoam be observed for Patients 1 and 2: even though they have the same symptoms,
ﬂjﬁ@g?tljis:pérajrteter leads to a significantly different diagnosis.

Despite these improvements, this version is still far from perfect and is still not an accurate

Pl idpragbmption of an actual medical diagnosis.

Ministry of Education
2023 - 1445

In this third iteration, you will increase the intelligence of our rule-based system by giving it access to a more
detailed type of knowledge base. This new type will take into account the medical fact that certain symptoms
are more common than others for each disease.

symptom_mapping_file="'symptom_mapping_v3.json'

with open(symptom_mapping_file) as f:
mapping=json.load(f)

print(json.dumps(mapping, indent=2))

{ "fever",
"diseases": { "headache",
"covid19": { "tiredness",
"very common": ["sore throat",
"fever", "cough"
"tiredness", 1,
"cough" "less common": [
1, "stuffy nose",
"less common": ["sneezing",
"headache", "runny nose"
"sore throat" 1
] },
b "allergies": {
"common cold": { "very common": [
"very common": ["stuffy nose",
"stuffy nose", "sneezing",
"runny nose", "runny nose"
"sneezing", 1,
"sore throat" "less common": [
1, "headache",
"less common": ["tiredness",
"cough" "cough"
] 1
by }
"flu": { }
o:. .. "yggy::ommon" [}
0, o o L0

1l a)ljg
Ministry of Education
2023 - 1445

The threshold-based logic on the number of symptoms will be abandoned and replaced with a scoring
function that assigns custom weights to very common and less common symptoms. The user will also
be given the flexibility to specify whatever weights they think are appropriate. The disease or diseases
with the highest weighted sum will then be included in the diagnosis.

from collections import defaultdict

def diagnose_v3(patient_symptoms:list,
symptom_mapping_file:str,
very_common_weight:float=1,
less_common_weight:float=0.5

E

with open(symptom_mapping_file) as f:
mapping=json.load(f)

disease_info=mapping['diseases']

holds a symptom-based score for each potential disease
disease_scores=defaultdict(int)

for disease in disease_info:

get the very common symptoms of the disease
very_common_symptoms=disease_info[disease]['very common']

get the less common symptoms for this disease
less_common_symptoms=disease_info[disease]['less common']

for symptom in patient_symptoms:

if symptom in very_common_symptoms:
disease_scores[disease]+=very_common_weight

elif symptom in less_common_symptoms:
disease_scores[disease]+=1ess_common_weight

find the max score all candidate diseases
max_score=max(disease_scores.values())

if max_score==0:
return []

else:
®ee, #ga@8Pdiseases that have the max score
e o o0 o 9 o o . o .
oo, .-.°.d1.‘agnosls:[dlsease for disease in disease_scores if disease_scores
[disea8e]==max_score]

1l a)ljg
Ministry of Education
2023 - 1445

return diagnosis, max_score

For each possible disease included in the knowledge base, this new function identifies the very
common and less common symptoms exhibited by the patient. It then increases the disease's score
according to the respective weights. In the end, the diseases with the maximum score are included
in the diagnosis. You can now test this new implementation with a few examples:

Patient 1

my_symptoms=["headache", "tiredness", "cough"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json')
print('Most likely diagnosis:',diagnosis)

Patient 2

my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json")
print('Most likely diagnosis:',diagnosis)

Patient 3

my_symptoms=["stuffy nose", "runny nose", "sneezing", "sore throat"]
diagnosis=diagnose_v3(my_symptoms, 'symptom_mapping_v3.json', 1, 1)
print('Most likely diagnosis:',diagnosis)

Most likely diagnosis: (['flu'l, 3)
Most likely diagnosis: (['common cold'], &)
Most likely diagnosis: (['common cold', 'flu'l], &)

Patient 1 Patient 2 Patient 2
Symptoms Symptoms Symptoms
e Headache e Stuffy nose e Stuffy nose
e Tiredness e Runny nose e Runny nose
e Cough e Sneezing e Sneezing
e Sore throat e Sore throat
I I
\Em. symptom_mapping_v3.json {E%@
{ 1]
I |

| Flu | | Common cold | | Common cold or Flu |

Figure 2.12: Representation of the third iteration

Younggy obseryedhat, even though the 3 symptoms for Patient 1 ("headache", "tiredness", "cough")

afe:sﬂ.ar.ed bv:thg ¢ covid19, and allergies, only the flu is included in the diagnosis. This is because

all three sim?pt'oms are listed as 'very common' in the knowledge base, leading to a maximum score

- Sjmnilarly, while Patients 2 and 3 have the same symptoms, the different weights submitted for

Ministry S/Feg&ﬁc%?iwtmon and less common symptoms lead to.<I|ﬁerent dlangoses. Speuﬁcglly, using an equal
2023 - 1\£v&g t for the two symptom types leads to the addition of the flu in the diagnosis.

Iteration 4

The rule-based system could be further improved by increasing the sophistication of the knowledge base
and by experimenting with different scoring functions. Even though this would indeed lead to improvement,
it would still require a considerable amount of time and manual effort. Thankfully, there is a way to
automatically build a rule-based system that is intelligent enough to directly construct its own knowledge
base and scoring function: by using machine learning. Rule-based machine learning applies a learning
algorithm to automatically identify useful rules, rather than a human needing to apply prior domain knowledge
to manually construct rules and curate a rule set

Instead of a hand-crafted knowledge base and a scoring function, a machine learning algorithm expects
only one input: a historical dataset of patient cases. By learning directly from data, problems associated
with the acquisition and validity of background knowledge are prevented. Each case consists of a
patient's symptoms and a medical diagnosis made by a human expert. Given such a training dataset,
the algorithm can then automatically learn how to predict the most likely diagnosis for a new patient.

import pandas as pd #import pandas to load and process spreadsheet-type data
medical_dataset=pd.read_csv('medical_data.csv') #load a medical dataset.

medical_dataset

fever cough tiredness headache stuffy nose runny nose sneezing sore throat diagnosis

0 1 1 1 0 0 0 0 0 covid19
1 0 1 1 1 0 0 covid19
2 1 1 1 0 0 0 0 0 covid19
3 1 1 1 0 0 0 0 0 covid19
4 1 1 1 0 0 0 0 0 covid19
1995 0 1 0 0 1 0 1 1 common cold
1996 0 0 0 1 1 1 1 0 common cold
1997 0 0 1 0 1 0 0 1 common cold
1998 0 0 0 0 1 0 0 1 common cold
1999 0 1 0 0 0 0 1 1 common cold

The dataset consists of 2,000 patient cases. Each case has 8 possible symptoms: fever, cough, tiredness,
headache, stuffy nose, runny nose, sneezing, and sore throat. Each of these is encoded in a separate
biagry column, Aémary digit 1 means that the patient had the symptom, while a binary digit 0 means
@QP.thé:pahéngcﬁ(: not have it.

1l a)ljg
Ministry of Education
2023 - 1445

The final column includes the diagnosis made by the human expert. There are four possible diagnoses:
covid19, flu, allergies, common cold.

You can easily validate this with Python code:
set(medical_dataset['diagnosis'])

Even though there are dozens of possible machine learning algorithms that can be used with such a
dataset, you will use one that follows the logic-based approach: a decision tree. Specifically, you will
use the DecisionTreeClassifier class from the popular sklearn Python library.

from sklearn.tree import DecisionTreeClassifier
def diagnose_v4(train_dataset:pd.DataFrame):

create a DecisionTreeClassifier
model=DecisionTreeClassifier(random_state=1)

drop the diagnosis column to get only the symptoms
train_patient_symptoms=train_dataset.drop(columns=["'diagnosis'])

get the diagnosis column, to be used as the classification target
train_diagnoses=train_dataset['diagnosis"']

build a decision tree
model.fit(train_patient_symptoms, train_diagnoses)

return the trained model
return model

The Python implementation of this fourth version is considerably shorter and simpler than the previous
ones. It simply reads the training file, uses it to build a decision tree model based on the relations
between symptoms and diagnoses, and then returns the custom model. In order to properly test this
version, begin by splitting our dataset into two separate training and testing sets.

from sklearn.model_selection import train_test_split

use the function to split the data, get 30% for testing and 70% for training.
train_data, test_data = train_test_split(medical_dataset, test_size=0.3,
random_state=1)

#print the shapes (rows x columns) of the two datasets
print(train_data.shape)

:)::rtt.(‘.ces.t._fitza: shape)

oo..°.‘ 0..00

(1400, 9)

pul —ill (.Elég(ﬁ 9)

Ministry of Education
2023 - 1445

You now have 1,400 data points that will be used for training the model and 600 that will be used to

test it. Begin by training and visualizing the decision tree model.

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

my_tree=diagnose_v4(train_data) # train a model
print(my_tree.classes_) #print the possible target labels (diagnoses)
plt.figure(figsize=(12,6)) #size of the visualization, in inches
plot the tree
plot_tree(my_tree,

max_depth=2,

fontsize=10,

feature_names=medical_dataset.columns[:-1]

)

['allergies' 'common cold' 'covid19' 'flu']

fever <= 0.5
gini = 0.75
samples = 1400
value = [354, 345, 358, 343]

— ™~

sore throat <= 0.5 sore throat <= 0.5
gini = 0.606 gini = 0.507
samples = 791 samples = 609
value = [354, 340, 71, 26] value = [0, 5, 287, 317]

S\ /

N\

runny nose <= 0.5 tiredness <= 0.5 sneezing <= 0.5
gini = 0.497 gini = 0.182 gini = 0.387
samples = 526 samples = 265 samples = 317
value = [354, 101, 58, 13] value = [0, 239, 13, 13] value = [0, 2, 235, 80]

headache <= 0.5
gini = 0.309
samples = 292
value = [0, 3, 52, 237]

/N /N S /N
I EEEEEEBE

Pl aylg
Ministry of Education
2023 - 1445

Figure 2.13: Decision tree model for the medical_data dataset, with two levels depth

101

The plot_tree() function is used to visualize a decision tree. For lack of space, only the first two levels
(plus the root) are visualized. This number can be easily tuned via the max_depth parameter.

plot_tree(my_tree,
max_depth=2,

Depth of the
decision tree

Each node in the tree represents a subset of the patients. For example,

the root node represents the full population of the 1,400 patients in f‘;‘{:{;;;’f
the training set. Out of these, 354, 345, 358, and 343 patients were samples = 1400

. . . . value = [354, 345, 358, 343]
diagnosed with allergies, the common cold, covid19 and the flu,

respectively.

e e

sore throat <= 0.5 sore throat <= 0.5
gini = 0.606 gini = 0.507
samples = 791 samples = 609
value = [354, 340, 71, 26] value = [0, 5, 287, 317]

The tree is built in a top-down fashion via binary splits. The first split is based on whether or not the
patient has a fever or not. Given that all symptom features are binary, a <=0.5 check is True if the
patient did not have the symptom. Those that did not have a fever (left path) are further split based
on whether or not they had a sore throat. Those that did not are then split based on whether or not
they had a runny nose. The node at this point includes 526 cases. Out of those, 354, 101, 58, and 13
were diagnosed with allergies, the common cold, covid19, and the flu, respectively.

SN\ AN

runny nose <= 0.5 tiredness <= 0.5 sneezing <= 0.5 headache <= 0.5
gini = 0.497 gini = 0.182 gini = 0.387 gini = 0.309
samples = 526 samples = 265 samples = 317 samples = 292
value = [354, 101, 58, 13] value = [0, 239, 13, 13] value = [0, 2, 235, 80] value = [0, 3, 52, 237]
/ 74 / /4

The splitting continues until the algorithm determines that the cases The gini index measures a node's

hg\@'oeen separﬁﬂaﬁ into sufficiently pure nodes. A perfectly pure el et s UL lllees:)
nodIEols, bné.thaton#y includes cases with the same diagnosis. The i Fhe ".Ode s contents being
classified in the wrong class. The
gml "val'ues marked on each node represent scores of the gini index, lower the gini index, the more
Pl cadbgn)dydprmula used to evaluate the purity of a given node. certain the algorithm can be
Ministry of Education about the classification.

2023 - 1445

You will now use this decision tree to predict the most likely diagnosis for the patients in the testing set. The testing
set is used to evaluate the performance of the model. The exact evaluation method depends on whether the task is
one of regression or classification. In classification problems, like the one presented here, computing a model's
accuracy and confusion matrix is a common evaluation method.

e Accuracy is the proportion of correct predictions made by the classifier. A high accuracy (closer to 100%) means
that the classifier is making mostly correct predictions.

¢ A Confusion Matrix is a table that compares the true (actual) labels in a dataset with the predictions made by
the classifier. The table includes one row for each true label and one column for each predicted label. Each
entry in the matrix represents the number of instances that have the corresponding true and predicted labels.

functions used to evaluate a classifier
from sklearn.metrics import accuracy_score,confusion_matrix

drop the diagnosis column to get only the symptoms
test_patient_symptoms=test_data.drop(columns=["'diagnosis'])

get the diagnosis column, to be used as the classification target
test_diagnoses=test_data['diagnosis']

guess the most likely diagnoses
pred=my_tree.predict(test_patient_symptoms)

print the achieved accuracy score
accuracy_score(test_diagnoses,pred)

0.8166666666666667

You will observe that the decision tree achieves an accuracy of 81.6%. This means that, out of all 600 test
cases, the tree correctly diagnoses 490 of them. You can also print the model's confusion matrix to get a
better view of the number of misclassified examples.

confusion_matrix(test_diagnoses,pred)

array([[143, 3, 0, 0],
[48, 98, 5, 4],
[2, 1, 127, 121,
[1, 3, 31, 12211)

1l a)ljg
Ministry of Education
2023 - 1445

Predicted Predicted Predicted Predicted

allergies common cold covid19 flu
Actual allergies 143 3 0 0
Actual common 48 98 5 4
cold
Actual covid19 2 1 127 12
Actual flu 1 3 31 122

Figure 2.14: Confusion matrix of predicted and actual cases

The numbers outside of the diagonal represent the model's mistakes.

For instance, given that the order of the four possible diagnoses is ['allergies', 'common cold’, 'covid19',
'flu'], the matrix informs us that there were 48 cases of the common cold that were misclassified as
allergies and 31 cases of the flu that were misclassified as covid19.

Even though the model is not perfect, the fact that it can achieve such a high accuracy by learning its
own rule set and without the need for a manually-constructed knowledge base is impressive. Another
encouraging factor is that this accuracy is achieved without trying to tune the various performance
parameters of the DecisionTreeClassifier. It is thus very likely that we can improve the model even
further. Another obvious way to improve is to go beyond the limitation of the rule-based model and
experiment with different types of machine learning algorithms. You will explore some of these
methods in the following unit.

pul il ajljg
Ministry of Education

2023 - 1445

o What are some advantages and disadvantages of rule-based systems?

Q What is an advantage and a disadvantage of the first iteration?

Add a patient to your code in the first iteration of the rule-based system with the

symptoms ["vomiting", "abdominal pain", "diarrhea", "fever", "lower back pain"]. What
is the diagnosis for this patient? Present your observations below.

pul il ajljig

Ministry of Education
2023 - 1445

105

0 In the second iteration, how many diseases does each patient's diagnosis contain, if
you change the parameter matching_symptoms_lower_bound to 2, 3 and 4? Modify
your code and present your observations.

e In the third iteration, change both weights to 1 for patients 1 and 2, just like the third
patient's. Modify your code and present your observations.

Describe briefly how each iteration is enhanced from the previous one (first to second,
second to third, third to fourth).

L) 'L Ad
oo.:°. .‘:.oo

Pl il ajljg

Mlnirl— uaoftbEdiicatbine

Sty Br=6deaGuth

2023 - 1445
106

Link to digital lesson

Lesson4

Informed Search Algorithms

www.ien.edu.sa

Applications of Search Algorithms

Search algorithms are a key component of Al systems, as they | Final state |
enable the exploration of different possibilities for finding good
solutions to complex problems with numerous mainstream
applications. Some examples of their applications include:

e Robotics: A robot might use a search algorithm to find its
way through a maze or to locate an object in its environment.

e E-commerce websites: Online shopping websites use
search algorithms to match customers' queries with
available products, filter results based on criteria such as
price, brand, and ratings, and suggest related products.

e Social media platforms: Social media platforms use search
algorithms to show users the most relevant posts, people,
and groups based on keywords and user interests.

¢ Enabling a machine to play games at a high level of skill:
A chess or Go-playing Al might use a search algorithm to
evaluate different moves and choose the one that is most
likely to lead to a win.

e GPS navigation systems: GPS navigation systems use search
algorithms to find the shortest and fastest route between
two locations, taking into account real-time traffic data. " ——

¢ File management systems: Search algorithms are used in
file management systems to quickly locate specific files
based on their names, contents, or other attributes. L J *

!

Figure 2.15: Arobot uses a
search algorithm to find its way

Types and Examples of Search Algorithms
There are two main types of search algorithms: uninformed and informed.

Uninformed Search Algorithms

:Jr:i;’r?prr;nea sé;r;h:algorithms, also known as blind search algorithms, have no additional information
about the states of a problem beyond those provided in the problem definition and perform an
pul — ekhaudiigp search of the search space by following a predetermined set of rules. The breadth-first
Ministry orsearnch(BFS) and depth-first search (DFS) techniques covered in lesson 2 are examples of uninformed

2023 - 148€arch algorithms.

For instance, DFS begins at the root node of a tree or graph and always expands to the deepest
unvisited node. It proceeds in this manner until it has exhausted the entire search space by visiting
all available nodes. It then reports the best solution that was found during the search. The fact that
DFS always follows these rules and does not adjust its strategy regardless of what it discovers during
its search makes it an uninformed algorithm.

Another notable example in this family is Iterative Deepening Depth-First Search (IDDFS), which can
be viewed as a combination of the DFS and BFS algorithms, as it uses a depth-first strategy to iteratively
explore the full breadth of options up to a certain node.

Informed Search Algorithms

In contrast to the uninformed search algorithms, informed

search algorithms use information about the problem and the Heuristic function

search space to guide their search. Examples of such algorithms A function that ranks alternatives in

include: search algorithms at each

e A* Search, which uses a heuristic function to estimate the branching stage depending on
distance between each of the candidate nodes and the goal available data to choose which
node. It then expands the candidate node with the lowest branch to pursue.

estimate. The A* Search algorithm is as good as its heuristic

function. For instance, if the heuristic is guaranteed never to

overestimate the actual distance to the goal, then the algorithm is guaranteed to find the optimal
solution. Otherwise, the returned solution might not be the best possible one.

e Dijkstra's algorithm, which expands the node with the actual lowest distance to the goal in every
step. Therefore, contrary to A* Search, Dijkstra actually computes the real distance and does not
use heuristic estimates. While this makes Dijkstra slower than A* Search, it also means that it is
always guaranteed to find the optimal solution (the shortest path from the start to the goal).

¢ Hill climbing, which starts by generating a random solution. It then tries to iteratively improve
this solution by making small changes that increase a specific heuristic function. Even though this
approach is not guaranteed to find the optimal solution, it is easy to implement and can be very
efficient for certain types of problems.

[A* Search | Dijkstra's algorithm

The purple cells are the
the visited cells, the
green cell is the start

location, the red cell is

the finish location and
the yellow cells
represent the found
route.

Mii&ru of Educati

2023 -1 445Figure 2.16: A* Search and Dijkstra's algorithm solving the same maze

In this unit you will see some visual examples and Python implementations of BFS and A* Search

to demonstrate the differences between informed and uninformed search algorithms.

Creating Maze Puzzles in Python
Consider the following simple maze puzzle:

(Goal)

(Obstacle)

1

The maze is defined as a 3x3 grid. The starting position 0
is marked by a star in the lower left corner of the

maze. The goal is to reach the target cell marked by
the X. The player can move to any free cell that is 1
adjacent to their current position.

(Starting position)72—0

Figure 2.17: Simple maze puzzle

A cell is considered free unless it is already occupied by a block. For instance, the example maze shown
above has 3 cells occupied by blocks. These blocks are colored dark grey and form an obstacle that the
player has to circumvent to get to the X. The player can move to any horizontally, vertically, or diagonally

adjacent free cell. For instance:

0 T~ /N T 0
SO ! P
~ i >
~ ! -
~ \ -
< T -
S } Pl
~ ! -
~ -
1 < _____________ 1 A b
- ~ ! P
- ' ~ | -
- ~ -
- H ~e 1 -
ol ~ | -
-1 1 ~ ! P
- ~ -
. ! ~ | -
- 1 ~ -
- ~ | -
- | ~ -
2 L v <\ 2

Figure 2.18: The player can move to any horizontally, vertically, or diagonally adjacent free cell

The objective is to find the shortest possible
path and find it with the smallest possible
number of cell visits. Even though a small
3x3 maze might seem trivial to a human
player, any intelligent algorithmic solution
has to work for arbitrarily large and complex
mazes. For instance, consider a massive
10.000x10.000 maze with millions of blocks
scattered in various complex shapes.

The following Python code can be used to
createa (.1ataset that rep.re.sents the example
shown&nﬂgure 2,18} cee

°.° .® o0

small_maze

iy e e array([[0., 0.,
pc il a)lig le., 1.,
Ministry of Education [0., 1.,

2023 - 1445

import numpy as np

for block in blocks:
set the value of block-occupied cells to be equal to 1
small_maze[block]=1

0.]
0.]
1.]

1)

create a numeric 3 x 3 matrix full of zeros.
small_maze=np.zeros((3,3))

coordinates of the cells occupied by blocks
blocks=[(1, 1), (2, 1), (2, 2)]

In this numeric representation of a maze, free and occupied cells are represented by zeros and ones,
respectively. The same code can also be easily updated to create arbitrarily large and complex mazes.
For example:

import random
random_maze=np.zeros((10,10))

coordinates of 30 random cells occupied by blocks
blocks=[(random.randint(0,9),random.randint(0,9)) for i in range(30)]

for block in blocks:
random_maze[block]=1

The following function can be used to visualize a maze:

import matplotlib.pyplot as plt #library used for visualization

def plot_maze(maze):

ax = plt.gca() # create a new figure
ax.invert_yaxis() # invert the y-axis to match the matrix
ax.axis('off"') # hide the axis labels

ax.set_aspect('equal') #make sure the cells are rectangular

plt.pcolormesh(maze, edgecolors='black', linewidth=2,cmap="Accent')
plt.show()

plot_maze(random_maze)

Green squares
are not occupied
and can be
traversed

~
Black squares

are occupied

by blocks and
cannot be

e
Ministry of Education
2023 - 1445

Figure 2.19: Visualization of a 10x10 maze with random blocks

110

Given any such maze, the following function can be used to return a list with all the adjacent accessible,

empties and neighbors of a specific cell:

def get_accessible_neighbors(maze:np.ndarray, cell:tuple):

list of accessible neighbors, initialized to empty
neighbors=[]

x-1,y-1 x-1,y x-1, y+1
X, y-1 Xy X, y+1
x+1, y-1 x+1,y x+1, y+1

x,y=cell

for each adjacent cell position

for i,j in [(x-1,y-1),(x-1,y),(x-1,y+1),(x,y-1),(x,y+1),(x+1,y-1),(x+1,y),

(x+1,y+1)]:

if the adjacent cell is within the bounds of the grid and is not occupied by a block

if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and
maze[(i,])]==0:

neighbors.append(((i,j),1))

return neighbors

This implementation assumes that all possible transitions from a cell to any horizontally, vertically, or
diagonally adjacent neighbor have the same cost of 1. This assumption will be revisited later in this

lesson, to allow for more complex scenarios with variable transition costs.

The get_accessible_neighbors() function is required by any search algorithm that attempts to solve
the maze. The following examples use the small 3x3 maze created above to verify that the function

indeed returns the correct neighbors for a given cell.

this cell is the northwest corner of the grid and has only 2 accessible neighbors
get_accessible_neighbors(small_maze, (0,0))

[(Ce, 1), 1), ((1, 0), 1)]

the starting cell (in the southwest corner) has only 1 accessible neighbor
get_accessible_neighbors(small_maze, (2,0))

[((1, 0), 1)1

Q0o .0000@ . .

Gwerfthe abilfty toscreate mazes and to also retrieve the neighbors of any cell
I'n'a’méze: the né&® step is to implement search algorithms that can solve a
maze by finding the shortest path from a given start cell to a given target cell.

pul il ajljg

Ministry of Education

Starting cell

2023 - 1445 Figure 2.20: Neighbors of cells

Using BFS to Solve Maze Puzzles

The bfs_maze_solver() function described in this section uses Breadth-First-Search to solve maze puzzles
with a start and target cell. This implementation utilizes the get_accessible_neighbors() function defined
above to retrieve the neighboring cells that can be visited at any point during the search.

Once BFS has found the target cell, the reconstruct_shortest_path() function shown below is used to
reconstruct and return the shortest path, working backward from target to start:

def reconstruct_shortest_path(parent:dict, start_cell:tuple, target_cell:tuple):
shortest_path = []
my_parent=target_cell #start with the target_cell

keep going from parent to parent until the search cell has been reached
while my_parent!=start_cell:

shortest_path.append(my_parent) #append the parent

my_parent=parent[my_parent] # get the parent of the current parent
shortest_path.append(start_cell) #append the start cell to complete the path
shortest_path.reverse() #reverse the shortest path

return shortest_path

The same reconstruct_shortest_path() function will be used to reconstruct the solution for the
A* Search algorithm described later in this lesson. Given the definitions of the get_accessible_
neighbors() and reconstruct_shortest_path() helper functions, the bfs_maze_solver() function
can be implemented as follows:

from typing import Callable #used to call a function as an argument of another function

def bfs_maze_solver(start_cell:tuple,
target_cell:tuple,
maze:np.ndarray,
get_neighbors: Callable,
verbose:bool=False): # by default, suppresses descriptive output text

cell_visits=0 # keeps track of the number of cells that were visited during the search
visited = set() # keeps track of the cells that have already been visited
to_expand = [] # keeps track of the cells that have to be expanded

::: :#.a.dd.t/ae‘sz(zrgce// to the two lists
o0, yisitécf.a&d(start_cell)
to_expand.append(start_cell)
L L —~1ill a f] ggjnembers the shortest distance from the start cell to each other cell

Ministry of Educostlcg)nrteSt—dIStance - {}

2023 - 1445

the shortest distance from the start cell to itself, zero
shortest_distance[start_cell] = 0

remembers the direct parent of each cell on the shortest path from the start_cell to the cell
parent = {}

#the parent of the start cell is itself

parent[start_cell] = start_cell

while len(to_expand)>0:
next_cell = to_expand.pop(0) # get the next cell and remove it from the expansion list

if verbose:
print('\nExpanding cell', next_cell)

for each neighbor of this cell
for neighbor,cost in get_neighbors(maze, next_cell):

if verbose:
print('\tVisiting neighbor cell',neighbor)

cell_visits+=1

if neighbor not in visited: #ifthisis the first time this neighbor is visited
visited.add(neighbor)
to_expand.append(neighbor)
parent[neighbor]= next_cell

shortest_distance[neighbor]=shortest_distance[next_cell]+cost

target reached
if neighbor==target_cell:

get the shortest path to the target cell, reconstructed in reverse.
shortest_path = reconstruct_shortest_path(parent,
start_cell, target_cell)
return shortest_path, shortest_distance[target_cell],cell_visits
else: #this neighbor has been visited before
if the current shortest distance to the neighbor is longer than the shortest

distance to next_cell plus the cost of transitioning from next_cell to this neighbor
if shortest_distance[neighbor]>shortest_distance[next_cell]

+cost:
:::'.. ..0::: parent[neighbor]=next_cell
[] . . .
oo, ' . *.%, 000 shortest_distance[neighbor]=shortest_distance[next_cell]+cost

pul il a J |ﬁ‘éfarch complete but the target was never reached, no path exists

Ministry of Educatigreu¥n None,None, None

2023 - 1445

The function follows the standard BFS approach of exploring all options at the current depth prior to
moving to the next depth level. This implementation uses a set called visited and a list called to_expand.

The firstincludes all cells that have been visited at least once by the algorithm. The second list includes
all the cells that have not yet been expanded, which means that their neighbors have not been visited
yet. The algorithm also uses two dictionaries shortest_distance and parent. The first one maintains
the length of the shortest path from the start cell to each other cell, while the second one remembers
the parent of the cell on this shortest path.

Once the target cell has been reached and the search is complete, shortest_distance[target_cell] will
include the length of the solution: the length of the shortest path from start to target.

The following code uses the bfs_maze_solver() function to solve the small 3x3 maze defined above:

start_cell=(2,0) #start cell, marked by a star in the 3x3 maze
target_cell=(1,2) #target cell, marked by an "X" in the 3x3 maze

solution, distance, cell_visits=bfs_maze_solver(start_cell,
target_cell,
small_maze,
get_accessible_neighbors,
verbose=True)

print('\nShortest Path:', solution)

print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Expanding cell (2, 0)
Visiting neighbor cell (1, 0)

Expanding cell (1, 0)
Visiting neighbor cell (0, 0)
Visiting neighbor cell (0, 1)
Visiting neighbor cell (2, 0)

Expanding cell (0, 0)
Visiting neighbor cell (0, 1)
Visiting neighbor cell (1, 0)

Expanding cell (0, 1)
Visiting neighbor cell (0, 0)
Visiting neighbor cell (0, 2)
Visiting neighbor cell (1, 0)
Visiting neighbor cell (1, 2)

®eshortest Ramm: [(2, 0), (1, 0), (8, 1), (1, 2)]
::!jel'f.s :omgh:e:Shortest Path: &
SHortest” Path Distance: 3

. Nuinber of cell visits: 10
Pl il ajljg

Ministry of Education
2023 - 1445

BFS successfully finds the shortest path after 10 cells visits. The search process followed by BFS can
be more easily visualized if one considers a graph-based representation of the maze. Consider the
following example of a simple 3x3 maze and its graph representation:

o 1 2
: (—@) (%)

The graph representation includes one node for every non-occupied cell. The label on the nodes
includes the coordinates of the corresponding matrix cell. There is an undirected edge from one node
to another if their corresponding cells are accessible from each other.

One important observation about BFS is that, for unweighted graphs, the first path that it finds
between the start cell and any other cell is guaranteed to be the one that includes the smallest number
of visited cells. This means that, as long as all edges on the graph have the same weight (or, equivalently,
that all transitions from one cell to another have the same cost), then the first path found to a specific
node is guaranteed to be the shortest path to that node. This is why the bfs_maze_solver() stops the
search and returns the result the first time it visits the target node.

However, this approach does not work for weighted graphs. Consider the following weighted version
of the graph representation for the 3x3 maze:

0 1 2

Figure 2.21: Maze and its weighted graph

In this example, all edges that correspond to vertical or horizontal moves (south, north, west, east)
have a weight equal to 1. However, all edges that correspond to diagonal moves (southwest, southeast,
northwest, northeast), have a weight equal to 3. In this weighted case, the shortest path is clearly
[(2,0), (1,0), (0,0), (0,1), (0,2), (1,2)], which has a total distance of 1+1+1+1+1=5.

This more complex scenario can be encoded via the weighted version of the get_accessible_neighbors()
function that is described below.

o def, get_alc.cc”_ble_neighbors_weighted(maze :np.ndarray,
Y X J

:::-.:.:.'... cell:tuple,
¢ e horizontal_vertical_weight:float,
N al ayljg diagonal_weight:float):

Ministry of Education
2023 - 1445

neighbors=[1]
x,y=cell

for i,j in [(x-1,y-1), (x-1,y+1), (x+1,y-1), (x+1,y+1)]1: #for diagonal neighbors

if the cell is within the bounds of the grid and it is not occupied by a block
if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

neighbors.append(((i,j), diagonal_weight))
for i,j in [(x-1,y), (x,y-1), (x,y+1), (x+1,y)1: #for horizontal and vertical neighbors
if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]1==0:
neighbors.append(((i,j), horizontal_vertical_weight))

return neighbors

This function allows the user to assign a custom weight for horizontal and vertical moves, and a different
custom weight for diagonal moves. If this weighted version is then used by the BFS solver, the results are
as follows:

from functools import partial

start_cell=(2,0)

target_cell=(1,2)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell visits=bfs_maze solver(start cell,
target_cell,
small_maze,
partial(get_accessible_neighbors_weighted,
horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag_w),
verbose=False)

print('\nShortest Path:', solution)

print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

oo Shortest Rarg: [(2, 0), (1, 0), (o, 1), (1, 2)]
®0 Lotls .o‘.h,'erOShortest Path: 4
® ® shortest. PatR Distance: 7
_ Number of cell visits: 6
Pl ayljg
Ministry of Education
2023 - 1445

As expected, the BFS solver mistakenly reports the exact same path as before, even though it has a
distance of 7 and is clearly not the shortest path. This is due to the uninformed nature of the BFS
algorithm, in which BFS does not take the weights into account when deciding which cell to expand
next. It simply applies the same breadth-first approach, which leads to the exact same solution that
the algorithm found for the unweighted version of the maze.

The next section describes how this weakness can be addressed via A* Search, an informed and more
intelligent search algorithm that adjusts its behavior based on the specified weights, and can therefore
solve mazes with both weighted and unweighted transitions.

Using A* Search to Solve Maze Puzzles

Similar to BFS, A* Search expands one cell at a time, by visiting each of its accessible neighbors. However,
while BFS uses a blind breadth-first approach to decide which cell to expand next, A* Search expands the
cell with the smallest estimated distance to the target cell, as computed by a heuristic function.

The exact definition of the heuristic function depends on the application. For maze puzzles, a good heuristic
would provide an accurate estimate of "how close" a candidate cell is to the target. As long as the employed
heuristic is guaranteed to never overestimate the actual distance to the target (i.e. provide an estimate that
is higher than the actual distance to the target), then the algorithm is guaranteed to find the shortest possible
path for both weighted and unweighted graphs. If a heuristic sometimes overestimates distances, then A*
Search will still return a solution, but it might not be the best one possible.

The simplest possible heuristic that is guaranteed to never lead to overestimation is a simple function that
always produces an estimated distance of 1:

def constant_heuristic(candidate_cell:tuple, target_cell:tuple):

return 1
While this is clearly an overly optimistic heuristic, it will never produce 1
an estimate that is higher than the actual distance, and will therefore
lead to the best possible solution. A more sophisticated heuristic that
finds the best solution much faster will be introduced later in this section. 1

The following function uses a given heuristic function to find the cell

that should be expanded next:
Figure 2.22: Constant heuristic

def get_best_candidate(expansion_candidates:set,
shortest_distance:dict,
heuristic:Callable):

winner = None
best (lowest) distance estimate found so far. Initialized to a very large number
best_estimate= sys.maxsize

®oe, R .0® (X J

::'.:f?r:ca.m.ﬂfcﬁte in expansion_candidates:

.. .. . #distance estimate from start to target, if this candidate is expanded next
Pl 1l O)ljg candidate_estimate-shortest_distance[candidate] +heuristic(candidate,target_cell)
Ministry of Education if candidate_estimate < best_estimate:

2023 - 1445

winner = candidate
best_estimate=candidate_estimate

return winner

The above implementation utilizes a for loop to iterate over all the candidates in the set and find the
best one. A more efficient implementation could use a priority queue that can produce the best
candidate without having to iterate over all candidates.

The get_best_candidate() function is used as a helper module by the astar_maze_solver() function
presented next. In addition to the heuristic function, this implementation also uses the get_accessible_
neighbors_weighted() and reconstruct_shortest_path() helper functions defined in the previous
section.

import sys

def astar_maze_solver(start_cell:tuple,
target_cell:tuple,
maze:np.ndarray,
get_neighbors: Callable,

heuristic:Callable,
verbose:bool=False):

cell_visits=0

shortest_distance = {}
shortest_distance[start_cell] = 0

parent = {}
parent[start_cell] = start_cell

expansion_candidates = set([start_cell])
fully_expanded = set()

while there are still cells to be expanded
while len(expansion_candidates) > 0:

best_cell = get_best_candidate(expansion_candidates,shortest_distance,heuristic)
if best_cell == None: break

if verbose: print('\nExpanding cell', best_cell)

::: o, #Hif Qi‘.k:czrget cell has been reached, reconstruct the shortest path and exit
Y L] (]

oo . *if bestecell == target_cell:

il ajlig
Ministry of Education
2023 - 1445

shortest_path=reconstruct_shortest_path(parent,start_cell,target_cell)

return shortest_path, shortest_distance[target_cell],cell_visits
for neighbor,cost in get_neighbors(maze, best_cell):

if verbose: print('\nVisiting neighbor cell', neighbor)

cell_visits+=1

first time this neighbor is reached
if neighbor not in expansion_candidates and neighbor not in fully_expanded:

expansion_candidates.add(neighbor)
parent[neighbor] = best_cell #mark the best cell as this neighbor's parent

update the shortest distance for this neighbor
shortest_distance[neighbor] = shortest_distance[best_cell] + cost

this neighbor has been visited before, but a better (shorter) path to it has just been found
elif shortest_distance[neighbor] > shortest_distance[best_cell] + cost:

shortest_distance[neighbor] = shortest_distance[best_cell] + cost
parent[neighbor] = best_cell
if neighbor in fully_expanded:
fully_expanded.remove(neighbor)
expansion_candidates.add(neighbor)

all neighbors of best_cell have been inspected at this point
expansion_candidates.remove(best_cell)

fully_expanded.add(best_cell)

return None, None, None #no solution was found

Similar to bfs_maze_solver(), the above function also uses the same two dictionaries shortest_distance
and parent to keep the length of the shortest path from the start cell to each other cell and the parent
of the cell on this shortest path.

However, astar_maze_solver() follows a different approach to visiting and expanding cells. It uses the
Wgnsmn can@dzges to keep track of all cells that could be expanded next. In every iteration, it uses
!neget’ best’ camiﬂiate() function to select which of these candidates should be expanded next.

o0 4
After the best ceII cand|date has been selected, a for loop is used to visit all its neighbors. If a neighbor

Pl gyu,gﬁq:ﬂjor the first time, then best_cell becomes the neighbor's parent on the shortest path.

Ministry of Education

2023 - 1445

The same happens if the neighbor has been visited before, but best_cell offers a shorter path than
the one previously found. If such a better path is indeed found, then the neighbor has to go back to
the expansion_candidates set, to reevaluate the shortest path to its own neighbors.

The code below utilizes astar_maze_solver() to solve the unweighted case of the 3x3 maze puzzle:

start_cell=(2,0)
target_cell=(1,2)

solution, distance, cell_visits=astar_maze_solver(start_cell,
target_cell,
small_maze,
get_accessible_neighbors,
constant_heuristic,
verbose=False)

print('\nShortest Path:', solution)

print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4

Shortest Path Distance: 3

Number of cell visits: 12

The A* Search solver finds the best possible shortest path after 12 cell visits. This is slightly higher
than the BFS solver, which managed to find the solution in only 10 visits. This is due to the simplicity
of the constant heuristic that was used to inform astar_maze_solver(). As shown later in this section,
a superior heuristic can be used to help the algorithm find the solution faster.

The next step is to evaluate whether A* Search can indeed solve the weighted maze, which BFS failed
to find the shortest path for:

start_cell=(2,0)
target_cell=(1,2)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell_visits=astar_maze_solver(start_cell,
target_cell,
small_maze,
partial(get_accessible_neighbors_weighted,

®oo, e0®® horizontal_vertical_weight=horz_vert_w,
00,,%°. %, 000 diagonal_weight=diag w),
00, ° °,° o000 .

°© 957 0 constant_heuristic,

iy e e verbose=False)
Pl ajlig
Ministry of Education
2023 - 1445

print('\nShortest Path:', solution)

print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, ©), (1, 0), (o,), (o, 1), (0, 2), (1, 2)]
Cells on the Shortest Path: 6

Shortest Path Distance: 5

Number of cell visits: 12

The results reveal that astar_maze_solver() manages to solve the weighted case by finding the shortest
possible path [(2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (1, 2)], with a total cost of 5. This demonstrates the
advantage of using an informed search algorithm, which manages to get the optimal solution even
when using the simplest possible heuristic.

Algorithm Comparison

The next step is to compare BFS and A* Search on a larger and
more complex maze. The following Python code can be used to
create a numeric representation of such a maze:

target_cell

big_maze=np.zeros((15,15))

coordinates of the cells occupied by blocks

blocks=[(2,8), (2,9), (2,10), (2,11), (2,12),
(B8, (8,90, (8,08), (8,11), (8,12),
(3,8), (4,8), (5,8), (6,8), (7,8),
(3,12), (4,12), (6,12), (7,12)]

for block in blocks:
set the value of block-occupied cells to be equal to 1
big_maze[block]=1

Figure 2.23: The start and
target cells of the maze

start_cell

This 15x15 maze has a C-shaped section of blocks that the player has to circumvent to reach the target
marked by the "X". Next, the BFS and A* Search solvers are used to solve both the weighted and
unweighted versions of this larger maze:

start_cell=(14,0) unweighted version
target_cell=(5,10)

(X] s o CEX . o _ o
° S&Iytj,on._bfs_urw, distance_bfs_unw, cell_visits_bfs_unw=bfs_maze_solver(start_cell,
° target_cell,

pul il ajljg big maze,

L i get_accessible_neighbors,
Ministry of Education

2023 - 1445
121

verbose=False)

print('\nBFS unweighted."')

print('\nShortest Path:', solution_bfs_unw)

print('Cells on the Shortest Path:', len(solution_bfs_unw))
print('Shortest Path Distance:', distance_bfs_unw)
print('Number of cell visits:', cell_visits_bfs_unw)

solution_astar_unw, distance_astar_unw, cell_visits_astar_unw=astar_maze_solver(
start_cell,
target_cell,
big_maze,
get_accessible_neighbors,
constant_heuristic,
verbose=False)

print('\nA* Search unweighted with a constant heuristic.')
print('\nShortest Path:', solution_astar_unw)

print('Cells on the Shortest Path:', len(solution_astar_unw))
print('Shortest Path Distance:', distance_astar_unw)
print('Number of cell visits:', cell_visits_astar_unw)

BFS unweighted.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8,
6), (8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (4, 11), (5, 10)]

Cells on the Shortest Path: 19

Shortest Path Distance: 18

Number of cell visits: 1237

A% Search unweighted with a constant heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, &), (10, 5), (10,
6), (9, 7), (9, 8), (10, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (6, 11), (5, 10)]

Cells on the Shortest Path: 19

Shortest Path Distance: 18

Number of cell visits: 1272

start_cell=(14,0) weighted version
target_cell=(5,10)

%992 yert we®®
hi&;;és:-::::

F:ll :ZijP}H}Eﬁﬂ-bfs—w' distance_bfs_w, cell visits_bfs_w=bfs_maze_solver(start_cell,

) target_cell,
Ministry of Education

2023 - 1445

big_maze,

partial(get_accessible_neighbors_weighted,
horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag w),

verbose=False)

print('\nBFS weighted.")

print('\nShortest Path:', solution_bfs_w)

print('Cells on the Shortest Path:', len(solution_bfs_w))
print('Shortest Path Distance:', distance_bfs_w)
print('Number of cell visits:', cell_visits_bfs_w)

solution_astar_w, distance astar_w, cell visits_astar_w=astar_maze_solver(start_cell,

target_cell,

big_maze,

partial(get_accessible_neighbors_weighted,
horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag_w),

constant_heuristic,

verbose=False)

print('\nA* Search weighted with constant heuristic.')
print('\nShortest Path:', solution_astar_w)

print('Cells on the Shortest Path:', len(solution_astar_w))
print('Shortest Path Distance:', distance_astar_w)
print('Number of cell visits:', cell_visits_astar_w)

BFS weighted.

Shortest Path: [(14, 0), (14, 1), (14, 2), (13, 2), (13, 3), (12, 3), (12,
4), (11, 4), (11, 5), (10, 5), (10, 6), (9, 6), (9, 7), (9, 8), (9, 9), (9,
10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (4, 11), (5, 10)]

Cells on the Shortest Path: 26

Shortest Path Distance: 30

Number of cell visits: 1235

Ax Search weighted with constant heuristic.

Shortest Path: [(14, 0), (13, 0), (12, 0), (11, @), (10, 0), (9, 0), (9,
1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9), (9,
10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (5, 11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 25

::::\Iunlbe.r.yf:c%ll visits: 1245

oo..°.' 0..00

1l a)ljg
Ministry of Education
2023 - 1445

The results are consistent with the ones reported for the small maze:

¢ Both BFS and A* Search find the shortest path for the unweighted version.
¢ BFS finds the solution in fewer visits (1237 vs. 1272 for A* Search).

¢ BFS fails to find the shortest path for the weighted version, as it reports a path with a distance of 30.
e A* Search finds the shortest path for the weighted version, reporting a path with a distance of 25.

The following code can be used to visualize the shortest path found by the BFS and A* Search algorithms

on the weighted version:

maze_bfs_w=big_maze.copy()

for cell in solution_bfs_w:
maze_bfs_w[cell]=2

plot_maze(maze_bfs_w)

BFS

maze_astar_w=big_maze.copy()

for cell in solution_astar_w:
maze_astar_w[cell]=2

plot_maze(maze_astar_w)

' A* Search '

Figure 2.24: Comparison of BFS and A* Search solutions

The visualizations verify that the informed nature of A* Search allows it to avoid diagonal moves, as
they have a higher cost than horizontal and vertical ones. On the other hand, the uninformed BFS
ignores the cost of each move and reports a much more expensive solution. A general comparison

of uninformed and informed algorithms is seen in table 2.6:

pul o il a)jljg
Ministry of Education

2023 - 1445
124

Table 2.6: Comparison of uninformed and informed algorithms

Comparison criteria Uninformed Informed
Computational They are more computationall . . .
P . v P y Their computational cost is lower.
complexity complex.
- They are slower than informed .
Efficiency y They perform searches quicker.
algorithms.
Impractical for solving large-scale Better at handling large-scale search
Performance
search problems. problems.
. . L . Generally, adequate solutions are
Effectiveness The optimal solution is achieved. i g
accepted.

Still, the results showed that BFS could find the optimal solution faster (with fewer cell visits) in the
unweighted case. This can be addressed by providing A* Search with a smarter heuristic. A popular
heuristic in distance-based applications is the Manhattan Distance, defined as the sum of the absolute
differences between the coordinates of the two given points. An example is shown in the figure below:

Manhattan Distance

Manhattan (A, B) = [x1-x2| + |y1-y2]|

1l a)ljg
Ministry of Education
2023 - 1445

B (x2, y2)

r

A (x1, yi1)

Figure 2.25: Manhattan distance

125

This can be easily implemented as a python function as follows:

def manhattan_heuristic(candidate_cell:tuple,target_cell:tuple):

x1,yl=candidate_cell
x2,y2=target_cell
return abs(xl - x2) + abs(yl - y2)

The following code can be used to test if this smarter heuristic can be used to help astar_maze_solver()
search the space much faster for both weighted and unweighted scenarios:

start_cell=(14,0)
target_cell=(5,10)

solution_astar_unw_mn, distance_astar_unw_mn, cell_visits_astar_unw_mn=astar_
maze_solver(start_cell,

target_cell,

big_maze,

get_accessible_neighbors,

manhattan_heuristic,

verbose=False)

print('\nA* Search unweighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_unw_mn)

print('Cells on the Shortest Path:', len(solution_astar_unw_mn))
print('Shortest Path Distance:', distance_astar_unw_mn)
print('Number of cell visits:', cell_visits_astar_unw_mn)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution_astar_w_mn, distance_astar_w_mn, cell_visits_astar_w_mn=astar_maze_
solver(start_cell,
target_cell,
big _maze,
partial(get_accessible_neighbors_weighted,
horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag_w),
manhattan_heuristic,
verbose=False)

print('\nA* Search weighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_w_mn)

print('Cells on the Shortest Path:', len(solution_astar_w_mn))
mbr;t(Shorgest® Path Dlstance , distance_astar_w_mn)

:offn-t(Nﬁmb'eT o} cell visits:', cell_visits_astar_w_mn)

1l a)ljg
Ministry of Education
2023 - 1445

Ax Search unweighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8,
6), (8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13),
(6, 13), (5, 12), (5, 11), (5, 10)]

Cells on the Shortest Path: 19

Shortest Path Distance: 18

Number of cell visits: 865

Ax Search weighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (14, 1), (13, 1), (12, 1), (12, 2), (12, 3), (12,
4), (12, 5), (12, 6), (12, 7), (11, 7), (11, 8), (10, 8), (9, 8), (9, 9),

(9, 10), (9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5,
12), (5, 11), (5, 10)]

Cells on the Shortest Path: 26

Shortest Path Distance: 25

Number of cell visits: 1033

The results verify that the Manhattan Distance heuristic can indeed help A* Search find the shortest
possible paths with a significantly lower number of cell visits for both weighted and unweighted
scenarios. In fact, the use of this more intelligent heuristic led to a significantly lower visit number
than the one required for the BFS algorithm.

The table 2.7 summarizes the results for the different algorithm variants on the big maze:

Table 2.7: Comparison of algorithms performance

A* Search with A* Search with
Constant Heuristic Manhattan Heuristic

weighted dist=30, 1235 visits dist=25, 1245 visits dist=25, 1033 visits

OOVl dist=18, 1237 visits dist=18, 1272 visits dist=18, 865 visits

The table demonstrates the advantages of using increasingly more intelligent algorithms to solve
search-based problems like the one presented in this lesson:

e Switching from an uninformed (BFS) to an informed (A* Search) search algorithm delivered better
results and allowed for the solution of more complex problems.

o The mtelllgence gf informed search algorithms can be further increased by using better heuristics

° H’@‘E allow tl‘?e.mi) find the optimal solution significantly faster.

1l a)ljg
Ministry of Education
2023 - 1445

e Identify two applications of search algorithms.

e Identify a difference between uninformed and informed search algorithms and mention
an example of each algorithm.

Pul=cilt-éryli
Ministry of Education
2023 - 1445

128

e Explain briefly how the A* algorithm works.

e Modify your code by changing the diagonal weight from 3 to 1.5. What do you observe?
Does the shortest path change for the cases of BFS and A* Search?

e Modify your code by swapping the starting cell with the target cell coordinates. What
do you observe? Is the path the same as before for the weighted cases of BFS and A*

Search?

pul ——iiragtjg
Ministry of Education
2023 - 1445

129

1l a)ljg
Ministry of Education
2023 - 1445

Modify the code of the weighted BFS and A* Search algorithms
by changing the horizontal and vertical weights to 3 and the
diagonal weights to 5. Also change the starting point to (7, 2).

What is the new shortest distance path and the number of cell
visits of the unweighted versions of the BFS and A* Search
algorithms with the constant heuristic function? Find these values
and present your observations.

Follow the same steps for the weighted versions of the BFS and
A* Search algorithms with the constant heuristic function.

Repeat the process for the unweighted and weighted versions of
the A* Search algorithms with the manhattan heuristic function.

A*Search
Algorithm Performance

Breadth-First Search
(BFS)

Confusion Matrix
Depth-First Search (DFS)
Heuristic Function

Informed Search
Knowledge Base
Maze Solving
Model Training
Path Finding
Recursion

Rule-Based Systems
Scoring Function
Search Algorithms
Uninformed Search
Unweighted Graph
Weighted Graph

Ministry of Education

£O 449

131

3. Natural Language
Processing (NPL)

In this unit, you will learn an end-to-end process of training a supervised
and an unsupervised learning model for understanding the sentiment of a
given piece of text. At the end, you will learn how machine learning can be
used to support applications related to Natural Language Processing (NLP).

Learning Objectives

In this unit, you will learn to:

> Define supervised learning.

> Train a supervised learning model to understand text.
> Define unsupervised learning.

> Train an unsupervised learning model to understand text.
> Create a simple chatbot.

> Generate text using the Natural Language Processing
(NLP) techniques.

Tools
> Jupyter Notebook

132

Link to digital lesson

Lessonl

Supervised Learning

www.ien.edu.sa

Using Supervised Learning to Understand Text

Natural Language Processing (NLP) is a field of Al that focuses on enabling computers to understand,
interpret, and generate human language. NLP is concerned with tasks such as text classification,
sentiment analysis, machine translation, and question-answering. This lesson will focus specifically
on how supervised learning, one of the main types of machine learning (ML), can be used to
automatically understand and make useful predictions about a text's properties.

You already learned in unit 1 that Al is an umbrella term that includes Machine Learning and Deep Learning,
as you can see in figure 3.1. Al is a broad field of computer science that focuses on creating intelligent
machines, while machine learning is a subset of Al that focuses on building algorithms and models that
allow machines to learn from data without being explicitly programmed.

Artificial Deep learning

Intelligence Deep learning is a type of
machine learning that uses
deep neural networks to
automatically learn from large
amounts of data. It allows
computers to recognize patterns
and make decisions in a more
humanlike way, by building
complex models of the data.

Machine Learning

Deep Learning

Figure 3.1: Fields under the Al umbrella

Mnchipe qurn'lg

:/Izc:h‘lne: I'e};mj‘iag.i:a subfield of Al that focuses on developing algorithms that enable computers to learn

from data; rather than following explicit programming instructions. It involves training computer models to
Pl — i¢kegyiipepatterns and make predictions based on input data, allowing the model to improve its accuracy
Ministry of@ver time. This allows machines to perform tasks such as classification, regression, clustering, and
2023 - 14§§§:ommendaﬁon, without being explicitly programmed for each task.

133

Machine learning can be broadly categorized into three main types:

ST G REETI I a type of machine learning where the algorithm Q

learns from labeled training data, with the goal of making predictions
on new data, not present in the training or test sets, as shown in figure
3.2. Examples:

Predicted Output
¢ Image classification (e.g. recognizing objects in photos)

¢ Fraud detection (e.g. identifying suspicious financial transactions)
e Spam filtering (e.g. identifying unwanted email messages)

LTSGR EE TG T a type of machine learning where the algorithm T;sli—ng
works with unlabeled data, trying to find patterns and relationships in Data Set

the data. Examples:

. . . Algorithm

e Anomaly detection (e.g. detecting unusual patterns in data)
e Clustering (e.g. grouping similar data points together) T
¢ Dimensionality reduction (e.g. selecting the dimensions that reduce Trail‘;ing 2|< De:ired

data complexity) Data Set Output
BET I NI EETG 11T a type of machine learning where an agent 00080 oooo oooo

oo oooo [a]mm

interacts with its environment and learns by trial and error, receiving S(==)=
rewards or punishments for its actions. Examples:
e Game playing (e.g. playing chess or Go) [Supervisor|

¢ Robotics (e.g. teaching a robot to navigate its environment) Figure 3.2: Supervised

® Resource allocation (e.g. optimizing resource usage in a network) learning representation

Here is table 3.1 summarizing the advantages and disadvantages of each type of machine learning:

Table 3.1: Advantages and disadvantages of Machine Learning types

Advantages Disadvantages
Supervised Learning

e Requires labeled data, which can be expensive to obtain.

¢ Well-established and widely used. e Limited to the task it was trained for, and may not

e Easy to understand and implement. generalize well to new data.

e Can handle both linear and non-linear data. | e Difficult to adapt to other problems if the model is too
complex.

Unsupervised Learning

¢ Harder to understand and interpret than supervised learning.

e Limited to exploratory analysis, and may not be suitable
for decision-making tasks.

e Difficult to adapt to other problems if the model is too
complex.

e Does not require labeled data, making it
more flexible.

e Can discover hidden patterns in data.

¢ Can handle high-dimensional and complex data.

Reinforcement Learning

LI I Py o000
o #lexille, and canhi&ndle complex and dynamic . . .
0o, ° o000 ¢ More complex than supervised or unsupervised learning.

o . o o
envitonments. . . .
e Can learn from experience and imorove ¢ Challenging to design reward functions that accurately
pul _'dE\(/:é ' o P P capture the desired behavior.

e May require large amounts of training data and computational

Ministry bFEQUTHEHIR for decision-making tasks, such as
resources.

2023 - 144%3me playing and robotics.

134

Supervised Learning
Supervised Learning is a type of ML that involves the use of labeled data

to train an algorithm to make predictions. The algorithm is trained on a Supervised Learning
labeled dataset and then tested on an unseen dataset. Supervised In supervised learning, you
learning is commonly used in NLP for tasks such as text classification, use manually curated and
sentiment analysis, and named entity recognition. In these tasks, the labeled datasets to train
algorithm is trained on a labeled dataset where each example is labeled computer algorithms to
with the correct category or sentiment. If the labels are numeric, then predict new values.

the supervised learning task is referred to as "regression". If the labels
are discrete, the task is referred to as "classification".

Regression

For instance, regression can focus on predicting the sale price of a house based on its size, location,
and number of bedroomes. It can also be used to predict the demand for a product based on historical
sales data and advertising expenditure. In an NLP context, regression can use the available text to
predict the sentiment score of a movie review or the popularity of a social media post.

Classification

Classification, on the other hand, can be used in applications such as diagnosing a medical condition
based on symptoms and test results. When it comes to understanding text, supervised learning can
be used to classify or predict categories or labels based on the words and phrases within a document.
For example, a supervised learning model might be trained to classify an email as spam or not spam
based on the words and phrases used in the email. Another popular application is sentiment
classification, which focuses on predicting whether the overall sentiment of a given document is
negative or positive. This application is used as a working example in this unit, to demonstrate all the
steps in the end-to-end process of building and using a supervised learning model.

In this unit you will use a dataset of movie reviews from the popular website IMDb.com. The dataset has
already been split into two parts, one to be used for training the model and one to be used for testing. To
load the data into a DataFrame, you will use the Pandas Python library that you have used before. The
Pandas library is a popular tool for manipulating spreadsheet data. The following code is used to import the
library into your program and then load the two datasets:

%%capture # capture is used to suppress the installation output.

install the pandas library, if it is missing.
I'pip install pandas
import pandas as pd

Pandas is a popular library used to read

(XY () ;
Pt °.l. .gr}ﬁo;ocess spreadsheet-like data.
00, ° °

1l a)ljg
Ministry of Education
2023 - 1445

load the train and testing data.
imdb_train_reviews=pd.read_csv('imdb_data/imdb_train.csv')
imdb_test_reviews=pd.read_csv('imdb_data/imdb_test.csv"')

imdb_train_reviews

text label As you can see in figure 3.3,
= = the DataFrame dataset has
0 I grew up (b. 1965) watching and loving the Th... 0
two columns:
1 When | put this movie in my DVD player, and sa... 0 .
e text review.
2 Why do people who do not know what a particula... 0
YEOIR=RR : o label.
3 Even though | have great interest in Biblical ... 0
4 Im adie hard Dads Army fan and nothing will e... 1 >—(positive review)
39995 "Western Union" is something of a forgotten cl... 1
39996 This movie is an incredible piece of work. It ...

1
39997 My wife and | watched this movie because we pl... 0 0—(negative review)
1

39998 When | first watched Flatliners, | was amazed....

39999 Why would this film be so good, but only gross... 1 A"0" label represents the negative
review, while a "1" label represents
40000 rows % 2 columns the positive one.

Figure 3.3: Labelled training dataset

The next step is to assign the text and label columns to separate variables,
from the training and testing examples in the DataFrame dataset:

extract the text from the 'text' column for both training and testing.
X_train_text=imdb_train_reviews['text']

X_test_text=imdb_test reviews['text'] The X, Y notations are typically

used in supervised learning to

represent the input data used

.. . . to make the prediction (X) and
Y_train=imdb_train_reviews['label'] the target labels (Y).

Y_test=imdb_test_reviews['label']
X_train_text #training data in text format

extract the labels from the 'label’ column for both training and testing.

0 I grew up (b. 1965) watching and loving the Th...

1 When I put this movie in my DVD player, and sa...

2 Why do people who do not know what a particula...

3 Even though I have great interest in Biblical

4 Im a die hard Dads Army fan and nothing will e...
G0

..399.9.5 .."ng:ern Union" is something of a forgotten cl...
P 9.6°.o s movie is an incredible piece of work. It
39997° .My wife and I watched this movie because we pl...
. Iﬁa&% When I first watched Flatliners, I was amazed....
p'-I-J_LLI ég Why would this film be so good, but only gross...
Ministry of EdWzmé text, Length: 40000, dtype: object
2023 - 1445

Figure 3.4: Snapshot of the training examples (X_train_text) from the DataFrame dataset.

Data Preparation and Pre-Processing

Even though this raw text format as in figure 3.5 is intuitive to the human reader, it is unusable by supervised
learning algorithms. Instead, algorithms require such documents to be converted into a numeric vector
format. The vectorization process can be implemented in multiple different methods, and it has a great

impact on the performance of the trained model.

Sklearn Library

The supervised model will be built with sklearn (also known as "scikit-learn"), a popular Python library
for machine learning. It provides a range of tools and algorithms for tasks such as classification,
regression, clustering, and dimensionality reduction. One useful tool within sklearn is the CountVectorizer,

which can be used to preprocess and vectorize text data.

CountVectorizer

The CountVectorizer converts a collection of text documents into a
matrix of token counts, where each row represents a document and
each column represents a particular token. Tokens can be individual
words, phrases or even more complex constructs that capture various
patterns in the underlying text data. The entries in the matrix indicate
the number of times each token appears in each document. This is also
known as "bag-of-words" (BoW) representation, as the order of the
words is not preserved and only the counts of the words are retained.
Even though the BoW representation is an oversimplification of human
language, it can achieve very competitive results in practice.

Vectorization

Vectorization is the process
of converting strings of
words or phrases (text) to a
corresponding vector of
real numbers, that is used
to encode properties of the
text using a format that ML
algorithms can understand.

"I like oranges, do you like oranges?" -

BoW text vector g

0 | apples
1 |do

1 1

2 | like

2 | oranges
1 | you

Figure 3.5: "bag-of-words" (BoW) representation

The following code uses the CountVectorizer tool to vectorize the IMDb training dataset:

from sklearn.feature_extraction.text import CountVectorizer

the min_df parameter is used to ignore terms that appear in less than 10 reviews.

vectorizer vl = CountVectorizer(min_df=10)

vectorizer_vi.fit(X_train_text) #fit the vectorizer on the training data.

use the fitted vectorizer to vectorize the data.

X_train_v1 = vectorizer_vil.transform(X_train_text)
e aess. L2200
i Lo TR

pul Tl aglisgeox23392 sparse matrix of type '<class 'numpy.int64'>'
Ministry of Education with 5301561 stored elements in Compressed Sparse Row format>

2023 - 1445

expand the sparse data into a sparse matrix format, where each column represents a different word.
X_train_v1_dense=pd.DataFrame(X_train_vi1.toarray(),

columns=vectorizer_vil.get_feature_names_out())
X_train_v1_dense

00 000 007 01 02 04 05 06 07 08 .. zoo zoom zooming zooms zorro zu zucco zucker zulu uber

0 0 0 0 0 0 O 0 0 o 0 o 0 o0

ol O | O ESE O
(=) = (= (= (=)
(=) =R (= = (=)
© o© | o Eol o
o o© | o Eeol o

0
0
0
0
0

0N

O O O ES
ol © O =
(=== (=)
(=) =R (= (=)
(=) =R = (=)
O O O Ee
(=) =R (= (=)
of O o NS
o O | © mey
(=) =R (=) (=)
(=) =R (=] (=)
o O O ES
o O O me

39995

o
o

39996
39997
39998

O O BON © S
N ©O © o o
S O O © S
SN © BON © B
SN © EON © NS
Of O BON © RO
O O BN © BO
O © BN © EO
o o el o

o o el o

o o o o o
oON © EON © B
ON O BN O BO
ol o el o o
o O ol O O
O O BN © EO
O © BN © B
ON ©O BN © NO
o O el O O

39999

40000 rows x 23392 columns

Figure 3.6: Vectorizing the training dataset

This "dense" matrix format represents the 40,000 reviews in the training data. It also has a column for
each of the words that appear in at least 10 reviews (enforced via the min_df parameter). As can be
seen above, this creates a total of 23,392 columns, sorted in alphanumeric order. The matrix entry in
position [i,j] represents the number of times that the j_th word appears in the i_th review.

Even though this matrix could directly be used by a supervised learning algorithm, it is highly inefficient
in terms of memory usage. This is due to the fact that the vast majority of the entries in this matrix
are equal to 0. This happens because only a very small percentage of the 23,392 possible words will
actually appear in each review. To address this inefficiency, the CountVectorizer tool stores the
vectorized data in a sparse format, which only remembers the non-zero entries in each column.

The code below uses the getsizeof() function, which returns the size of a Python object in
bytes, to demonstrate the memory savings of the sparse format for the IMDb data:

from sys import getsizeof

print('\nMegaBytes of RAM memory used by the raw text format:',
getsizeof(X_train_text)/1000000)

print('\nMegaBytes of RAM memory used by the dense matrix format:',
getsizeof(X_train_vi1_dense)/1000000)

print('\nMegaBytes of RAM memory used by the sparse format:',
getsizeof(X_train_v1)/1000000)

....
::MegaB.y-t.esoc:F:RAM memory used by the raw text format: 54.864133
° e o . ®

| MeﬁaBytes of RAM memory used by the dense matrix format: 7485.440144
pul 1l ajly

Ministry of EduMegaBytes of RAM memory used by the sparse format: 4.8e-05
2023 - 1445

As expected, the sparse format requires far less memory, more specifically 0.000048
megabytes. The dense matrix occupies 7 gigabytes. This matrix will not be used again and
can thus be deleted to free up this significant amount of memory:

delete the dense matrix.
del X _train_vi1_dense

Build a Prediction Pipeline

Now that the training data has been vectorized, the next step is to build a first

prediction pipeline. One example of a classifiers to use for document prediction Classifier

is a Naive Bayes classifier. The Naive Bayes classifier uses the probabilities of In ML, a classifier is a model
certain words or phrases occurring in a document to predict the likelihood of that is used to distinguish
the document belonging to a certain class. The "naive" part of the name comes data points into different
from the assumption that the presence of a particular word in a document is categories or classes. The
independent of the presence of any other word. This is a strong assumption, goal of a classifier is to

but it allows the algorithm to be trained very quickly and effectively. learn from labeled training

data, and then make
predictions about the class
label for new data.

The following code uses the implementation of the Naive Bayes Classifier
(MultinomialNB) from the sklearn library to train a supervised learning
model on the vectorized IMDb training data:

from sklearn.naive_bayes import MultinomialNB
model_vi1=MultinomialNB() # a Naive Bayes Classifier
model_vi.fit(X_train_vi1, Y_train) #fitthe classifier on the vectorized training data.

from sklearn.pipeline import make_pipeline

create a prediction pipeline: first vectorize using vectorizer_v1, then use model_v1 to predict.
prediction_pipeline_v1l = make_pipeline(vectorizer_v1, model_v1)

For example, this code will produce a result array with the first element being "1" for a positive review
and "0" for a negative review:

prediction_pipeline_vi1.predict(['One of the best movies of the year. Excellent
cast and very interesting plot.',
'T was very disappointed with his film. I
lost all interest after 30 minutes' 1)

cent. ntoee .
.o .arf:a.y:(.[l‘ }):, dtype=int64)

1l a)ljg
Ministry of Education
2023 - 1445

The pipeline correctly predicts a positive and negative label for first and second review, respectively.
The built-in function predict_proba() can be used to obtain the probabilities that the pipeline assigns
to each of the two possible labels. The first element is the probability that "0" will be assigned and
the second element is the probability that "1" will be assigned:

prediction_pipeline_v1.predict_proba(['One of the best movies of the year. Ex
cellent cast and very interesting plot.',
'T was very disappointed with his film.
I lost all interest after 30 minutes' 1)

array([[0.08310769, 0.91689231],
[0.83173475, 0.16826525]1])

First Second
8.3% review review 16.8%
The model is 8.3% certain the first review
is negative and 91.6% certain it is positive.
Likewise, it is 83.1% certain the second review
is negative and 16.8% certain it is positive.
91.6% 83.1%

O Positive O Negative
Figure 3.7: Pie charts showing the review percentages

The next step is to test the accuracy of this new pipeline on the reviews in the IMDb testing set. The
output is an array all the result labels for the review given in the test data:

use the pipeline to predict the labels of the testing data.
predictions_v1 = prediction_pipeline_vil.predict(X_test_text) # vectorize the text
data, then predict.

predictions_vi1

array([0, 0, 0, ..., 0, 0, 0], dtype=int64)

Python provides multiple tools to analyze and visualize the results of classification pipelines. Examples
include the accuracy_score() function from sklearn and the "confusion matrix" visualization from the
scikit-plot library. There are also other evaluation metrics such as precision, recall, specificity, sensitivity,
F1 score, depending on the use case, which can be computed from the confusion matrix. The following
output is an approximation of how accurate the prediction was:

(X o0 .
d’a'antsklear’:n:raeirlcs import accuracy_score
‘ateuréei;s'coré(ﬂ(_test, predictions_v1) # get the achieved accuracy.

pul il ajljg
Ministry of EduPa B8RS
2023 - 1445

%%capture
'pip install scikit-plot; #install the scikit-plot library, if it is missing.
import scikitplot; #import the library

class_names=['neg', 'pos'] # pick intuitive names for the 0 and 1 labels.

plot the confusion matrix.

scikitplot.metrics.plot_confusion_matrix(
[class_names[i] for i in Y_test],
[class_names[i] for i in predictions_vi],
title="Confusion Matrix", #titleto use

(predicted labels cmap="Purples", # color palette to use
figsize=(5,5) #figure size
)i

actual labels

The confusion matrix contains the counts of actual vs. predicted classifications. In a binary classification
task (i.e.a problem with two labels, such as the IMDb task), the confusion matrix will have four cells:

True Negatives (upper left):
the number of times the classifier correctly

predicted the negative class. Confusion Matrix n—
1750
False Negatives (upper right):
the number of times the classifier incorrectly 1500
predicted the negative class. T
Q2
K
- 1250
=
False Positives (lower left): - 1000
the number of times the classifier incorrectly
predicted the positive clas. - 750
T - 500
s . . neg pos
True Positives (lower right): Predicted label
the number of times the classifier correctly
predicted the positive class.
Figure 3.8: Confusion matrix results of the Naive Bayes classifier on the testing data using the IMDb dataset.
The results reveal that even though this first pipeline achieves a
competitive accuracy of 84.68%, it still misclassifies hundreds of Accuracy
reviews. You have 331 incorrect predictions in the upper right Accuracy is the ratio of correct predictions to

quartenza:lGA&S mcomeet:)%edlctlons inthe lower left corner. This the total number of prediction.
totals 76@ mc,d'rl:ect predmtbns The first step toward improving

(True Positives + True Negatives)

performance is to study the behavior of the prediction pipeline, Accuracy =

Puihordekbodepléalhow it processes and understands text.

Ministry of Education

2023 - 1445

(True Positives + True Negatives +
False Positives + False Negatives).

Explaining Black-Box Predictors

The Naive Bayes Classifier uses simple mathematical formulas to combine the probabilities of thousands of
words and deliver its predictions. Despite its simplicity, it is still unable to deliver an intuitive, user-friendly
explanation of exactly how it predicts a positive or negative label for a specific piece of text.

Compare that to decision tree classifiers which are more intuitive, as they represent the learned decision
rules in a tree like structure, making it easier for people to understand how the classifier arrived at its
predictions. The tree structure also allows for a visual representation of the decisions being made at each
branch, which can be useful in understanding the relationships between input features and the target
variable.

The lack of explainability is an even bigger challenge for more complex algorithms, such as those
based on ensembles (combinations of multiple algorithms) or neural networks. Without explainability,
supervised learning algorithms are reduced to black-box predictors: even though they understand
the text well enough to predict its label, they are unable to communicate how they make their
decisions.

A significant amount of research has been devoted to addressing this challenge by designing
explainability methods that can interpret black-box models. One of the most popular methods is LIME
(Local Interpretable Model-Agnostic Explanations).

LIME (Local Interpretable Model-Agnostic Explanations)

LIME is a method for explaining the predictions made by black-box models. It does this by looking at
one data point at a time and making small changes to it to see how it affects the model's prediction.
LIME then uses this information to train a simple and understandable model, such as a linear regression,
to explain the prediction. For text data, LIME identifies the words or phrases that have the biggest
impact on the prediction. A Python implementation is shown below:

%%capture

'pip install lime #install the lime library, if it is missing
from lime.lime_text import LimeTextExplainer

create a local explainer for explaining individual predictions
explainer_v1l = LimeTextExplainer(class_names=class_names)

an example of an obviously negative review

easy_example='This movie was horrible. The actors were terrible and the plot
was very boring.'

use the prediction pipeline to get the prediction probabilities for this example

print(prediction_pipeline_vi.predict_proba([easy_examplel))

[[0.99874831 0.00125169]]

1l a)ljg
Ministry of Education
2023 - 1445

As expected, the predictor delivers a very confident negative prediction for this easy example.

explain the prediction for this example.
exp = explainer_vil.explain_instance(easy_example.lower(),

print the words with the strongest influence on the prediction.

exp.as_list()

[('terrible', -0.07046118794796816),
("horrible', -0.06841672591649835),
('boring', -0.05909016205135171),
("plot', -0.024063095577996376),
('was', -0.014436071624747861),
('movie', -0.011956911011210977),
('actors', -0.011682594571408675),
('this', -0.009712387273986628),
('very', 0.008956707731803237),
('were', [-0.008897098392433257))]

prediction_pipeline_vl.predict_proba,

num_features=10) —

The score of each word represents a coefficient
in the simple linear regression model that was

used to deliver the explanation. features.

Focus the explainer on
the 10 most influential

A more visual representation can be obtained as follows:

visualize the impact of the most influential words.
fig = exp.as_pyplot_figure()

pul il a)jljg

terrible 1
horrible 1
boring 4
plot 4

Local explanation for class pos

—0.07 -0.06 -0.05 —0.04 -0.03 -0.02 -0.01 000 001

Ministry of Education
2023 - 1445

Figure 3.9: The words with the highest influence on the prediction

143

A negative coefficient increases the probability of the negative class, while a positive coefficient
decreases it. For instance, the words 'horrible’, 'terrible', and 'boring' had the strongest impact on
the model's decision to predict a negative label. The word 'very' slightly pushed the model in a different
(positive) direction, but it was not nearly enough to change the decision. To a human observer, it
might look strange that sentiment-free words such as 'plot' or 'was' seem to have relatively high
coefficients. However, it is important to remember that machine learning does not always follow
human common sense. These high coefficients may indeed reveal flaws in the algorithm's logic and
could be responsible for some of the predictor's mistakes. Alternatively, the coefficients may be
indicative of latent but informative predictive patterns. For instance, it may indeed be the case that
human reviewers are more likely to use the word 'plot' or use past tense ('was') when speaking in a
negative context. The LIME Python library can also visualize the explanations in other ways.

For example:

exp.show_in_notebook()

Prediction probabilities neg Pos . . s &
P terrible Text with highlighted words
neg [N 1.00 007 this movie was | the actors were [SEHBIS and the
pos hombl plot was very B
boring
0.06!
plot]
0.02!
was
0.01
movie
0.01
actors
0.01
this|
0.01
very
0.01 b
were| 4 %
0.01

Figure 3.10: Othervisualrepresentations

The review used in the previous example was obviously negative and easy to predict. Consider the
following more challenging review which can confuse the algorithm, taken from the testing set of the
IMDb data:

an example of a positive review that is mis-classified as negative by prediction_pipeline_v1
mistake_example= X_test_text[4600]
mistake_example

"I personally thought the movie was pretty good, very good acting by
Tadanobu Asano of Ichi the Killer fame. I really can't say much about the
story, but there were parts that confused me a little too much, and overall
I thought the movie was just too lengthy. Other than that however, the
movie contained superb acting great fighting and a lot of the locations
Yy were beau;]jully shot, great effects, and a lot of sword play. Another
OOGQIJ.d .e‘Fford:Oby Tadanobu Asano in my opinion. Well I really can't say
anymor'e aboul the movie, but if you're only outlook on Asian cinema is
Crouching Tiger Hidden Dragon or House of Flying Daggers, I would suggest
J:\-I-I—Ll-“ @¢Uer1ng to rent it, but if you're a die-hard Asian cinema fan I would
Ministry of Edusadoithis has to be in your collection very good Japanese film."

2023 - 1445

get the correct labels of this example.
print('Correct Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example.
print('Prediction Probabilities for neg, pos:',
prediction_pipeline_vil.predict_proba([mistake_example]))

Correct Label: pos
Prediction Probabilities for neg, pos: [[0.8367931 0.1632069]]

Even though this is clearly a positive review, the pipeline reported a very confident negative prediction
with a probability of 83%. The explainer can now be used to provide insight into why the predictor
made this erroneous decision:

explain the prediction for this example.
exp = explainer_vl.explain_instance(mistake_example, prediction_pipeline_
vl.predict_proba, num_features=10)

visualize the explanation.
fig = exp.as_pyplot_figure()

Local explanation for class pos

Asano
Asian -
acting
MoVie
beautifully 1
superb 1
great 1
outlook
solid

Ichi 1

Figure 3.11: Words that influenced the erroneous decision

Even though the predictor correctly captures the positive influence of certain words such as
be@u‘ufully grgaf. and 'superb’, it ultimately makes a negative decision based on multiple words
Pnal's.eem,to Iaav! Ho obvious negative sentiment (e.g. 'Asano’, 'Asian’, 'movie’, 'acting').

This deménstrates S|gn|ﬁcant flaws in the logic that the predictor utilizes to classify the vocabulary
pul o ithe ﬁofthe given reviews. The next section demonstrates how improving this logic can significantly
Ministry oRoost the predictor's performance.

2023 - 1445

Improving Text Vectorization

The first version of the prediction pipeline used the CountVectorizer tool to
simply count the number of times that each word appears in each review.
This approach ignores two important facts about human language:

Regular expression

A regular expression is a
pattern of text used for
matching and manipulating

¢ The meaning and importance of a word can change based on the words strings and provides a
that surround it. concise and flexible way to

e The frequency of a word within a document is not always an accurate specify text patterns and is
representation of itsimportance. For instance, even though two occurrences widely used in text
of the word 'great' may be a strong positive indicator in a document with processing and data analysis.

100 words, it is far less important in a larger document with 1000 words.

This section will demonstrate how text vectorization can be improved to take these two facts into
account. The following code imports three different Python libraries that will be used to achieve this:

¢ nltk and gensim: two popular libraries used for various Natural Language Processing (NLP) tasks.
e re: a library used to search and process text using regular expressions.

%%capture

'pip install nltk #install nltk
'pip install gensim #install gensim

import nltk #import nitk
nltk.download('punkt') #install nltk's tokenization tool, used to split a text into sentences.

import re #importre

from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS # import tools
from the gensim library.

Detecting Phrases Tokenization

The following function can be used to split a given The process of breaking up textual data
document into a list of tokenized sentences, into pieces such as words, sentences,
where each tokenized sentence is represented symbols and other elements called tokens.

as a list of words:

The sent_tokenize() function splits

convert a given doc to a list of tokenized sentences. . .
g f the doc into a list of sentences.

def tokenize_doc(doc:str):

return [re.findall(r'\b\w+\b",
sent.lower()) for sent in nltk.sent_tokenize(doc)]

®oo, c00®
Tﬂégent_'tokemkr):unchon from the nltk library splits the document into a list of sentences. Each
sentence isthe lowercased and fed to the findall() function of the re library, which locates occurrences
E ng\ﬁ\b‘ regular expression. You will test it on the string provided on the raw_text variable.
In this e

ssion:
Mmlstrq of Educuhon

2023 - 1445

¢ \w matches all alphanumeric characters (a-z, A-Z, 0-9) and the underscore character.

¢ \w+ is used to capture "one or more" \w characters. So, in the string "hello123_world", the pattern
\w+ would match the words "hello", "123", and "world".

¢ \b represents the boundary between a \w character and a non-\w character, as well as at the start
or end of the given string. For example, the pattern \bcat\b would match the word "cat" in the string
"The cat is cute", but it would not match the word "cat" in the string "The category is pets".

Let's see an example of tokenization using the tokenize_doc() function.

raw_text='The movie was too long. I fell asleep after the first 2 hours.'
tokenized_sentences=tokenize_doc(raw_text)

tokenized_sentences

[['the', 'movie', 'was', 'too', 'long'l,
['i", 'fell', 'asleep', 'after', 'the', 'first', '2', 'hours']]

The tokenize_doc() function can now be combined with the Phrases tool from the gensim library to
create a phrase model, a model that can identify multi-word phrases in a given sentence. The following
code utilizes the IMDB training data (X_train_text) to build such a model:

sentences=[] #list of all the tokenized sentences across all the docs in this dataset

for doc in X_train_text: #foreach doc in this dataset
sentences+=tokenize_doc(doc) # get the list of tokenized sentences in this doc

build a phrase model on the given data

imdb_phrase_model = Phrases(sentences, 0
connector_words=ENGLISH_CONNECTOR_WORDS, e
scoring="npmi", 9
threshold=0.25).freeze() @

As shown above, the Phrases() function accepts four parameters:
@ The list of tokenized sentences from the given document collection.

@ Alist of common english words that appear frequently in phrases (e.g. 'of', 'the'), that do not have
any positive or negative value, but can add sentiment depending on the context, so they are
treated differently.

© A scoring function is used to determine if a sequence of words should be included in the same
phrase. The code above uses the popular Normalized Pointwise Mutual Information (NPMI) measure
for this purpose; NPMI is based on the co-occurrence frequency of the words in a candidate phrase

oo

P }ﬂd ;akgs & yﬁwe between -1 (complete independence) and +1 (complete co-occurrence).

b A‘thresho‘lcffor the scoring function. Phrases with a lower score are ignored. In practice, this
threshold can be tuned to identify the value that yields the best results for a downstream

pul 1l Clﬂﬂlﬁ.lat'ion (e.g. predictive modeling).

Ministry of Education
2023 - 1 A'EI%e freeze() suffix converts the phrase model into an unchangeable ("frozen") but much faster format.

When applied to the two tokenized sentence examples shown above, this phrase model produces
the following results:

imdb_phrase_model[tokenized_sentences[0]]
['the', 'movie', 'was', 'too_long']
imdb_phrase_model[tokenized_sentences[1]]

['i', 'fell_asleep', 'after', 'the', 'first', '2_hours']

The phrase model identifies three phrases: 'too_long', 'fell_asleep’, and '2_hours'. All three carry
more information than their individual words.

For example, 'too_long' clearly carries a m [negative |

negative sentiment, even though the |ong [tokenized |— m

words 'too' or 'long' by themselves do not.
Similarly, even though seeing the word m [negative | negative+
fell

‘asleep' in a movie review is likely negative asleep —M—' fell_asleep

evidence, the phrase 'fell_asleep' delivers

a much clearer message. Finally, '2_hours' specific context
captures a much more specific context D + hours 2 hours

than the words '2' and 'hours'.

Figure 3.12: Positive and negative sentiments
before and after tokenization

The following function uses this phrase-detection capability to annotate phrases in a given document:

def annotate_phrases(doc:str, phrase_model):
sentences=tokenize_doc(doc)# split the document into tokenized sentences.

tokens=[] #list of all the words and phrases found in the doc

for sentence in sentences: # foreach sentence
use the phrase model to get tokens and append them to the list.
tokens+=phrase_model[sentence]

return ' '.join(tokens) #join all the tokens together to create a new annotated document.

The following code uses the annotate_phrases() function to annotate both the training and testing
reviews from IMDb dataset:

dfaaﬁotqtegﬂ ?l;edst and train reviews.
Q('t'raln #€xte &nhotated=[annotate_phrases(doc,imdb_phrase_model) for doc in X_
train text]

Pl Dl feplicyext_annotated=[annotate_phrases(text,imdb_phrase_model)for text in X_
Mmlstrgofﬁ@é&twt]
2023 - 1445

148

an example of an annotated document from the imdb training data
X_train_text_annotated[0]

"i_grew up b 1965 watching and loving the thunderbirds all my_mates at
school watched we played thunderbirds before school during lunch and

after school we all wanted to be virgil or scott no_one wanted to be alan
counting down from 5 became an art_form i took my children to see the movie
hoping they would get_a_glimpse of what i_loved as a child how bitterly
disappointing the only high_point was the snappy theme_tune not that it
could compare with the original score of the thunderbirds thankfully early
saturday_mornings one television_channel still plays reruns of the series
gerry_anderson and his_wife created jonatha frakes should hand in his
directors chair his version was completely hopeless a waste of film utter_
rubbish a cgi remake may_be acceptable but replacing marionettes with homo_

sapiens subsp sapiens was a huge error of judgment'

Using TF-IDF for Text Vectorization

The frequency of a word within a document is not always an accurate
representation of its importance. A better way to represent frequency is
the popular TF-IDF measure. TF-IDF, which stands for "Term Frequency
Inverse Document Frequency", uses a simple mathematical formula to
determine the importance of tokens (i.e. words or phrases) in a document
based on two factors:

e the frequency of the token in the document, as measured by the number
of times the token appears in the document divided by the total number
of tokens in the documents

¢ the token's inverse document frequency, computed by dividing the total
number of documents in the dataset by the number of documents that
contain the token.

The first factor avoids the overestimation of the importance of terms that

appear in longer documents. The second factor penalizes terms that appear

in too many documents, which helps to adjust for the fact that some words
are more common than others.

TfidfVectorizer Tool

The sklearn library provides a tool that supports this type of TF-IDF
vectorization. The TfidfVectorizer tool can be used to vectorize a phrase.

Term Frequency Inverse
Document Frequency (TF-IDF)
TF-IDF is a statistical method
which is used to determine
the importance of tokens in a
document.

I
[Document |

[word | [term |

Figure 3.13: Words and terms in document

number of documents in data set

number of documents containing term

times of term appears in document
number of words in the document

TF * IDF = Value

=TF

from sklearn.feature_extraction.text import TfidfVectorizer

....
° #Tmm ofRI‘DP medel with the IMDb training dataset
vectorizer tf = TfidfVectorizer(min_df=10)

zer_tf.fit(X_train_text_annotated)
palc URBSRIE 2

= vectorizer_tf.transform(X_train_text_annotated)
Ministry of Eddcation —

2023 - 1445

This new vectorizer can now be input to the same Naive Bayes Classifier to build a new predictive
pipeline and apply it to the IMDDb testing data:

train a new Naive Bayes Classifier on the newly vectorized data.
model_tf =MultinomialNB()
model_tf.fit(X_train_v2, Y_train)

create a new prediction pipeline.
prediction_pipeline_tf = make_pipeline(vectorizer_tf, model_tf)

get predictions using the new pipeline.
predictions_tf = prediction_pipeline_tf.predict(X_test_text_annotated)

print the achieved accuracy.
accuracy_score(Y_test, predictions_tf)

0.8858

This new pipeline achieves an accuracy of 88.58%, a significant improvement over the 84.68% reported
by the previous one. This improved pipeline can now be used to revisit the test example that was
misclassified by the first pipeline:

get the review example that confused the previous algorithm
mistake_example_annotated=X_test_text_annotated[4600]

print('\nReview:',mistake_example_annotated)

get the correct labels of this example.
print('\nCorrect Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example.
print('\nPrediction Probabilities for neg, pos:',prediction_pipeline_
tf.predict_proba([mistake_example_annotated]))

Review: i_personally thought the movie was_pretty good very_good acting by
tadanobu_asano of ichi_the_killer fame i really can_t say much about the
story but there_were parts that confused me a little_too much and overall
i_thought the movie was just too lengthy other_than that however the movie
contained superb_acting great fighting and a lot of the locations were
beautifully_shot great effects and a lot of sword play another solid effort
by tadanobu_asano in my_opinion well i really can_t say anymore about the
movie but if_you re only outlook on asian_cinema is crouching_tiger hidden_
dragon or house of flying_daggers i_would suggest_you trying to rent_it but
®eqf_you ‘rg.a.die_hard asian_cinema fan i_would say this has to be in your_
ob i .
S .Q.:o.f.k.e,c:toloolz %8ry_good japanese film
. Correct Label: pos
pl il a)ljg o
Ministry of EduPEediction Probabilities for neg, pos: [[0.32116538 0.67883462]]
2023 - 1445

The new pipeline confidently predicts the correct positive label for this review. The following code
uses the LIME explainer to explain the logic behind this prediction:

create an explainer.
explainer_tf = LimeTextExplainer(class_names=class_names)

explain the prediction of the second pipeline for this example.
exp = explainer_tf.explain_instance(mistake_example_annotated, prediction_

pipeline_tf.predict_proba, num_features=10)

visualize the results.
fig = exp.as_pyplot_figure()

Local explanation for class pos

superb_acting 1
beautifully_shot 1
cnt{ [N
very_good 1
die_hard 7 [
your_collection 1
other_than _
solid A

outlook

great

002 000 0.02 0.04 0.06

Figure 3.14: Word influence for TF-IDF and Naive Bayes Classifier combination

The results verify that the new pipeline follows a significantly more intelligent logic. It correctly
identifies the positive sentiment of phrases like 'superb_acting', 'beautifully_shot' and 'very good'. It
is also not misguided by the words that erroneously drove the first pipeline toward a negative
prediction.

The performance of the predictive pipeline can be further improved in multiple ways, such as replacing
the Naive Bayes classifier with more sophisticated methods and tuning the parameters of these
methods to maximize their potential. Another option would be to experiment with alternative
vectorization techniques that are not based on token frequency, such as the word and document
grglze.dﬁlng.s,t?mu be explored in the following lesson.
oo..°.‘.°..oo

1l a)ljg

Ministry of Education

2023 - 1445

Read the sentences and tick v/ True or False. True False

1. In supervised learning, you use labeled datasets to train the model.

2. Vectorization is a technique of converting data from numeric vector format
to raw data.

3. The sparse format requires far less memory than the dense matrix.

4. The Naive Bayes Classifier algorithm is used to build a prediction pipeline.

5. The frequency of a word within a document is the only accurate representation
of its importance.

e Explain the reason the dense matrix format requires more space in the memory than
the sparse format.

e Analyze how the two mathematical factors in TD-IDF are utilized to inspect the
importance of a word in a document.

Pl g)ljg
Ministry of Education
2023 - 1445

152

o You are given a numPy array X_train_text that includes one document in each row.
You are also given a second array Y_train that includes the labels for the documents in
X_train_text. Complete the following code so that it uses TF-IDF to vectorize the data,
trains a MultinomialNB classification model on the vectorized version, and then
combines the vectorizer and classification model into a single prediction pipeline.

from .naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.feature_extraction.text import

vectorizer = (min_df=10)
vectorizer.fit() # fits the vectorizer on the training data
X_train = vectorizer. (X_train_text) #uses the fitted vectorizer to vectorize the data

model _MNB=MultinomialNB() # a Naive Bayes Classifier

model MNB.fit(X_train,) #fits the classifier on the vectorized training data

prediction_pipeline = make_pipeline(,)

Complete the following code so that it builds LimeTextExplainer for the prediction
pipeline that you built in the previous exercise and uses the explainer to explain the
prediction for a specific text example.

from import LimeTextExplainer

text_example="I really enjoyed this movie, the actors were excellent"
class_names=['neg', 'pos'] #creates a local explainer for explaining individual predictions

explainer = 7(class_names=class_names) # explains the prediction for this example
exp = explainer. (text_example.lower(),prediction_pipeline. ,
®oe, o0 7 T
00o,° .°,000
00, °, : e, 000 =10) # focuses the explainer on the 10 most influential features
pu_%‘!"]”\ﬁkuﬁ) # prints the words with the highest influence on the prediction
Ministry of Education
2023 - 1445

153

Link to digital lesson

Lesson2

Unsupervised Learning

www.ien.edu.sa

Unsupervised Learning to Understand Text

Unsupervised learning is a type of machine learning where the model is not given any labeled
training data. Instead, the model is only given a set of examples and must find patterns and
relationships within the data on its own. In the context of understanding text, unsupervised learning
can be used to discover latent structures and patterns within a dataset of text documents. There
are many different techniques that can be used for unsupervised learning of text data, including
clustering algorithms, dimensionality reduction techniques, and generative models.

Clustering algorithms can be used to group together similar

documents, while dimensionality reduction techniques can be used Unsupervised Learning

to reduce the dimensionality of the data and identify important In unsupervised learning, you

features. Generative models, on the other hand, can be used to give to the model large amounts

learn the underlying distribution of the data and generate new text of data that are not labeled and

that is similar to the original dataset. it has to find patterns in the
unstructured data through

Clustering Algorithms observation and clustering.

Clustering algorithms can group similar customers based on their
behavior, demographics, or purchasing history for targeted

marketing and increased customer retention. Dimensionality Reduction
Dimensionality Reduction Techniques Dimensionality reduction is a
Dimensionality reduction is used in image compression to reduce technique in machine learning
the number of pixels in an image to minimize the amount of data and data analysis to reduce the
needed to represent the image while preserving its main features. number of features (dimensions)

in a dataset while retaining as

Generative Models . . .
much information as possible.

Generative models are used in anomaly detection applications
where anomalies are detected in data by learning the normal
patterns of the data using a generative model.

Unlabeled Data Feature Vectors Algorithm

pul il ajljg

Ministry of Education
2023 - 1445 Figure 3.15: Unsupervised learning representation

One of the key advantages of using unsupervised learning is that it can

be used to identify patterns and relationships that may not be Cluster

immediately apparent to a human observer. This can be especially A cluster is a group of similar
useful for understanding large datasets of unstructured text, where things. In machine learning,
manual analysis may be impractical. grouping unlabeled data in
In this unit, you will use an openly available dataset of news articles homogeneous clusters is
from the BBC to demonstrate some key techniques for unsupervised called clustering.

learning (Greene & Cunningham, 2006). The following code is used to
load the dataset, which is organized into five different news folders
representing articles from different news sections: business, politics,
sports, technology, and entertainment. These five labels will not be
used to inform any of the algorithms presented in this unit. Instead,
they will only be used for visualization and validation purposes.

Each news folder includes hundreds of text files, with each file including
the content of a single specific article. The dataset is already loaded
into the Jupyter Notebook, and the codeblock will open the dataset
and extract all the documents and required labels to two list data Figure 3.16: Representation
structures, respectively. of a cluster

BBC open dataset
https://www.kaggle.com/datasets/shivamkushwaha/bbc-full-text-document-classification

D. Greene and P. Cunningham. "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering",Proc.
ICML 2006. All rights, including copyright, in the content of the original articles are owned by the BBC.

used to list all the files and subfolders in a given folder
from os import listdir

used for generating random number

import random shuffling lists

bbc_docs=[1 # holds the text of the articles
bbc_labels=[] # holds the news section for each article

for folder in listdir('bbc'): # for each news-section folder
for file in listdir('bbc/'+folder): # foreach text file in this folder

open the text file, use encoding="utf8" because articles may include non-ascii characters
with open('bbc/'+folder+'/'+file,encoding="utf8"',errors="ignore') as f:
bbc_docs.append(f.read()) #read the text of the article and append to the docs list
use the name of the folder (news section) as a label for this doc
:‘Oo t;b.c‘?aﬂaels append(folder)
o # shufﬂe'the doa .nd labels lists in parallel
merged = list(zip(bbc_docs, bbc_labels)) #link the two lists
pul — ilkanfdgm shuffle(merged) # shuffle them in parallel (with the same random order)
Ministry of EdMRGtdacs, bbc_labels = zip(+merged) # separate them again into individual lists.

2023 - 1445

Document Clustering

Now that the dataset has been loaded, the next step is to experiment with
various unsupervised methods. Clustering is arguably the most popular
type of method in this domain. Given a collection of unlabeled documents,
the goal of clustering is to group documents that are similar to one another,
while separating documents that are dissimilar.

Table 3.2: Factors that determine the quality of the results

Document Clustering

Document clustering is a
method which groups textual
documents into clusters based
on their content similarity.

1 The way in which the data has been vectorized. Even though TF-IDF is an established
technique in this space, this unit will also explore more sophisticated alternatives.

the examples presented in this unit.

2 The exact definition of document-to-document similarity. For vectorized text data, the
Euclidean and Cosine distance measures are the most popular. The former will be used in

for clustering tasks.

3 The selected number of clusters. Agglomerative Clustering (AC) provides an intuitive method
for selecting the appropriate number of clusters for a given dataset, which is a key challenge

Selecting the Number of Clusters

Selecting the correct number of clusters is a crucial step for any clustering
task. Unfortunately, the vast majority of clustering algorithms expect the
practitioner to provide the correct number of clusters as part of the
input. The selected number can have a significant impact on the quality
and interpretability of the results.

There are several approaches that can be used to select the number of
clusters.

e One common approach is to use a measure of cluster "compactness". This
can be done by calculating the sum of the distances between the points
within each cluster, and selecting the number of clusters that minimizes
this sum.

e Another approach is to use a measure of the "separation" between the
clusters, such as the average distance between points in different clusters,
accordingly, the number of clusters raised from this average is determined.

In practice, the above approaches often contradict each other by
recommending different numbers. This is an especially common challenge
when working with text data, whose structure is often difficult to discern.

Ministry of Education

2023 -

1 44%igure 3.17: Machine calculating the distances between points

Euclidean Distance

Euclidean distance is a straight-line
distance between two pointsin a
multidimensional space. It is
calculated as the square root of the
sum of the squares of the
differences between the
corresponding dimensions of the
points. Euclidean distance is used in
clustering to measure the similarity
between two data points.

Cosine Distance

Cosine distance measures the
cosine similarity between two
data points. It calculates the
cosine of the angle between two
vectors representing the data
points and is often used in text
data clustering. The cosine
similarity value is between -1 and
1, with -1 indicating the complete
opposite and 1 indicating the
same direction.

The number of clusters in unsupervised learning determines
how many groups or categories the algorithm will divide the
data into. Choosing the right number of clusters is important
because it affects the accuracy and interpretability of the
results. If clusters are too high, the groups may be too specific
and not meaningful. If the number of clusters is too low, the
groups may be too broad and not capture the underlying
structure of the data. It is important to strike a balance between
having enough clusters to capture meaningful patterns but not
so many that the results become too complex to understand.

Hierarchical Clustering

Hierarchical clustering is a clustering
algorithm for grouping data into clusters
based on similarity. In hierarchical
clustering, the data points are organized
into a tree-like structure, where each node
represents a cluster, and the parent node
represents a merger of its child nodes.

The following code imports specific libraries that will be used for the end-to-end hierarchical clustering:

used for tfi-df vectorization, as seen in the previous unit

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import AgglomerativeClustering # used for agglomerative clustering

used to visualize and support hierarchical clustering tasks

import scipy.cluster.hierarchy as hierarchy

set the color palette to be used by the 'hierarchy’ tool.
hierarchy.set_link_color_palette

(['blue', 'green', 'red', 'yellow', 'brown', 'purple', 'orange', 'pink', 'black'])

import matplotlib.pyplot as plt #used for general visualizations

Text Vectorization

Similar to the supervised methods that were presented in the previous unit, many methods
for unsupervised learning also require raw text to be vectorized into a numeric format.

The following code uses the TfidfVectorizer tool (which was also used in the previous

lesson) for this purpose:

vectorizer = TfidfVectorizer(min_df=10) # apply tf-idf vectorization, ignore words that

appear in more than 10 docs.

text_tfidf=vectorizer.fit_transform(bbc_docs) #fit and transform in one line

text_tfidf

... e00®
“0622»2,59(3807‘ Qparse matrix of type '<class

il ajljg

"numpy.float6s4'>"'
W1th 392379 stored elements in Compressed Sparse Row format>

Ministry O&%E@gt%seen above, the document data have now been converted into the sparse numeric format

2023 - Mtzhaat was also used in the previous lesson.

158

The following code uses the TSENVisualizer tool from the yellowbrick library to project and visualize
the vectorized documents within a 2-dimensional space:

%%capture

!'pip install yellowbrick

from yellowbrick.text import TSNEVisualizer

Dimensionality Reduction
Dimensionality reduction can be useful in a number of applications, such as:

¢ Visualizing high-dimensional data: It can be difficult to visualize data
in a high-dimensional space, so reducing the number of dimensions

t-Distributed Stochastic
Neighbor Embedding
(T-SNE)

can make it easier to visualize and understand the data.

¢ Reducing the complexity of a model: A model with fewer dimensions
may be simpler and easier to understand, and the training process is

faster.

¢ Improving the performance of a model: Dimensional reduction can
help remove noise and redundancy from the data, which can improve
the performance of a model.

Table 3.3: Dimensionality reduction techniques

T-SNE (t-Distributed
Stochastic Neighbor
Embedding) is an
unsupervised machine
learning algorithm for
dimensionality reduction.

Pl a)ljg

Technique Description Example of use
Feature Feature selection involves selecting | Medical datasets may have hundreds of columns
selection a subset of the original features. per patient case. Only a few of these features can
help the model diagnose correctly. Other traits are
unrelated to the diagnosis and may distract the
model. Feature selection discards all but the most
discriminating features.
Feature Feature transformation involves | Consider predicting a patient's stay on admission,
transformation | combining or transforming the | we can create additional features for the model
original features to create a new | from the current features of the patient's medical
set of features. The original used | records. For example, compute the number of lab
features can be dropped as they | tests ordered during the past week, or the number
have become redundant. of visits during the past month. Another example
is computing the area of a rectangle from it's height
and width.
Manifold Manifold learning techniques, | They can convert a high-dimensional image into a
learning such as t-SNE and UMAP (Uniform | lower-dimensional space while keeping its primary
Manifold Approximation and | characteristics and structure. Since it takes up less
::o.. ..QE:rojection), are unsupervised | space, this compressed representation may be
0o e e lgarning techniques that aim to | stored and sent, and the original image can be
’ ’ preserve the structure of the data | rebuilt with minimal loss of information
in a lower-dimensional space.

Ministry of Education
2023 - 1445

One of the key features of t-SNE is that it tries to preserve the local structure of the data as much as possible, so
that similar data points are nearby in the low-dimensional representation. It does this by minimizing the divergence
between two probability distributions: the distribution of the high-dimensional data and the distribution of the
low-dimensional data.

The vectorized BBC dataset is indeed high-dimensional, as it includes a separate dimension (column) for each of
the unique words that appear in the data.

The total number of dimensions can be computed as follows:

print('Number of unique words in the BBC documents vectors:',
len(vectorizer.get_feature_names_out()))

Number of unique words in the BBC documents vectors: 5867

The following code can now be used to project these 5,867 dimensions into just two (the X and Y
coordinates of the plot). This code will create a scatter plot diagram, where each color represents
one of five news sections.

tsne = TSNEVisualizer(colors=['blue', 'green', 'red', 'yellow', 'brown'])
tsne.fit(text_tfidf,bbc_labels)
tsne.show();

TSNE Projection of 2225 Documents

business
entertainment
politics

sport

fech

Figure 3.18: TSNE projection

Th.is.visualization.uges the original "ground-truth" label (news section) of each document to reveal
glf.'sperslm:cfeach label across the 2D projected vectorization space. The figure reveals that, even
ﬂwbugh'th:eré are8dme impurities in certain pockets of the space, the five news sections are generally
well-separated. Later, an improved vectorization that reduces these impurities will be described.

pul il ajljg

Ministry of Education

2023 - 1445

Agglomerative Clustering (AC)

Agglomerative Clustering (AC), also called hierarchical clustering, is
one of the most popular and effective methods in this space, it Level 5
addresses this challenge by providing an intuitive visual method for [~ " """
selecting the appropriate number of clusters. AC follows a bottom-up - l,_ ,,,,,,,,
approach. It begins by computing the distance between all pairs of Level 3
data points. It then selects the two closest points and merges them Level 2
into a single cluster. This process is repeated until all of the data points |-
have been merged into a single cluster or until the desired number Level 1 IZII{ dlle ¢ E:I

of clusters has been reached.

Figure 3.19: Agglomerative Clustering (AC)

fx Linkage(Function
Python implements Agglomerative Clustering with the linkage() function.

Two parameters are provided for the linkage() function:

e The vectorized text data. The toarray() function is used to convert the data to its dense format, as
required by this function.

e The distance metric that should be used to decide which clusters to merge next during the
agglomerative process. There are many different options to choose from for a distance metric
depending on the needs and preferences of the user, like Euclidian, Manhattan, etc. For this project
you will use the ward distance metric.

The following code uses the linkage() function from the 'hierarchy' tool (imported above) to apply
this process to the vectorized BBC data:

plt.figure() #create a new empty figure
iteratively merge points and clusters until all points belong to a single cluster
return the linkage of the produced tree

linkage_tfidf=hierarchy.linkage(text_tfidf.toarray(),method="ward')

visualize the linkage
hierarchy.dendrogram(linkage_tfidf)

show the figure
plt.show()

1l a)ljg
Ministry of Education
2023 - 1445

Figure 3.20: Hierarchy dendrogram for the BBC data

Ward Distance

The example above uses the popular Ward distance metric for the second parameter. The Ward
distance is based on the concept of within-cluster variance, defined as the sum of the distances
between the points in a cluster. In each iteration, the method evaluates every possible merge by
computing the within-cluster variance before and after the merge. It then performs the merge that
leads to the lowest variance increase. Even though Ward is one of the multiple options, it has been
shown to work well for text data.

Q“‘~ . ___,/”YC_\P‘____%O
O --_il. ______________ e ,——‘_‘_':_—:———_‘_’_'::::;b\ L
@ I Y < @
e e L f->0
Ses T e ®)
Figure 3.21: Example of Ward distance metric

The dendrogram in figure 3.20 provides an intuitive way of selecting
the number of clusters. In this example, the library suggests using Dendrogram
7 clusters, each highlighted with a different color. The dendrogram is a tree
The practitioner can either adopt this suggestion or use the diagram_which shows Fhe
dendrogram to pick a different number. For instance, the blue and hierarchical relatlonshlr? '
green pair was merged last with the cluster group of all the other between data. Usually, it is
colors. Therefore, choosing 6 clusters would merge purple and created asan OUtpL.‘t from
orange, while choosing 5 clusters would also merge blue and green. hierarchical clustering.

The following code adopts the tool's suggestions and uses the AgglomerativeClustering tool from the
sklearn library to cut the tree after the 7 clusters have been created:

AC_tfidf=AgglomerativeClustering(linkage="ward',n_clusters=7) # prepare the tool,
set the number of clusters.

AC_tfidf.fit(text_tfidf.toarray()) #apply the tool to the vectorized BBC data.
pred_tfidf=AC_tfidf.labels_ # get the cluster labels.

pred_tfidf

array([6, 2, 4, ..., 6, 3, 5], dtype=int64)

®oo, e00®

Nate tha't thg ongiﬁal "ground-truth" label (news section) of each document has not been used at all

durlng tFus pr‘bcess Instead, clustering was done exclusively based on the text of each document.
1 Hﬁvmflsuch ground-truth labels can be useful in practice, as it allows for the validation of the clustering

resu e current "ground-truth" labels are the ones on the bbc_labels list.
Mlmstfq of Education

2023 - 1445

The following code uses the ground-truth labels and three different scoring functions from the sklearn
library to evaluate the quality of the produced clustering:

* The Homogeneity score takes values between 0 and 1 and is maximized when all the points of
each cluster have the same ground-truth label. Equivalently, each cluster contains only data points
of a single class.

¢ The Adjusted Rand score takes values between -0.5 and 1.0 and is maximized when all the data points
with the same label are in the same cluster and all points with different labels are in different clusters.

¢ The Completeness score also takes values between 0 and 1 and is maximized when all data points
of a given class are assigned to the same cluster.

from sklearn.metrics import homogeneity_score,adjusted_rand_
score,completeness_score

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_tfidf))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_tfidf))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_tfidf))

e
Homogeneity score: ©.6224333236569846 |— | Closerto 1 meansthatthe

group of texts in the cluster
Adjusted Rand score: 0.4630492696176891 belongs to 1 label.

\ J

Completeness score: 0.5430590192420555 4

Closer to 1 means better 1-1

mapping of clusters to labels.

To complete the analysis, the data is re-clustered using
5 clusters, which are equal to the actual number of
ground truth labels:

AC_tfidf=AgglomerativeClustering(linkage="'ward',n_clusters=5)
AC_tfidf.fit(text_tfidf.toarray())
pred_tfidf=AC_tfidf.labels_

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_tfidf))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_tfidf))

print('\nCompleteness score:',completeness_score(bbc_labels,pred_tfidf))

Homogenelty score: 0.528836079209762 Providing the AC clustering the

actual number of labels, gives a
better Completeness score, meaning
the clustering is more representative.

Adjusted Rand score: 0.45628412883628383

. ° &0mp1eteﬂ€s§.score 0.6075627851312266

éqwéh the score results reveal that the combination of Agglomerative Clustering with TF-IDF
vectorl n produces reasonable results, the quality of the clustering can be improved. The next section
Mmlstrgo Educo io r{

2023 mons rates how vectorization techniques based on neural networks can lead to superior results.

Word Vectorization with Neural Networks

TF-IDF vectorization is based on counting and normalizing the frequency of words across the documents in
the dataset. Even though this can lead to good results, frequency-techniques have a significant limitation,
as they completely ignore the semantic connection between words. For example, even though the words
'trip' and 'journey' are synonyms, frequency-based vectorization would treat them as completely separate
and independent features. Similarly, even though the words 'apple' and 'fruit' are semantically related (as

apples are a type of fruit), this relation will also be ignored.

This limitation can significantly impact downstream applications that use this type of vectorization.

Consider these two sentences:

¢ "| have a very high fever, so | have to visit a doctor."

¢ "My body temperature has risen significantly, so | need to see a healthcare professional."

Even though these two sentences describe the exact same scenario, they do not share any informative
words. Therefore, any clustering algorithm that is based on TF-IDF (or any other frequency-based)
vectorization would fail to see their similarity and would likely not place them in the same cluster.

Word2Vec

This limitation can be addressed via methods that consider the semantic similarity between words.
One of the most popular methods for this purpose is Word2Vec, which uses an architecture based

on neural networks.

Word2Vec is based on the intuition that semantically similar words
will typically be surrounded by the same context words. Therefore,
given that the neural network uses the hidden embedding of each
word to predict its context, similar words should be mapped to similar
embeddings.

In practice, Word2Vec models are pre-trained on millions of documents
to learn high-quality word embeddings. Such pre-trained models can
then be downloaded and used in any text-based application.

The following code uses the gensim library to download a popular
pre-trained model that has been trained on a very large dataset from
Google News:

import gensim.downloader as api
model_wv = api.load('word2vec-google-news-300")
fox_emb=model_wv['fox"']
print(len(fox_emb))

300
[X 000
oo::‘. .‘:.oo
e, °,°, % c00

This model maps each word to an

Pl il ajlig embedding with 300 dimensions.

Ministry of Education
2023 - 1445

Stopwords

Stopwords are common words
in a language often removed
during the text pre-processing
step in NLP tasks such as word
vectorization. These words
include articles, conjunctions,
and prepositions and are not
typically considered useful for
determining the meaning or
context of a text.

Embedding

Embedding represents words
or tokens in a continuous
vector space where
semantically similar words are
mapped to nearby points.

The first 10 dimensions of the numeric "fox" embedding are displayed below:

fox_emb[:10]

array([-0.08203125, -0.01379395, -0.3125 , -0.04125977, 0.05493164,
-0.12988281, -0.10107422, -0.00164795, 0.15917969, 0.12402344],
dtype=float32)

The model can use the embeddings of the words to evaluate their similarity. Consider the following
example, which compares the word 'car' with other words of decreasing similarity. Similarity values
are always between 0 and 1.

pairs = [
('car', 'minivan'),
('car', 'bicycle'),
('car', 'airplane'),
('car', 'street'),
('car', 'apple'),
]
for wl, w2 in pairs:
print(wl, w2, model_wv.similarity(wl, w2))

car minivan 0.69070363
car bicycle 0.5364484
car airplane 0.42435578
car street 0.33141237
car apple 0.12830706

The following code can be used to find the 5 most similar words of a given word:

print(model_wv.most_similar(positive=["apple'], topn=5))

[('apples', 0.720359742641449), ('pear', 0.6450697183609009),
("fruit', 0.6410146355628967), ('berry', 0.6302295327186584), ('pears'’
0.613396167755127)1]

Visualization can be used to further validate the embeddings of this pre-trained model. This can be
achieved by:

OGoIcgtmg a sa;rq:ﬂ@of words from the BCC dataset.
-cUgmgt SNE’toreduce the 300-dimensional embedding of each word to a 2-dimensional point.
o Vlsuallzmg the points as a scatter plot in 2-dimensional space.

pul il ajljg

Ministry of Education
2023 - 1445

%%capture

import nltk #import the nitk library for nip.

import re #import the re library for regular expressions.

import numpy as np # used for numeric computations

from collections import Counter # used to count the frequency of elements in a given list
from sklearn.manifold import TSNE # Tool used for Dimensionality Reduction.

download the 'stopwords' tool from the nltk library. It includes very common words for different
languages
nltk.download('stopwords')

from nltk.corpus import stopwords #import the 'stopwords'tool.

stop=set(stopwords.words('english')) #load the set of english stopwords.

The following function is then used to select a sample of representative

words from the BBC dataset. Specifically, the code selects the top 50 Some very common and
frequent English words

most frequent words from each of the 5 BBC news sections, excluding
stopwords (very common English words) and words that are not
included in the pre-trained Word2Vec model.

considered stopwords include
Ilall’ “the“' llisll and Ilarell'

def get_sample(bbc_docs:list,
bbc_labels:list
DE

word_sample=set() #asample of words from the BBC dataset

for each BBC news section
for label in ['business', 'entertainment', 'politics', 'sport', 'tech'l]:

get all the words in this news section, ignore stopwords.
for each BBC doc and for each word in the BBC doc
if the word belongs to the label and is not a stopword and is included in the Word2Vec model
label_words=[word for i in range(len(bbc_docs))
for word in re.findall(r'\b\w\w+\b',bbc_docs[i].lower())
if bbc_labels[i]==1abel and
word not in stop and
word in model_wv]

cnt=Counter(label_words) # count the frequency of each word in this news section.

get the top 50 most frequent words in this section.
top50=[word for word,freq in cnt.most_common(50)]
add the top50 words to the word sample.
word_sample.update(top50)

.y - ¥eturn word_sample
P il agljg
Ministry of Eqyerid i Sample=get_sample(bbc_docs,bbc_labels)
2023 - 1445

Finally, you can use a method with t-SNE to reduce the 300-dimensional embeddings of the words in
the sample into 2-dimensional points. The points are then visualized via a simple scatter plot.

mowemedy
oscar
actor filfims
i festival
actress S9¢F
stars tv
music
star &':M“ online
band video nternetbmadband
win
digital
malghhes Yeaqrs youp campaign mobile
a software
game p‘i'a}'e,s months PRONES phone tgchnologgmputer
million prime data
season year final information
coach show half
rugby team series $esond chart system
cdub < g
Y two nexnto oy servicegervice companies
cup six od P
time L am shares
backree company i K
i t doll fi sales
net sae home ™ ar IR business
set
mpny %o Hen party prices
chinadeal could way bank
wqids P however, world
best expected state law market
going country economic aowth
migsrnft
kg?\ . tax financial
december ke ail conomy
LS ford geat think get added
good governmeadection
mr x us oo general
boc frangg.; biair says
land a"t:n‘r h?r?('vard = d °e popte
englan is| tories ople ma
ca Reeh make said
s wown .
™ usec ghancellor
i idi
- using securiy spokesman presiden tony
_ directéfader
chief
police secretary
minister
s analysts
awards
prize

Figure 3.22: Representation of the most frequent words from BBC dataset
The plot verifies that the Word2Vec embeddings successfully capture the semantic associations
between words, as indicated by intuitive word groups such as:
-eoqnbmy, ecqnpcmc business, financial, sales, bank, firm, firms
o Internet -moblre phones phone, broadband, online, digital

Al C-'m:t&rjﬁaress, film, comedy, films, festival, band, movie
Ministry & Bamey team, match, players, coach, injury, club, rugby
2023 - 1445

Sentence Vectorization with Deep Learning

Even though Word2Vec can be used to model individual words, clustering requires the vectorization of entire
documents. One of the most popular methods for this purpose is Sentence-BERT (SBERT), which is based
on deep learning methods.

Bidirectional Encoder Representations from Transformers (BERT)

BERT is a powerful language representation model developed by Google. Pre-training and fine-tuning
are the main factors to which BERT can apply transfer learning; the ability to retain information for
one problem and apply it to solve the other. Pre-training is done by feeding the model a massive
amount of unlabeled data for multiple tasks, such as masked language prediction (random words in
an input text are masked, and the task is to predict these words). For fine-tuning, the BERT model is
first initialized with the pre-trained parameters, and all of the parameters are fine-tuned using labeled
datasets from the downstream tasks. Each downstream task has separate fine-tuned models, even
though they are initialized with the same pre-trained parameters. For example, the fine-tuning
sentiment analysis model is different from the question-answering model. Interestingly, the models
will have little to no architectural difference after the fine-tuning step.

SBERT

SBERT is a modified version of BERT. Similar to Word2Vec, BERT is trained to predict words based on
the context of their sentence. On the other hand, SBERT is trained to predict whether two sentences
are semantically similar.

SBERT can be effectively used to create embeddings for pieces of text that are longer than a sentence
such as paragraphs or short documents or articles in the BBC dataset that is used in this unit.

Even though all three models are based on neural networks, BERT and SBERT follow significantly
different and more complex architectures than Word2Vec.

Sentence_transformers Library

The 'sentence_transformers' library implements the full functionality of the SBERT model. The library
comes with several pre-trained SBERT models, each trained on a different dataset and with different
objectives. The following code loads one of the most popular general-purpose pre-trained models
and uses it to create embeddings for the documents in the BBC dataset:

%%capture
'pip install sentence_transformers
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MinilM-L6-v2') #load the pre-trained model.

text_emb = model.encode(bbc_docs) #embed the BBC documents.

1l a)ljg
Ministry of Education
2023 - 1445

The same TSNEVisualizer tool that was used earlier in this unit to visualize the vectorized documents
produced by the TF-IDF vectorizer can now be used for the embeddings produced by SBERT:

tsne = TSNEVisualizer(colors=['blue', 'green','red', 'yellow', 'brown'])
tsne.fit(text_emb,bbc_labels)
tsne.show();

TSNE Projection of 2225 Documents

tusiness
entertainment
politics

sport

ch

Figure 3.23: TSNE Projection of embeddings by SBERT

The figure reveals that SBERT leads to a more distinct separation of the different news sections, with
fewer impurities than TF-IDF. The next step is to to use the embeddings to inform the Agglomerative
Clustering algorithm:

plt.figure() #create anew figure.

iteratively merge points and clusters until all points belong to a single cluster. Return the the linkage of
the produced tree.
linkage_emb=hierarchy.linkage(text_emb, method="'ward"')

hierarchy.dendrogram(linkage_emb) # visualize the linkage.
plt.show() #show the figure.

1l a)ljg
Ministry of Education
2023 - 14%45

Figure 3.24: Hierarchy dendrogram for SBERT

The dendrogram tool suggests the use of 4 clusters, each marked with a different color in the figure 3.24.
The following code uses this suggestion to compute the clusters and compute the evaluation metrics:

AC_emb=AgglomerativeClustering(linkage="ward',n_clusters=4)
AC_emb.fit(text_emb)
pred_emb=AC_emb.labels_

print('\nHomogeneity score:',homogeneity score(bbc_labels,pred_emb))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_emb))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_emb))

Homogeneity score: 0.6741395570357063
Adjusted Rand score: 0.6919474005627763

Completeness score: 0.7965514907905805

If the data is re-clustered using the correct number of 5 clusters, then the yellow cluster marked in
the figure above would be split into two. The results are then as follows:

AC_emb=AgglomerativeClustering(linkage="'ward',n_clusters=5)
AC_emb.fit(text_emb)
pred_emb=AC_emb.labels_

print('\nHomogeneity score:',homogeneity_score(bbc_labels,pred_emb))
print('\nAdjusted Rand score:',adjusted_rand_score(bbc_labels,pred_emb))
print('\nCompleteness score:',completeness_score(bbc_labels,pred_emb))

Homogeneity score: 0.7865655030556284
Adjusted Rand score: 0.8197670431956582

Completeness score: 0.7887580797775077

The results verify that using SBERT for text vectorization leads to significantly improved clustering
results when compared with TF-IDF. In fact, even if the number of clusters is set to 5 (the correct
value) for TF-IDF and to 4 for SBERT, SBERT still scores much higher for all three metrics. The gap then
becomes even larger if the number is set to 5 for both approaches.

This is a testament to the potential of neural networks, whose sophisticated architecture allows them
to understand the complex semantic patterns found in text data.

1l a)ljg
Ministry of Education
2023 - 1445

Read the sentences and tick v/ True or False. True False

1. In Unsupervised learning, you use labeled datasets to train the model.

2. Unsupervised learning requires the vectorization of the data.
3. SBERT is more optimal than TD-IDF for word vectorization.
4. Agglomerative Clustering follows a up-bottom approach to cluster selecting.

5.SBERT is trained to predict whether two sentences are semantically different.

Show examples of applications for which Dimensionality Reduction can be used. Describe
the techniques that are used in Dimensionality Reduction.

e Describe the functionality of TF-IDF vectorization.

pul il ajljg
Ministry of Education

2023 - 1445
170

0 You are given a numPy array 'Docs' that includes one text document in each row. You
are also given an array 'labels' that includes the label for each doc in Docs. Complete
the following code so that it uses a pre-trained SBERT model to compute the embeddings for
all the documents in Docs and then uses the TSNEVisualizer tool to visualize the embeddings
in 2-dimensional space, using a different color for each of the four possible labels.

from sentence_transformers import

from import TSNEVisualizer model = ('all-MinilLM-

L6-v2') #loads the pre-trained model.

docs_emb = model. (Docs) #embeds the docs
tsne = (777 =['blue', 'green','red', 'yellow'])
tsne. (')

tsne.show();

o Complete the following code so that it uses Word2Vec to replace every word in a given
sentence with its most similar one.

import gensim.downloader as
import re

model_wv = . ('word2vec-google-news-300")

old_sentence="'My name is John and I like basketball.'
new_sentence=""

for word in re. (r'\b\w\w+\b',old_sentence.lower()):
replacement=model_wv. (positive=["'apple'], =1)[0]
®oe, e00®
00e,°: «°,000

new_sentence+=

F%LL—EééHtéﬁtUEmew_sentence.strip()

Ministry of Education
2023 - 1445

171

Link to digital lesson

Lesson3

Generating Text

www.ien.edu.sa

Natural Language Generation

Natural Language Generation (NLG) is a sub-field of natural language processing (NLP) that focuses
on generating human-like text using computer algorithms. The goal of NLG is to produce written or
spoken language that is natural and understandable to humans, without the need for human
intervention. There are several different approaches to NLG, including template-based, rule-based,
and machine learning-based methods.

Natural Language Processing (NLP)

Computer Natural Language Processing (NLP) is a
Science branch of Al which gives computers the
ability to simulate human natural
languages.
Linguistics

Al Natural Language Generation (NLG)

Natural Language Generation (NLG) is
the process of generating human-like

Figure 3.25: NLP Venn diagram text using Al.

Table 3.4: The impact of NLG

NLG could be used to automatically generate news articles, reports, or
other written content, freeing up time for humans to focus on more
creative or higher-level tasks.

It could also be used to improve the efficiency and effectiveness of
customer service chatbots, enabling them to provide more natural and
helpful responses to customer inquiries.

. NLG has the potential to increase accessibility for people with disabilities
- ! or language barriers, by enabling them to communicate with machines

in a way that is natural and intuitive for them.

Pl o

Ministry)FEducotilon
2023 - 1445

There are four types of NLGs:
Template-Based NLG

Template-based NLG involves the use of predefined templates that specify the structure and content of the
generated text. These templates are filled in with specific information to generate the final text. This approach
is relatively simple and can be effective at generating text for specific, well-defined tasks. On the other hand,
it may struggle with more open-ended tasks or tasks that require a high degree of variability in the generated
text. For example, a weather report template might look like this: "Today in [city], it is [temperature] degrees
with [weather condition]."

Selection-Based NLG

Selection-Based NLG involves the selection of a subset of sentences or paragraphs to create a representative
summary of a much larger corpus. Even though this approach does not generate new text, it is very popular
in practice. This is because, by sampling from a pool of sentences that have been written by humans, it
removes the risk of generating unpredictable or poorly formed text. For example, a selection-based weather
report generator might have a database of phrases such as "It is hot outside," "The temperature is rising,"
and "Expect sunny skies."

Rule-Based NLG

Rule-based NLG uses a set of predefined rules to generate text. The rules might specify how to combine
words and phrases to form sentences, or how to choose words based on the context in which they are being
used. They are often used to create customer service chatbots. Rule-based systems can be simple to
implement. They can also be inflexible and may not produce very natural-sounding output.

Machine Learning-Based NLG

Machine learning-based NLG involves training a machine learning model on a large dataset of human-
generated text. The model learns the patterns and structure of the text, and can then generate new text
that is similar in style and content. This approach can be more effective for tasks that require a high degree
of variability in the generated text. This approach may require a larger amount of training data and
computational resources.

Using Template-Based NLG

Template-Based NLG is relatively simple and can be effective at generating text for specific, well-defined
tasks, such as generating reports or descriptions of data.

One advantage of template-based NLG is that it can be relatively easy to implement and maintain. The
templates can be designed by humans, and do not require the use of complex machine learning algorithms

or large amounts of training data. This makes template-based NLG a good choice for tasks where the structure
and content of the generated text are well-defined and do not need to vary significantly.

NLG templates can be based on any predefined linguistic construct. One common practice is to create a
template that requires words with a specific part-of-speech tag to be placed in specific slots within a sentence.

Part of Speech (POS) Tags

Part of speech tags, also known as POS tags, are labels

Q@Pare assign@ftd words in a text to indicate their vers | (DET) (ADs) | NOUN
0@, o o4 E. .

granamatitalrolep or part of speech, in the sentence.

For example, a word may be tagged as a noun, verb,

Pl — abjeatiegadverb, etc. Part of speech tags are used in want an early upgrade

Ministry oML t@ianalyze and understand the structure and
2023 - 14Mmeaning of a text.

Figure 3.26: Example of POS process

Syntax Analysis

Syntax analysis is often used along with POS tags in template-based NLG, to ensure that the templates
can lead to realistic text. Syntax analysis involves identifying the parts of speech of the words in the
sentence, and the relationships between them, to determine the grammatical structure of the sentence.
A sentence includes different types of syntax elements. For example:

¢ The predicate is the part of the sentence that contains the verb. It typically expresses what is being
done or what is happening.

e The subject is the part of the sentence that performs the action expressed by the verb, or that is
affected by the action.

¢ The direct object is a noun or pronoun that refers to the person or thing that is directly affected by
the action expressed by the verb.

The following code uses the wonderwords library, which follows this syntax-based approach, to provide
some examples of template-based NLG:

%%capture

!'pip install wonderwords
used to generate template-based randomized sentences
from wonderwords.random_sentence import RandomSentence

make a new generator with specific words

generator=RandomSentence(
specify some nouns
nouns=["lion", "rabbit", "horse","table"],
verbs=["eat","run","laugh"1, #specify some verbs.
adjectives=["'angry', 'small']) # specify some adjectives.

generates a sentence with the following template: [subject (noun)] [predicate (verb)]
generator.bare_bone_sentence()

'The table runs.'

generates a sentence with the following template:
the [(adjective)] [subject (noun)] [predicate (verb)] [direct object (noun)]
generator.sentence()

'The small lion runs rabbit.'

The above examples show that, while template-based NLG can be used to generate sentences with
a specific pre-approved structure, these sentences may be not be that meaningful in practice. Even
though the quality of the results can be significantly improved by defining more sophisticated templates
ag(gp.lacjng r.npcg@ﬁstraints on vocabulary use, this approach is not practical for generating realistic
textarf.a Iarge:scaien Rather than manually creating predefined templates, a different approach to
template-based NLG is to use the structure and vocabulary of any real sentence as a more dynamic

p_l_l_dg"_d‘lpb}lg'dhe paraphrase() function adopts this approach.

Ministry of Education

2023 - 1445

fx Paraphrase() Function

Given a paragraph of text, the function first splits the text into sentences. Then tries to replace each
word in the sentence with another semantically similar word. Semantic similarity is evaluated via the
Word2Vec model that was introduced in the previous lesson.

To avoid cases where Word2Vec recommends replacements that are very similar to the original word
(e.g. replacing "apple" with "apples"), the function uses the popular fuzzywuzzy library to evaluate
the lexical similarity between the original word and a candidate to replace it.

The function itself is then shown below:

def paraphrase(text:str, #textto be paraphrased
stop:set, #setof stopwords
model_wv,# Word2Vec Model
lexical_sim_ubound:float, #upper bound on lexical similarity
semantic_sim_lbound:float #lower bound on semantic similarity

):
words=word_tokenize(text) # tokenizes the text to words
new_words=[1 # new words that will replace the old ones.
for word in words: #forevery word in the text
word_l=word.lower() #lower-case the word.

if the word is a stopword or is not included in the Word2Vec model, do not try to replace it.
if word_1 in stop or word_1 not in model_wv:
new_words.append(word) # append the original word

else: #otherwise

get the 10 most similar words, as per the Word2Vec model.

returned words are sorted from most to least similar to the original.

semantic similarity is always between 0 and 1.

replacement_words=model_wv.most_similar(positive=[word_1],
topn=10)

for each candidate replacement word

for rword, sem_sim in replacement_words:
get the lexical similarity between the candidate and the original word.
the partial_ratio function returns values between 0 and 100.
it compares the shorter of the two words with all equal-sized substrings
of the original word.
lex_sim=fuzz.partial_ratio(word_1,rword)

if the lexical sim is less than the bound, stop and use this candidate.
Le00® if lex_sim<lexical_sim_ubound:

o0®® break
P X J

_'I il éﬁllzljiédenotes the

fuzzywuzzy library.

Ministry of EQgcation

2023 - 1445

quality check: if the chosen candidate is not semantically similar enough to
the original, then just use the original word.
if sem_sim<semantic_sim_lbound:
new_words.append(word)
else: #use the candidate.
new_words.append(rword)

return '.join(new_words) # re-join the new words into a single string and return.

(Returns a paraphrased version of the given text.)

The following code imports all the tools required to support the paraphrase() function and in the
white box below is displayed the output of the paraphrase method for the text assigned to the text
variable:

%%capture

import gensim.downloader as api # used to download and load a pre-trained Word2Vec model
model_wv = api.load('word2vec-google-news-300")

import nltk

used to split a piece of text into words. Maintains punctuations as separate tokens
from nltk import word_tokenize

nltk.download('stopwords') #downloads the stopwords tool of the nitk library
used to get list of very common words in different languages

from nltk.corpus import stopwords
stop=set(stopwords.words('english')) #gets the list of english stopwords

'pip install fuzzywuzzy[speedup]
from fuzzywuzzy import fuzz

text="'We had dinner at this restaurant yesterday. It is very close to my
house. All my friends were there, we had a great time. The location is
excellent and the steaks were delicious. I will definitely return soon, highly
recommended!"’

parameters: target text, stopwords, Word2Vec model, upper bound on lexical similarity, lower bound
on semantic similarity

paraphrase(text, stop, model_wv, 80, 0.5)

'We had brunch at this eatery Monday. It is very close to my bungalow. All
my acquaintances were there, we had a terrific day. The locale is terrific
and the tenderloin were delicious. I will certainly rejoin quickly, hugely

(X) : 000

..?gVJ;SG.d.':...

oo..°.° 0..00

As r/i.th Iany template-based approach, the results can be improved by adding more constraints to
p‘-'-J_CCH' &E4'LGne of the less intuitive replacements shown above. However, the example above

Ministry émigrstrates that even this simple function can produce very realistic text.
2023 - 1445

Using Selection-Based NLG

In this section, you will see a practical approach to selecting a sample of representative sentences
from a given document. The approach exemplifies the use and benefits of selection-based NLG and
relies on two key building blocks:

e The Word2Vec model, which will be used to identify pairs of semantically similar words.

e The Networkx library, a popular python library used to create and process different types of
network data.

The input document that will be used in this chapter is a news article written after the final
match of the FIFA World Cup 2022.

reads the input document that we want to summarize
with open('article.txt',encoding="'utf8',errors="'ignore') as f: text=f.read()

text[:100] #shows the first 100 characters of the article

"It was a consecration, the spiritual overtones entirely appropriate.
Lionel Messi not only emulated '

First, the text is tokenized using the re library and the same regular expression that was used
in the previous Units:

import re # used for regular expressions

tokenize the document, ignore stopwords, focus only on words included in the Word2Vec model.
tokenized _doc=[word for word in re.findall(r'\b\w\w+\b',text.lower()) if word
not in stop and word in model_wv]

get the vocabulary (set of unique words).
vocab=set(tokenized_doc)

Networkx Library

The vocabulary of the document can now be modeled as a weighted graph.
Python's Networkx library provides an extensive set of tools for creating
and analyzing graphs. In Selection-Based NLG, representing the vocabulary
of a document as a weighted graph can help to capture the relationships
between words and facilitate the selection of relevant phrases and
sentences. In a weighted graph, each node represents a word or a concept,
and the edges between nodes represent relationships between these
concepts. The weights on the edges represent the strength of these
relationships, allowing the NLG system to determine which concepts are
most s:rgzgi\g rela.tgd.:\gluen generating text, the weighted graph can be
used to)find;'tbe.m.bstorolevant phrases and sentences based on the
relationships between words. For example, the system might use the graph

o finditHerrdstyrelevant words and phrases to describe a particular entity
Minm%m@@&gﬁiﬁmse words to select the most appropriate sentence from

20 7ts dptabase.

recommended

Figure 3.27: Example of a Networkx
weighted graph

fx Build_graph(Q Function
The build_graph() function uses NetworkX to create a graph that includes:

¢ One node for each word in a given vocabulary.

e An edge between every two words. The weight on the edge is equal to the semantic similarity
between the words, as computed by Doc2Vec which is an NLP tool for representing documents as
a vector and is a generalization of the word2vec method

The function returns a graph with one node for each word in the given vocabulary. There is also an
edge between two nodes if their Word2Vec similarity is higher than the given threshold.

tool used to create combinations (e.g. pairs, triplets) of the elements in a list
from itertools import combinations
import networkx as nx # python library for processing graphs

def build_graph(vocab:set, # setof unique words
model_wv # Word2Vec model
DE
gets all possible pairs of words in the doc
pairs=combinations(vocab,2)

G=nx.Graph() #makes a new graph

for wil,w2 in pairs: #forevery pair of words wl, w2
sim=model_wv.similarity(wl, w2) # gets the similarity between the two words
G.add_edge(wl,w2,weight=sim)

return G

creates a graph for the vocabulary of the World Cup document
G=build_graph(vocab,model_wv)

prints the weight of the edge (semantic similarity) between the two words
G['referee']['goalkeeper']

{'weight': 0.40646762}

Given such a word-based graph, a set of words
that are all semantically similar to each other can
be represented as a cluster of nodes connected
to each other by high-weight edges. Such node
clusters are also referred to as "communities".
The graph output is a simple set of vertices and
set of weighted edges. No clustering has been
dGr?e-/et,to cre;atomg "communities". Figure 3.28
usec a‘\“fereqt-cbfossio mark the communities in
an examplé graph
pul il ajljg

Ministry of Education Ve
2023 - 1445 Figure 3.28: Communities in a graph

Louvain Algorithm

The Networkx library includes multiple algorithms for analyzing the graph and finding such communities.
One of the most effective options is the Louvain algorithm, which works by iteratively moving nodes
between communities until it finds the community structure that best represents the linkage of the
underlying network.

fx Get_communities() Function

The following function uses the Louvain algorithm to find the communities in a given word-based
Graph. The function also computes an importance score for each community. Then it returns two
dictionaries:

e word_to_community, which maps each word to its community.
e community_scores, which maps each community to an importance score.

The score is equal to the sum of the frequencies of all the words in the community. For example, if a
community includes three words that appear 5, 8, and 6 times in the document, the community's
score is equal to 19. Conceptually, the score represents the part of the document that is "covered"
by the community.

from networkx.algorithms.community import louvain_communities
from collections import Counter # used to count the frequency of elements in a list

def get_communities(G, #theinputgraph
tokenized_doc:list): #the list of words in a tokenized document

gets the communities in the graph
communities=louvain_communities(G, weight="'weight")
word_cnt=Counter(tokenized_doc)# counts the frequency of each word in the doc
word_to_community={}# maps each word to its community
community_scores={}# maps each community to a frequency score
for comm in communities: #jfor each community
convert it from a set to a tuple so that it can be used as a dictionary key.

comm=tuple(comm)

score=0 #initialize the community score to 0.

for word in comm: #for each word in the community

word_to_community[word]=comm # map the word to the community

score+=word_cnt[word] #add the frequency of the word to the community's score.

®oo, copgersity_scores[comm]=score #map the community to the score.
00e,% o : c000®
e

e °*,° e 00 . .
* rétirn word_to_community, community_scores

1l a)ljg
Ministry of Education
2023 - 1445

word_to_community, community_scores = get_communities(G,tokenized_doc)
word_to_community['player'][:10] # prints 10 words from the community of the word 'team'

('champion',
'stretch',
'finished',
'fifth',
'playing’,
'scoring’,
'scorer’',
'opening’,
'team',
'win')

Now that all the words have been mapped to a community and each community is associated with
an importance score, the next step is to use this information to evaluate the importance of each
sentence in the original document. The evaluate_sentences() function is designed for this purpose.

fx Evaluate_sentences(Function

The function starts by splitting the document into sentences. It then computes an importance score
for each sentence, based on the words that it includes. Each word inherits the importance score of
the community that it belongs to.

For example, consider a sentence with 5 words w1, w2, w3, w4, w5. Words w1l and w2 belong to a
community with a score of 25, w3 and w4 belong to a community with a score of 30, and w5 belongs
to a community with a score of 15. The total score of the sentence is then 25+25+30+30+15=125.
The function then uses these scores to rank the sentences in descending order, from most to least
important.

from nltk import sent_tokenize # used to split a document into sentences

def evaluate_sentences(doc:str, #original document
word_to_community:dict,# maps each word to its community
community_scores:dict, #mapseach community to a score
model_wv): # Word2Vec model

splits the text into sentences
sentences=sent_tokenize(doc)
scored_sentences=[]# stores (sentence, score) tuples

for raw_sent in sentences: # foreach sentence

get all the words in the sentence, ignore stopwords and focus only on words that are in the
Wosq2Vec moda. @ ®
b 0.t .sen't.bltc%_words: [word
* *<fof word in re.findall(r'\b\w\w+\b',raw_sent.lower()) #tokenizes

gy e e if word not in stop and #ignores stopwords
pul il ajljg

Ministry of Education
2023 - 1445

word in model_wv] #ignores words that are not in the Word2Vec model
sentence_score=0 # the score of the sentence
for word in sentence_words: # foreach word in the sentence

word_comm=word_to_community[word] # get the community of this word
sentence_score+=community_scores[word_comm] # add the score of this
community to the sentence score.

scored_sentences.append((sentence_score,raw_sent)) #stores this sentence and
its total score

scores the sentences by their score, in descending order
scored_sentences=sorted(scored_sentences,key=1lambda x:x[0],reverse=True)

return scored_sentences

scored_sentences=evaluate_sentences(text,word_to_community,community_
scores,model_wv)
len(scored_sentences)

61

The original doc includes a total of 61 sentences. The following code can now be used to get the top
3 most important of these sentences:

for i in range(3):
print(scored_sentences[i], '\n")

(3368, 'Lionel Messi not only emulated the deity of Argentinian football,
Diego Maradona, by leading the nation to World Cup glory; he finally
plugged the burning gap on his CV, winning the one title that has eluded
him — at the fifth time of asking, surely the last time.')

(2880, 'He scored twice in 97 seconds to force extra-time; the first a
penalty, the second a sublime side-on volley and there was a point towards
the end of regulation time when he appeared hell-bent on making sure that
the additional period would not be needed.')

(2528, 'It will go down as surely the finest World Cup final of all time,
®e, the mos;c.w&sating, one of the greatest games in history because of how
OOokylia-n‘Mb@pé hauled France up off the canvas towards the end of normal

L] [])

e 'ti.me..")

1l a)ljg
Ministry of Education
2023 - 1445

print(scored_sentences[-11) # prints the last sentence with the lowest score
print()
print(scored_sentences[301]) #prints a sentence at the middle of the scoring scale

(0, 'By then it was 2-0.")

(882, 'Di Maria won the opening penalty, exploding away from Ousmane
Dembélé before being caught and Messi did the rest.')

The results verify this approach can indeed successfully identify representative sentences that capture
the main points of the original document, while assigning lower scores to less informative sentences.
The same approach can be applied as is to generate a summary of any given document.

Using Rule-Based NLG to Create a Chatbot

In this section, you will build a course-recommendation chatbot by combining a simple knowledge base of
guestions and answers with the SBERT neural model. This demonstrates the transfer learning used in SBERT
as the same architecture of SBERT (all-MiniLM-L6-v2) will now be fine-tuned to a task other than sentiment
analysis: NLG.

1. Load the Pre-Trained SBERT Model
The first step is to load the pre-trained SBERT model:

%%capture
from sentence_transformers import SentenceTransformer, util
model_sbert = SentenceTransformer('all-MinilM-L6-v2"')

2. Create a Simple Knowledge Base

The second step is to create a simple knowledge base to capture the question-answer script that the
chatbot will follow. The script includes 4 questions (Q1-Q4) and their respective answers (A1-A4).
Each answer consists of a list of options. The second cell represents the next question that the chatbot
will get to. If it is the final question, the second cell will have None. These options represent the
possible answers that are considered acceptable for the corresponding questions. For example, the
answer to question Q2 has two possible options (["Java",None] and ["Python",None]).

Each option consists of two values:
¢ The actual text of the acceptable answer (e.g. "Java" or "Courses on Marketing").

e An ID that points that to the next question that the chatbot should ask if the option is selected. For
example, if the user selects the ["Courses on Engineering","3"] option as a response to Q1 then the
@g)&t.q.uestlc:n.t.hgf.wnl be asked is Q3.

Tﬁiss.impfe. knovgle(&e can be easily extended to add more Q/A levels and make the chatbot more

intelligént. = *

1l a)ljg
Ministry of Education
2023 - 1445

QA={

llQlll .
nAlu .

oY s
:[["Java",None],["Python",None]],

n A2 n

"Q3 n .
"A3 n .

I|Q4Il:
||A4u:

"What type of courses are you interested in?",
[["Courses in Computer Programming","2"1],
["Courses in Engineering","3"],

["Courses in Marketing","4"1],

"What type of Programming Languages are you interested in?",
"What type of Engineering are you interested in?",
[["Mechanical Engineering",Nonel],["Electrical Engineering",Nonel],

"What type of Marketing are you interested in?",
[["Social Media Marketing",None],["Search Engine

Optimization",None]]

}

fx Chat(Function

Finally, the following chat() function is used to process the knowledge base and implement the chatbot.
After asking a question, the chatbot reads the user's response.

o If the response is semantically similar to one of the acceptable answer options for this question,
then that option is selected and the chatbot proceeds to the next question.

¢ |f the response is not similar to any of the options, then it asks the user to rephrase the response.

The function uses SBERT to evaluate the semantic similarity score between the response and each
candidate option. An option is considered similar if this score is higher than a lower bound parameter

(sim_Ibound).

import numpy as np # used for processing numeric data

def chat(QA:dict, #the Question-Answer script of the chatbot

model_sbert, #a pre-trained SBERT model

sim_lbound:float): #lower bound on the similarity between the user's response and the
closest candidate answer

ga_id="1" #theQAid

while True: #an infinite loop, will break in specific conditions

print('>>"',QA['Q'+qa_id]) # prints the question for this gqa_id
candidates=QA["A"+qa_id] # gets the candidate answers for this qa_id

print(flush=True) # used only for formatting purposes
response=input() #reads the user's response

embed the response
L X IS respose_embeddings = model_sbert.encode([response], convert_to_
.. [J
s LensprsTrued s o
® . *.*#embed each candidate answer. x is the text, y is the qa_id. Only embed x.
candidate_embeddings = model_sbert.encode([x for x,y in candidates],

1l ajljg
Ministry of Education
2023 - 1445

convert_to_tensor=True)

gets the similarity score for each candidate
similarity_scores = util.cos_sim(response_embeddings, candidate_
embeddings)

finds the index of the closest answer.
np.argmax(L) finds the index of the highest number in a list L
winner_index=np.argmax(similarity_scores[0])

if the score of the winner is less than the bound, ask again.
if similarity_scores[0][winner_index]<sim_lbound:
print('>> Apologies, I could not understand you. Please rephrase
your response.')
continue

gets the winner (best candidate answer)
winner=candidates[winner_index]

prints the winner's text

print('\n>> You have selected:',winner[0])
print()

ga_id=winner[1] # gets the qa_id for this winner

if qa_id==None: # no more questions to ask, exit the loop

print('>> Thank you, I just emailed you a list of courses.')
break

Consider the following two interactions between the chatbot and a user:

Interaction 1

chat(QA,model_sbert, 0.5)

>> What type of courses are you interested in?
marketing courses

>> You have selected: Courses on Marketing

>> What type of Marketing are you interested in?
seo

>> You have selected: Search Engine Optimization

::rf.'llha.nk:ﬂ: I just emailed you a list of courses.
oo..°.‘.°..oo
In this ﬁrst interaction, the chatbot correctly understands that the user is looking for Marketing

r&dslifis also intelligent enough to understand that the term "SEQ" is semantically similar to

Ministry dSearchEngine Optimization", leading to the successful conclusion of the discussion.
2023 - 1445

chat(QA,model_sbert, 0.5)

>> What type of courses are you interested in?

cooking classes
>> Apologies, I could not understand you. Please rephrase your response.
>> What type of courses are you interested in?

software courses

>> You have selected: Courses on Computer Programming

>> What type of Programming Languages are you interested in?
C++

>> You have selected: Java

>> Thank you, I just emailed you a list of courses.

In this second interaction, the chatbot correctly realizes that "Cooking Classes" is not semantically
similar to any of the options in its knowledge base. It is also intelligent enough to understand that
"Software courses" should be mapped to the "Courses on Computer Programming" option.

The final part of the interaction highlights a weakness: the chatbot matches the user's "C++" response
to "Java". Even though the two programming languages are indeed related (and are arguably more
related than Python and C++), the appropriate response would have been to say that the chatbot
does not have the knowledge to recommend C++ courses.

One way to address this weakness would be to use lexical rather than semantic similarity to compare
responses and options for some questions.

Using Machine Learning to Generate Realistic Text

The methods described in the previous sections use templates, rules, or selection techniques to produce text
for different applications. In this section, you will explore the state-of-the-art in machine learning for NLG.

Table 3.5: Advanced machine learning techniques for NLG

Technique Description

Long short-term | An LSTM network is made up of several "memory cells" that are connected together.
memory (LSTM) | When the network is given a sequence of data, it processes each element in the
network sequence one at a time and for each element, the network updates its memory cells
to produce an output. LSTMs are particularly well-suited for NLG tasks because they

®an retain information from sequences of data (such as speech or handwriting
009 ° ° ® o ® [] . .
00 .. decognition) and handle the complexity of natural language.

| .‘._Er'aé}s(!‘ormer- Transformer-based models are models that can understand and generate human
- aseJ) odels language. They work by using a technique called "self-attention" that helps them

Ministry of Education

understand the relationships between different words in a sentence.

2023 - 1445

185

OUTPUT 1 OUTPUT 2 BRRLLEN OUTPUT N
1 1

LSTM B2 LSM e o TR ENCODERS ——> DECODERS
1 1 1

INPUT 1 INPUT 2 mmms INPUT N O INPUT OOuUTPUT

"today" I am a student I G

Figure 3.30: LSTM Figure 3.29: Transformer

" "am

Transformers

Transformers are particularly well-suited for NLG tasks because they can process sequential input
data efficiently. In a transformer model, the input data is first passed through an encoder, which
converts the input into a continuous representation. The continuous representation is then passed
through a decoder, which generates the output sequence. One of the key features of these models
is the use of attention mechanisms that allow the model to focus on the important parts of a sequence
while ignoring less informative parts. Transformer models have been shown to produce high-quality
text for a variety of NLG tasks, including machine translation, summarization, and question answering.

OpenAl GPT-2 Model

In this section, you will use GPT-2, a powerful language model developed by OpenAl, to generate text
based on text prompts that are provided by the user. GPT-2 (Generative Pre-training Transformer 2)
was trained on a dataset of over 8 million web pages and has the ability to generate human-like text
in a variety of languages and styles. The transformer-based architecture of GPT-2 allows it to capture
long-range dependencies and generate coherent text. GPT-2 is trained with the objective of predicting
the next word, given all of the previous words within the text. The model can thus be used to produce
texts of arbitrary length, by continuously predicting and appending more words.

%%capture

!'pip install transformers

!'pip install torch

import torch #an open-source machine learning library for neural networks, required for GPT2.
from transformers import GPT2LMHeadModel, GPT2Tokenizer

initialize a tokenizer and a generator based on a pre-trained GPT2 model.

used to:

-encode the text provided by the user into tokens

-translate (decode) the output of the generator back to text
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

used to generate new tokens based on the inputted text
generator = GPT2LMHeadModel.from_pretrained('gpt2')

The following text will then be provided as a seed to GPT-2:

.tE)Ot We-Had- ®i%ner at this restaurant yesterday. It is very close to my
house. All my friends were there, we had a great time. The location is
il idkeejljept and the steaks were delicious. I will definitely return soon, highly

Ministry of E@Wded' '
2023 - 1445
186

encodes the given text into tokens
encoded_text = tokenizer.encode(text, return_tensors='pt')

use the generator to generate more tokens.
do_sample=True prevents GPT-2 from just predicting the most likely word at every step.
generated_tokens = generator.generate(encoded_text,

max_length=200) # max number of new tokens to
generate
#decode the generates tokens to convert them to words
skip_special_tokens=True is used to avoid special tokens such as '>' or -' characters.
print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

I've been coming here for a while now and I've been coming here for a while
now and I've been coming here for a while now and I've been coming here for
a while now and I've been coming here for a while now and I've been coming
here for a while now and I've been coming here for a while now and I've
been coming here for a while now and I've been coming here for a while now
and I've been coming here for a while now and I've been coming here for a
while now and I've been coming here for a while now and I've been coming
here for a while now and I've been coming here for a while now and I've
been coming here for a while now and

use the generator to generate more tokens.
do_sample=True prevents GPT-2 from just predicting the most likely word at every step.
generated_tokens = generator.generate(encoded_text,

max_length=200, # max number of new tokens to
generate

do_sample=True)

print(tokenizer.decode(generated_tokens[0],skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

If you just found this place helpful. If you like to watch videos or
go to the pool while you're there, go for it! Good service - I'm from
Colorado an love to get in and out of this place. The food was amazing!
...Also we'\:@;e happy to see the waitstaff with their great hands - I went
oo .?cn'd,l'nner- eI ordered a small side salad (with garlic on top), and had a
slice of tuna instead. When I was eating, I was able to get up and eat my
'é@ d while waiting for my friend to pick up the plate, so I had a great
i too. Staff was welcoming and accommodating. Parking is cheap in this
Ministry of Educgdg9ghborhood, and it is in the neighborhood that it needs to
2023 - 1445

This leads to a much more diverse output, while maintaining the authenticity of the generated text.
The text uses a rich vocabulary and is syntactically correct.

GPT-2 allows for the further customization of the output. An example is the use of the 'temperature'
parameter, which allows the model to take more risks and to sometimes select some lower-probability
words. Higher values of this parameter lead to more diverse texts. For example:

Generate tokens with higher diversity
generated_tokens = generator.generate(
encoded_text, max_length=200, do_sample=True, temperature=2.0)

print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
ALl my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended!

Worth a 5 I thought a steak at a large butcher was the end story!! We were
lucky. The price was cheap!! That night though as soon as dinner was on

my turn that price cut completely out. At the tail area they only have
french fries or kiwifet - no gravy - they get a hard egg the other day too
they call kawif at 3 PM it will be better this summer if I stay more late
with friends. When asked it takes 2 or 3 weeks so far to cook that in this
house. Once I found a place it was great. Everything I am waiting is just
perfect as usual....great prices especially at one where a single bite
would suffice or make more as this only runs on the regular hours

However, if the temperature is set too high, the model departs from the guidance of the original input
and leads to less realistic and meaningful output:

Too high temperature leads to divergence in the meaning of the tokens
generated_tokens = generator.generate(
encoded_text, max_length=200, do_sample=True, temperature=4.0)

print(tokenizer.decode(generated_tokens[0], skip_special_tokens=True))

We had dinner at this restaurant yesterday. It is very close to my house.
All my friends were there, we had a great time. The location is excellent
and the steaks were delicious.I will definitely return soon, highly
recommended! It has the nicest ambagas of '98 that I like; most Mexican.
And really nice steak house; amazing Mexican atmosphere to this very
particular piece of house I just fell away before its due date, no surprise
oo my 5yo one fgll in right last July so it took forever at any number on
...ﬂohel.ng a(ulth it taking two or sometimes 3 month), I really have found
o comf-orbt/afﬂaﬁlllty on many more restaurants when ordering.If you try at
it they tell ya all about 2 and three places will NOT come out before they
]:u_I_L'l'.ll c'd]ljs:q them/curry. Also at home i would leave everything until 1 hour but
Ministry of Fausametimes wait two nights waiting for 2+ then when 2 times you leave you
2023 - 1445 wait in until 6 in such that it works to

Read the sentences and tick v/ True or False. True

1. Machine Learning-based NLG requires large amounts of training data and
computational resources.

2. Verb could be a POS tag.
3. In template-based NLG syntax, analysis is used separately from POS tags.
4. Communities are node clusters that represent semantically different words.

5. The more Q/A levels added to the chatbot's knowledge base, the smarter it gets.

9 Compare the different approaches of Natural Language Generation (NLG).

False

e State three different applications for NLG.

bl e 00
©0e,°: o°,000
oo..° '_0..00

pul i agtg
Ministry of Education

2023 - 1445

189

0 Complete the following code so that the build_graph() function accepts a given
vocabulary of words and a trained Word2Vec model and returns a graph with one node
for each word in the vocabulary. The graph should have an edge between two nodes
if their similarity according to Word2Vec is higher than the given similarity_threshold.
There should be no weights on the edges.

from import combinations # tool used to create combinations
import networkx as nx # python library for processing graphs
def build_graph(vocab:set, # setofunique words

model_wv, # Word2Vec model

similarity_threshold:float

pairs=combinations(vocab,) #gets all possible pairs of words in the vocabulary

G=nx. # makes a new graph

for wil,w2 in pairs: #forevery pair of words wil,w2

sim=model_wv. (w1, w2)# gets the similarity between the two words
if
G. (wl,w2)
.... R e00®
®ootuin G°,00®
00, *,°,° o000
pul il ajljg
Ministry of Education

2023 - 1445
190

e Complete the following code so that the function get_max_sim() uses a pre-trained
SBERT model to compare a given sentence my_sentence with all the sentences in a
second given list of sentences L. The function should then return the sentence from L1

with the highest similarity score to my_sentence.

from sentence_transformers import , util

import combinations # tool used to create combinations

model_sbert = ('all-MinilLM-L6-v2")

def

get_max_sim(L1,my_sentence):

embeds my_sentence

my_embedding = model_sbert, 7([my_sentence], convert_to_tensor=True)

embeds the sentences from L2

L_embeddings = model_sbert. (L, convert_to_tensor=True)

similarity_scores = .cos_sim(,)

winner_index=np.argmax(similarity_scores[0])

(X') P X J
oM ol

pul il

a)lig

Ministry of Education

2023 - 1445

191

Text classification is a 2-step process that includes:

Step 1: Using a set of training documents with known labels (classes) to train a classification
model.

Step 2: Using the trained model to predict the label for each document in a testing set.
The labels in the testing set are either unknown or hidden and used later for
verification.

The documents in both the training and testing sets have to be vectorized before they
can be used. The CountVectorizer or TfidfVectorizer tools from the sklearn library can
be used for vectorization.

The Python sklearn library offers a long list of classification models. Some of them are:
> GradientBoostingClassifier()
> DecisionTreeClassifier()

> RandompForestClassifier()

Your task is to use the IMDB training set that was used in this lesson to train a model
that achieves the highest possible accuracy on the IMDB testing set (imdb_data/imdb_
test.csv). You can achieve this by:

Replace the MultinomialNB classifier with other classification models from
sklearn, such as the ones listed above.
2

Re-run your notebook after each replacement, to compute the accuracy of each
new model that you try.

LY 'Y o, X (X J

00e,°: +°, 000

0o, ° %, 000

Pl ','3|| ajlig Create a report that compares the accuracy of all the models that you tried and

Ministry of Education identifies the one that achieved the best accuracy.

2023 - 1445

Black-Box predictors
Chatbot
Cluster
Dendrogram

Dimensionality
Reduction

Document Clustering

Natural Language
Generation

Natural Language
Processing

Part of Speech (POS)
Tags

Sentiment analysis

Supervised Learning
Syntax Analysis
Tokenization
Transfer Learning
Unsupervised Learning

Vectorization

Ministry of Education
2023 - 1445

193

Part 2

Unit 4
Image Recognition

Unit 5
Optimization & Decision-making Algorithms

Unit 6
Al and Society

1l ajljg
Ministry of Education
2023 - 1445

1l a)ljg
Ministry of Education
2023 - 1445

196

4. Image
Recognition

In this unit, you will learn about supervised and unsupervised learning for
image recognition by creating and training a model to classify or cluster
images of different animal heads, as an example. You will also learn about
image generation and how to alter images or complete their missing
content while maintaining realism.

Learning Objectives
In this unit, you will learn to:
> Preprocess images and extract their features.

> Train a supervised learning model to classify
images.

> Define the structure of a neural network.

> Train an unsupervised learning model to cluster
images.

> Generate images based on a text prompt.
> Realistically complete missing parts of an image.

Tools
> Jup ycer Notebook
> Gooyle Colab

Link to digital lesson

Lesson1

Supervised Learning et
for Image Analysis

Supervised Learning for Computer Vision

Computer vision is a subfield of Artificial Intelligence that focuses on teaching computers how to interpret and
understand the visual world. It involves using digital images and videos to train machines to recognize and analyze
visual information, such as objects, people, and scenery. The ultimate goal of computer vision is to enable machines
to "see" the world as humans do and use this information to make decisions or take actions.

Computer vision has a wide range of applications, such as:

¢ Medical Imaging: Computer vision can help doctors and healthcare professionals in diagnosing diseases
by analyzing medical images, such as X-rays, MRls, and CT scans.

e Autonomous Vehicles: Self-driving cars and drones use computer vision to recognize traffic signals and
road patterns, pedestrians, and obstacles in the road and in the air, enabling them to navigate safely and
efficiently.

e Quality Control and Inspection: Computer vision is used to inspect products and identify defects in
manufacturing processes. This is used in various industries, including automotive, electronics, and textiles.

* Robotics: Computer vision is used to help robots navigate and interact with their environment, including
recognizing and manipulating objects.

Supervised and unsupervised learning are two main types of machine learning that are commonly used in
computer vision applications. Both approaches involve training algorithms on large datasets of images or
videos to enable machines to recognize and interpret visual information. Supervised learning and unsupervised
learning were introduced in unit 3 lessons 1 and 2, and were both applied in NLP and NLG. In this lesson,
they will be applied for image analysis.

Unsupervised learning involves training algorithms on unlabeled datasets, where no explicit labels or
categories are provided. The algorithm then learns to identify similar patterns in the data without any prior
knowledge of the labels. For example, an unsupervised learning algorithm might be used to group similar
images together based on common features, such as color, texture, or shape. Unsupervised learning will be
detailed in lesson 2.

raw image

labeled output

98% Arabian leopard

1% apple

Do (Mo (Mo

Figure 4.1: Image classification with computer vision

In constrast, supervised learning involves training algorithms on labeled datasets, where each image
or video is assigned a specific label or category. The algorithm then learns to recognize patterns and
features that are associated with each label, allowing it to accurately classify new images or videos.
For example, a supervised learning algorithm might be trained to recognize different breeds of cats
based on labeled images of each breed (e.g, see figure 4.1). Supervised learning is the focus of this
lesson.

The process of supervised learning typically involves four key steps: data collection, labeling, training,
and testing. During data collection and labeling, images or videos are collected and organized into a
dataset. Then, each image or video is labeled with a corresponding class or category, such as "eagle"
or "cat".

During the training phase, the machine learning algorithm uses this labeled dataset to "learn"
the patterns and features that are associated with each class or category. As more training data is
presented to the algorithm, it becomes more accurate at recognizing the different classes in the
dataset and improves its performance.

Once the model has been trained, it is tested on a separate set of images or videos to evaluate its
performance. The testing set is different from the training set to ensure that the model is able to
generalize to new data. For example, the data for a Cat has propertirs such as weight, color, breed
etc. The accuracy of the model is then evaluated based on how well it performs on the testing set.

The above process is very similar to the one followed for supervised learning tasks on different types
of data, such as text. However, visual data is generally considered harder to handle than text due to
multiple reasons as mentioned in Table 4.1.

Table 4.1: Challenges of visual data classification

Visual data is Images contain a large amount of data, which makes them more difficult
high-dimensional to process and analyze than textual data. While the basic elements of a text
document are words, the elements of an image are pixels. As you will see
in this chapter, even a small image can consist of thousands of pixels.

Visual datais noisy | Images can be affected by noise, lighting, blurring, and other factors that
and very diverse make it difficult to accurately classify them. In addition, there is a wide
variety of visual data, with many different objects, scenes, and contexts
that can be difficult to accurately classify.

Visual data does | While text tends to follow specific rules for syntax and grammar, visual data
not follow a strict | doesnothave such constraints. This makes it harder and more computationally
structure expensive to analyze.

As a result of these complexities, the effective classification of visual data requires specialized
techniques. This unit covers techniques that utilize the geometric and color properties of images,
bgs‘des more adxapged machine learning techniques based on neural networks.

Saejltlaﬂy, Ihls ﬂ?s! @sson demonstrates how Python can be used for:
o Loadlng a dataset of labeled images.
P:'.J—Coiébﬂk'dﬂg the images to a numeric format that can be used by computer vision algorithms.

MiInistry & 53kttiHgthe numeric data into training and testing datasets.
2023 - 1445

¢ Analyzing the data to extract informative patterns and features.

¢ Using the transformed data to train classification models that can be used to predict the labels of
new images.

The dataset you will be using includes 1,730 face images for 16 different types of animals, making it
ideal for supervised learning and demonstrating the aforementioned techniques.

Loading and Preprocessing Images

The following code imports a set of libraries that are used to load the images from the LHI-Animal-
Faces dataset and convert them to a numeric format.

%%capture
import matplotlib.pyplot as plt #used for visualization
from os import listdir # used to list the contents of a directory

I'pip install scikit-image # used for image manipulation
from skimage.io import imread # used to read a raw image file (e.g. png or jpg)
from skimage.transform import resize #used to resize images

used to convert an image to the "unsigned byte" format
from skimage import img_as_ubyte

Ensuring that all the images in the dataset have the same dimensions is required by supervised learning
algorithms, therefore, the following code reads the images from their input_folder and resizes each
of them to the same (width x height) dimensions. :

def resize_images(input_folder:str,
width:int,
height:int
E

labels = [] #a list with the label for each image
resized_images = [] #alist of resized images in np array format
filenames = [] #alist of the original image file names

for subfolder in listdir(input_folder): #foreach sub folder

print(subfolder)
path = input_folder + '/' + subfolder

for file in listdir(path): #for each image file in this subfolder

image = imread(path + '/' + file) #reads the image
.rgaized = img_as_ubyte(resize(image, (width, height))) #resizes theimage

®e
oo : e, Lo ? e ®abels.append(subfolder[:-4]1) #uses subfolder name without "Head" suffix
®0e." Lo fe’sized_images.append(resized) # stores the resized image

Lo filenames.append(file) # stores the filename of this image
1l a)ljg
Ministry of Educatdyrn resized_images, labels, filenames
2023 - 1445

resized_images, labels, filenames = resize_images("AnimalFace/Image",
width=100, height=100) # retrieves the images with their labels and resizes them to 100 x 100

BearHead EagleHead PigeonHead

CatHead ElephantHead RabbitHead The names of the folders.
ChickenHead LionHead SheepHead Without the "Head" suffix,
CowHead MonkeyHead TigerHead they serve as the labels of the
DeerHead Natural WolfHead images contained in them.
DuckHead PandaHead

The imread() function creates an "RGB" format of the image.
This format is widely used because it allows for the
representation of a wide range of colors. In the RGB color
system, the letters R, G, and B mean that the format contains
three major color components, namely red (R = Red), green
(G = Green), and blue (B = Blue). Each pixel is represented
by three 8-bit channels (one for red, one for green, and one
for blue) and can take on a value between 0 and 255. This
0-255 format is also known as the "unsigned byte" format.

The combination of these three channels allows for the
representation of a wide range of colors in the pixel. For]
example, a pixel with the value (255, 0, 0) would be fully © 25 50 75 100 125 150

red, a pixel with the value (0, 255, 0) would be fully green, Figure 4.2: Original lion head image

and a pixel with the value (0, 0, 255) would be fully blue. A

pixel with the value (255, 255, 255) would be white, and a pixel with the value (0, 0, 0) would be black.

In the RGB system, pixel values are arranged in a two-dimensional grid, with rows and columns
representing the x and y coordinates of the pixels in the image. The resulting grid is referred to as the
"image matrix."

For example , consider the image in figure 4.2 and the associated code below:

reads an image file, stores it in a variabe and

shows it to the user in a window

image = imread('AnimalFace/Image/LionHead/lioni78.jpg")
plt.imshow(image)

image.shape

(169, 169, 3)

Printing the image shape reveals a 169x169 matrix, for a total of 28,561 pixels. The "3" in the third
column represents the 3 channels (Red/Green/Blue) of the RGB system. For example, the following
c&ﬁ}m&u’ld psiﬂftﬁg RGB value of the first pixel of this image:

Hthe lil'XE/ at the first column of the first row
P:'rI—L'iL*ﬂkdﬂ]age[O] [0])

Ministry of Education

2023 - 1445
[102 68 66]

Resizing has the effect of converting RGB images to a float-based format:

resized = resize(image, (100, 100))
print(resized.shape)
print(resized[0][0])

(100, 100, 3)
[0.40857161 0.27523827 0.26739514]

Even though the image has now indeed been resized to a 100x100 matrix, the 3 RGB values of each
pixels have been normalized to a value between 0 and 1. It can be transformed back to the original
unsigned byte format via the following code:

resized = img_as_ubyte(resized) (100, 100, 3)
print(resized.shape) [164 70 68]
print(resized[0][0]) [162 68 66]

print(image[0]1[0])

The RGB values of the resized pixel are slightly different
from those in the original image, which is a common effect
of the resizing. Printing the resized image also reveals that
it is slightly less clear, as appears in figure 4.3. Again, this
is a result of compressing the 169x169 matrix to a 100x100
format.

displays the resized image
plt.imshow(resized);

Before proceeding with the training of supervised learning
algorithms, it is good practice to check if any of the images 0 20 2 60 80
in the dataset violates the (100,100,3) format:

Figure 4.3: Resized lion head image

violations = [index for index in range(len(resized_images)) if
resized_images[index].shape !'= (100,100,3)]

violations

[455, 1587]

Ilze.code revealsetwo such images. This is unexpected, given that the resize _images() function was
g;gcma tQ a[l«h@g&s in the dataset. The following code snippets print the two images, along with
their dimensions and file names:

1l a)ljg
Ministry of Education
2023 - 1445

violations[0]
violations[1]

posl
pos2

print(filenames[posi1])
print(resized_images[pos1].shape)
plt.imshow(resized_images[pos1])
plt.title(labels[posi])

cowl.gif
(100, 100, 4)

print(filenames[pos2]);
print(resized_images[pos2].shape);
plt.imshow(resized_images[pos2]);
plt.title(labels[pos2]);

tiger0000000168.3pg
(100, 100)

The firstimage has a shape of (100, 100, 4). The "4" reveals
that the image has an "RGBA" rather than RGB format.
This is an extended format and contains a fourth additional
channel called the "Alpha" channel that represents the
transparency of each pixel.

For example:

prints the first pixel of the RGBA image
a value of 255 reveals that the pixel is
not transparent at all.
resized_images[pos1][0][0]

The second image has a shape of (100, 100). The lack of
the third dimension reveals that the image has a grayscale
rather than RGB format. The misleading yellow/blue
format shown above is due to a color map that the imshow
applies by default to grayscale images. It can be switched

ofagfollows: See®
° .o....
o0, *,°, " o000

plt. imshow(resized_images[pos2],

Pl ithap)ljg gray ')
Ministry of Education
2023 - 1445

202

Cow

0 20 40 60 80

Figure 4.4: RGBA image

Tiger

0 20 40 60 80

Figure 4.5: Image that shows
transparency of each pixel

array([135, 150, 84, 255],
dtype=uint8)

Figure 4.6: Grayscale image

Grayscale images have only one channel (rather than the 3 RGB channels). each pixel value is just a
single number ranging from 0 to 255. The pixel value O represents black and the pixel value 255
represents white. For example:

resized_images[pos2]1[0][0]

100

As an additional data quality check, the following code counts the frequency of each animal label in
the dataset:

used to count the frequency of each element in a list. Counter({'Bear': 101,
from collections import Counter "Cat': 160,
"Chicken': 100,
label_cnt = Counter(labels) ‘Cow': 104,
label_cnt ‘Deer’: 103,
'Duck': 103,
'"Eagle': 101,
"Elephant': 100,
. "Lion': 102,
The outlier in the data 'Monkey': 100,
can be seen clearly here. '‘Nat': 8,
The "Nat" (Nature) "Panda’: 119,
category has only 8 '"Pigeon': 115,
elements in comparison 'Rabbit': 100,
to the others. "Sheep': 100,
\. J 'Tiger': 114,
'Wolf': 100})

The dataset contains both images of animals and nature to showcase outlier data.

The Counter reveals a very small category "Nat" with only 8 images. A quick inspection reveals that
this is an outlier category with images of natural landscapes without any animal faces.

The following code removes the two RGBA and Grayscale images, as well as all the images from the
"Nat" category from the resized_images, labels, and filenames lists:

N = len(labels)

resized_images = [resized_images[i] for i in range(N) if i not in violations
and labels[i] !'= "Nat"]
filenames = [filenames[i] for i in range(N) if i not in violations and
.;abels[l] sodat"]
'Q.ab.els * [.laBeﬂ.s[l] for i in range(N) if i not in violations and labels[i] !=
* tarryee

1l a)ljg
Ministry of Education
2023 - 1445

The next step is to convert the resized_images and labels lists to numpy arrays, which is expected by
many computer vision algorithms. The following code also uses the (X,y) names that are typically
used to represent data and labels, respectively, in supervised learning tasks:

import numpy as np

X = np.array(resized_images)
y = np.array(labels)
X.shape

(1720, 100, 100, 3)

The shape of the final X dataset reveals that it includes 1,720 RGB images, according to the number
of channels, all with the same 100x100 dimensions (10,000 pixels). Finally, the train_test_split()
function from the sklearn library can be used to split the dataset into training and testing sets:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X,
Y,
test_size = 0.20, #uses20% of the data for testing
shuffle = True, # to randomly shuffle the data.
random_state = 42, #to ensure that data is always shuffled in the same way

Given that the animal folders were loaded one at a time, the images from each folder are packed
together in the above lists. This can be misleading for many algorithms, especially in the computer
vision domain. Setting shuffle=True in the code above solves this issue. In general, it is good to randomly
shuffle the data before proceeding with any analysis.

Prediction without Feature Engineering

Even though the steps followed in the previous section have indeed converted the data into a numeric
format, they are not in the standard one-dimensional format that is expected by many machine
learning algorithms. For instance, unit 3 described how each document had to be converted to a
one-dimensional numeric vector before the data could be used for training and testing machine
learning models. Instead, each data point in the dataset has a 3-dimensional format:

X_train[0].shape

oo Y200, 100333

1l a)ljg
Ministry of Education
2023 - 1445

The following code can be used to "flatten" each image into a one-dimensional vector. Each image is
now represented as a flat numeric vector of 100 x 100 x 3 = 30,000 values:

X_train_flat = np.array([img.flatten() for img in X_train])
X_test_flat = np.array([img.flatten() for img in X_test])
X_train_flat[0].shape

(30000,)

This flat format can now be used with any standard classification algorithm, without any additional
effort to engineer additional predictive features. An example of feature engineering for image data
will be explored in the following section. The following code uses the Naive Bayes (NB) classifier that
was also used to classify text data in unit 3:

from sklearn.naive_bayes import MultinomialNB #imports the Naive Bayes Classifier

model MNB = MultinomialNB()
model_MNB.fit(X_train_flat,y_train) #fits the model on the flat training data

MultinomialNB()

from sklearn.metrics import accuracy_score # used to measure the accuracy

pred = model_MNB.predict(X_test_flat) # gets the predictions for the flat test set
accuracy_score(y_test,pred)

0.36046511627906974

The following code prints the confusion matrix of the results, to provide additional insight:

%%capture
I'pip install scikit-plot
import scikitplot

scikitplot.metrics.plot_confusion_matrix(y_test, #actuallabels
pred, # predicted labels

title = "Confusion Matrix",
oee R cmap = "Purples",
...:.. ..:... figsize = (10,10),
00, °,°, % o000 Xx_tick_rotation = 90,

normalize = True #to print percentages

pul il ajljg)
Ministry of Education
2023 - 1445

Confusion Matrix

Bear 0.0 00 005 0.0 00 014 0.05 0.1 0.0 00 00 00 01 00 0.0
Cat{0.03 0.21 0.0 0.0 0.18 0.03 0.05 0.08 0.05 0.03 0.0 0.13 0.08 0.05 0.03 0.05 0.8
Chicken4 0.0 0.0 03 004 00 0.0 0.04 011 033 0.0 00 0.0 015 0.0 0.0 0.04
Cow {0.23 0.0 0.03 023 0.0 0.0 0.0 017 0.1 0.03 0.03 0.0 0.0 01 0.0 0.07
Deer { 0.0 0.03 0.03 0.06 0.41 0.0 0.03 0.06 0.16 0.09 0.0 0.03 0.0 0.0 0.06 0.03
Duck 0.04 0.11 0.0 0.04 0.04 0.3 0.07 0.07 0.11 0.04 0.0 0.04 0.0 0.0 0.0 0.15 0.6
Eagle {0.05 0.0 0.0 0.0 0.0 0.0 041 009 0.0 0.0 027 0.14 0.05 0.0 00 0.0
The normalized %Elephant-oo 0.0 0.0 015 0.0 0.0 04040.07 00 00 00 00 00 00 00
values help to § Lion 10.05 0.05 0.0 0.05 0.0 0.0 0.0 o.osﬁ 0.0 00 005 0.1 0.05 0.0 0.05
view the elements Monkey 40.09 0.04 0.0 0.09 0.04 0.04 0.17 0.0 0.13 013 0.0 0.0 00 0.04 0.13 0.09 L o:a
as percentages. Panda{ 0.0 00 00 00 00 00 004 0.0 0.0 o‘oﬁo‘o 00 00 00 00
Pigeon 10.03 0.06 0.0 0.0 0.03 0.0 0.19 0.23 0.03 0.03 0.0 0.13 0.1 0.16 0.0 0.0
Rabbit 10.04 0.07 0.0 0.0 0.07 0.04 0.11 0.3 0.07 0.07 0.0 0.04 0.04 0.15 0.0 0.0
Sheep {0.14 0.05 0.0 0.05 0.09 0.05 0.0 0.09 0.05 0.0 0.0 0.0 0.05 0.0 0.0 Lo
Tiger {0.09 0.04 0.0 0.0 0.0 0.04 0.13 0.09 0.13 00 00 00 00 013 03 0.04
Wolf 10.09 0.12 0.0 0.09 0.0 0.06 0.06 0.09 0.0 0.06 0.0 0.12 0.03 0.03 0.0 0.22
& o 2 & e

n]
Predicted label

—- 0.0

Figure 4.7: Confusion matrix of MultinomialNB algorithm performance

The MultinomialNB algorithm achieves an accuracy around 30%.
While this might seem low, it has to be considered in the context of
the fact that the dataset includes 20 different labels. This means that,
assuming a relatively balanced dataset where each label covers 1/20
of the data, a random classifier that randomly assigns a label to each
testing point would achieve an accuracy of around 5%. Therefore, a
30% accuracy would be 6 times higher than a random guess!

Still, as shown in the following sections, this accuracy can be improved
significantly. The confusion matrix also verifies that there is room for
improvement. For example, the Naive Bayes model often mistakes
Pigeons for Eagles or Wolves for Cats.

The easiest way to try to improve the results is to leave the data as
it is and experiment with different classifiers. One model which has
been shown to work well with vectorized image data is the SGDClassifier
from the sklearn library. During training, the SGDClassifier adjusts the
weights of the model based on the training data. The goal is to find
the set of weights that minimizes a "loss" function, which measures
the difference between the predicted labels and the true labels in
e g o

THéfoIl.o'wi:ng?:ode%Bes the SGDClassifier to train a model on the flat
dataset:

1l a)ljg
Ministry of Education
2023 - 1445

MultinomialNB

MultinomialNB is a machine
learning algorithm used for
classifying text or other data
into different categories. It is
based on the Naive Bayes
algorithm, which is a simple
and efficient method for
solving classification problems.

SGDClassifier

The SGDClassifier is a machine
learning algorithm used to
classify data into different
categories or groups. It is
based on a technique called
Stochastic Gradient Descent
(SGD), which is an efficient
method for optimizing and
training various types of
models, including classifiers.

from sklearn.linear_model import SGDClassifier

model_sgd = SGDClassifier()
model_sgd.fit(X_train_flat, y_train)
pred=model_sgd.predict(X_test_flat)
accuracy_score(y_test,pred)

0.46511627906976744

The SGDClassifier achieves signicantly higher accuracy of over 46%,
despite the fact that it was trained on the exact same data as the
MultinomialNB classifier. This demonstrates the potential benefits of
experimenting with various classification algorithms to find the one
that best fits each particular dataset. In that effort, it is also important
to understand the strengths and weaknesses of each algorithm. For
example, the SGDClassifier is known to perform better when the input
data is scaled and the features are standardized. That is why you will
be using standard scaling in your model.

Standard scaling

A preprocessing technique
used in machine learning to
scale the features of a dataset
so that they have zero mean
and unit variance.

The following code uses the StandardScaler tool from the sklearn library to scale the data:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_flat_scaled = scaler.fit_transform(X_train_flat)

X_test_flat_scaled = scaler.fit_transform(X_test_flat)

print(X_train_flat[0]) #the values of the first image pre-scaling

print(X_train_flat_scaled[0]) # the values of the first image post-scaling

[144 142 151 ... 76 75 80]

[0.33463473 0.27468959 0.61190285 ... -0.65170221 -0.62004162

-0.26774175]

A new model can now be trained and tested using the scaled datasets:

model_sgd = SGDClassifier()
model_sgd.fit(X_train_flat_scaled, y_train)
pred=model_sgd.predict(X_test_flat_scaled)
accuracy_score(y_test,pred)

o o 28040069 87%4186046
oo..°.’ 0..00

| Tne.refults indeed demonstrate an improvement after scaling. It is likely that further improvement

Can'Dé &

Ministry OF&&%(S%lljon
2023 - 1445

Chieved by experimenting with other algorithms and tuning their parameters to better fit the

Prediction with Feature Selection
Histogram of Oriented Gradients

While the previous section focused on training models by simply (HOG)
flattening the data, this section will describe how the original data
can be transformed to engineer smart features that capture key ’
properties of the image data. Specifically, the section demonstrates sections and analyze the

a popular technique called the Histogram of Oriented Gradients di‘str?bution of in‘tens.ity changes
(HOG) within each section, in order to

identify and understand the
shape of an object in the image.

HOGs divide an image into small

The first step towards engineering HOGs is to convert the RGB
images to grayscale. This can be done with the rgh2gray() function
from the sckit-image library:

from skimage.color import rgb2gray # used to convert a multi-color (rgb) image to grayscale
converts the training data

X_train_gray = np.array([rgb2gray(img) for img in X_train])

converts the testing data

X_test_gray = np.array([rgb2gray(img) for img in X_test])

plt.imshow(X_train[0]); plt.imshow(X_train_gray[0],cmap="'gray');

0 20 40 60 80 0 20 40 60 80

Figure 4.8: RGB image Figure 4.9: Grayscale image

The new shape of each image is now 100x100, rather than the RGB-based 100x100x3 format:

print(X_train_gray[0].shape)
print(X_train[0].shape)
G0, es00®
(¥} ®. o° o0
oo (leg, 10h) o e
(100, 100, 3)
Pl ajljg
Ministry of Education
2023 - 1445

The next step is to create the HOG features for each image in the data. This can be achieved via the
hog() function from the scikit-image library. The following code shows an example for the first image
in the training dataset:

from skimage.feature import hog (8100,)

hog_vector, hog_img = hog(
X_train_gray[0],
visualize = True

)

hog_vector.shape

The hog_vector is a one-dimensional vector with 8,100
numeric values that can now be used to represent this image.
A visual representation of this vector is shown using:

plt.imshow(hog_img);

0 20 40 60 80

This new representation captures the boundaries of the key
shapes in the image. It eliminates noise and focuses on the Figure 4.10: HOG of image
informative parts that can help a classifier to make a

prediction. The following code applies this transformation

to all images in both training and testing sets:

X_train_hog = np.array([hog(img) for img in X_train_gray])
X_test_hog = np.array([hog(img) for img in X_test_grayl])

A new SGDClassifier can now be trained on this new representation:

scales the new data

scaler = StandardScaler()

X_train_hog_scaled = scaler.fit_transform(X_train_hog)
X_test_hog scaled = scaler.fit_transform(X_test_hog)

trains a new model
model_sgd = SGDClassifier()
model_sgd.fit(X_train_hog_scaled, y_train)

tests the model

pred = model_sgd.predict(X_test_hog_scaled)
accuracy_score(y_test,pred)

0. 741860465%162791

pul il ajljg

Ministry of Education

2023 - 1445

scikitplot.metrics.plot_confusion_matrix(y_test, #actuallabels

pred, # predicted labels

title = "Confusion Matrix", #title to use
cmap = "Purples", #color palette to use
figsize = (10,10), #figure size
x_tick_rotation = 90

);

30
Confusion Matrix
Bear{12 O O 0 O O 0 BSENRENRE 0 0 o0 o 1
cat{ O 1 0 0 o 0 ©0 0 2RSS0 o EOE 0
25
Chicken{ 0 1 o 0 0 o 1 o 1 o0 o0 O0 O
Cowd 1 2 1 2 il 2 0 0 0 O 0 4 0 O
Deer{ 0 5 0 0 0 1 0 0 0O O 0O 3 0 O
20
Ducki{ 0 1 1 0 0 0o o 0 2 0 o0 o0 O0 O
Eage{ 0 0 1 o0 0 1 0 0o o0 1 2 0 0 0 O
S Eephant{1 0 o0 1 1 1 o0 AT 0 0 0 0 S 0©
(©
§ on{f1 0 0 0 O O 1 © 0o 1 0 1 o0 0 o0 15
Monkey{ 3 0 1 0 0 O o 2 @Sl o 1 o0 0 1 O
Panda4 0 0O O O O O 0 0 o0 1 0 0 0 ©
Pgeon{ 0 0 1 0 0 2 0 0 0 o0 0 0o o0 o L 10
Rabbit{ 0 1 2 1 1 5 0 0 0 o0 1 WM 1 o0 O
Sheepi 0 0 0 2 3 1 1 1 1 o0 o0 o M2 o o
Tiger{ 0 0 O 0 0 1 3 1 0 0 O 0 L
Wolf{6 1 o 1 1 0o o O 1 0 O O 0 0 O
— = c 2 3 -4 ﬂ) L = > © [= Q. = b=
© 5 J 2 o 0 = c 5 2 © s 5) o
g ° % 8 & 3 § _g = ™ E g a 9o 2 2
=) (=] [& 0
5 k) =
= 0

Predicted label

The new results reveal a massive improvement in accuracy, which has now jumped to over 70% and
has far surpassed the accuracy achieved by the same classifier on the flat data without any feature
engineering. The improvement is also apparent in the updated confusion matrix, which now includes
faniesgfalse pQSiH.S (mistakes). This demonstrates the value of using computer vision techniques

Figure 4.11: Confusion matrix of SGDClassifier algorithm performance

tqt{ngmeé: I’n.telﬁgept features that capture the various visual properties of the data.

1l a)ljg
Ministry of Education
2023 - 1445

Prediction Using Neural Networks

This section demonstrates how neural networks can be used to design classifiers that are customized
for image data and can often surpass even highly effective techniques, such as the HOG process that
was described in the previous section. The popular Tensorflow and Keras libraries are used for this
purpose. TensorFlow is a low-level library that provides a wide range of tools for machine learning
and artificial intelligence. It allows users to define and manipulate numerical computations involving
tensors, which are multi-dimensional arrays of data.

Keras, on the other hand, is a higher-level library that provides a simpler interface for building and
training models. It is built on top of TensorFlow (or other backends) and provides a set of pre-defined
layers and models that can be easily assembled to build a deep learning model. Keras is designed to
be user-friendly and easy to use, making it a popular choice for practitioners. Activation functions are
mathematical functions applied to the output of each neuron in a neural network that have the
advantage of adding non-linear properties to the model and allowing the network to learn complex
patterns in the data. The choice of activation function is important and can impact the network's
performance. Neurons receive input, ; : ——

process it with weights and biases, and [T] b::s afc:,l,vci::,:n B
produce an output based on an activation Q

function, as shown in figure 4.12. Neural . S W

1 ==~
networks are constructed by connecting xl ________ S W _____:§ ______ N @ ______ >y
many neurons together in layers and are ? . :
trained to adjust the weights and biases : : 7
and improve their performance over time. X, - >wW_

Figure 4.12: Activation function

The following code installs the libraries

tensorflow and keras: %kcapture
'pip install tensorflow

'pip install keras

In the previous unit you were introduced to artificial neurons and neural network architectures.
Specifically, the Word2Vec model, which used a hidden layer and an output layer to predict the context
words of a given word in a sentence. Next, Keras is used to create a similar neural architecture for
images. First, the labels in y_train are converted to an integer format, as required by Keras:

gets the set of all distinct labels
classes=1list(set(y_train))
print(classes)

print()

replaces each label with an integer (its index in the classes lists) for both the training and testing data
y_train_num = np.array([classes.index(label) for label in y_train])
y_test_num = np.array([classes.index(label) for label in y_test])
print()

.... e00®

S¥burpi 200
print(y_train[:5]) #first5 labels

1 il PF&ﬂ}&/_traln_num[:51) #first 5 labels in integer format

Ministry of Education
2023 - 1445

The Sequential tool from the Keras library can now be used to build a neural network as a sequence
of layers.

from keras.models import Sequential # used to build neural networks as sequences of layers
every neuron in a dense layer is connected to every other neuron in the previous layer.
from keras.layers import Dense

builds a sequential stack of layers

model = Sequential()

adds a dense hidden layer with 200 neurons, and the RelU activation function.
model.add(Dense(200,input_shape = (X_train_hog.shape[1],), activation='relu'))
adds a dense output layer and the softmax activation function.

model.add(Dense(len(classes), activation='softmax'))

model.summary()

Model: "sequential"

Layer (type) Output Shape Param #
dense (Dense) (None, 200) 1620200
dense_1 (Dense) (None, 16) 3216

Total params: 1,623,416
Trainable params: 1,623,416
Non-trainable params: 0

The number of neurons in the hidden
layer is a design choice. The number
of neurons in the output layer is
dictated by the number of classes.

The model summary reveals the total number of parameters that the model has to learn by fitting
on the training data. Since the input has 8,100 entries, which are the the dimensions of the HOG
images X_train_hog and the hidden layer has 200 neurons and is a dense layer that is fully connected
to the input, this creates a total of 8,100 x 200 = 1,620,000 weighted connections whose weights
(parameters) have to be learned. An additional 200 "bias" parameters are added, one for each neuron
in the hidden layer. A bias parameter is a value that is added to the input of each neuron in a neural
n t;/vork It is used d to shift the activation function of the neuron to the negative or positive side,
al&owrtg’me.ne:cwork to model more complex relationships between the input data and the output
lab&lg.. e " 0

pul il ajljg
Ministry of Education

2023 - 1445

Given that the output layer has 16 neurons that are fully connected to the 200 neurons of the hidden
layer, this adds an additional 16 x 200 = 3,216 weighted connections. An additional 16 bias parameters
are added, one for each neuron in the output layer. The following line is used to "compile" the model:

compiling the model
model.compile(loss = 'sparse_categorical_crossentropy', metrics =
['accuracy'], optimizer = 'adam')

The Keras smart model preparation method known as model.compile() is used to define the basic
characteristics of a smart model and prepare it for training, verification, and prediction. It takes three
main arguments as illustrated in Table 4.2

Table 4.2: The arguments of the "compile" method

This is the loss function that is used to evaluate the error in the model during
training. It measures how well the model's predictions match the true labels for
a given set of input data. The goal of training is to minimize the loss function,
loss which typically involves adjusting the model's weights and biases. In this case,
the loss function is 'sparse_categorical_crossentropy', which is a loss function
suitable for multi-class classification tasks where the labels are integers (as in
y_train_num).

This is a list of metrics that is used to evaluate the model during training and
testing. These metrics are computed using the output of the model and the true
metrics labels, and they can be used to monitor the performance of the model and identify
areas where it can be improved. "Accuracy" is a common metric for classification
tasks that measures the fraction of correct predictions made by the model.

This is the optimization algorithm that is used to adjust the model's weights and
biases during training. The optimizer uses the loss function and the metrics to
optimizer guide the training process, and it adjusts the model's parameters in an effort to
minimize the loss and maximize the performance of the model. In this case, the
optimizer is '‘adam’, which is a popular algorithm for training neural networks.

Finally, the fit() method is used to train the model on the available data:

model.fit(X_train_hog, # training data
y_train_num, # labelsin integer format
batch_size = 80, #number of samples processed per batch
®eo,, .egQ@s = 40, #number of iterations over the whole dataset

00e,%: o°%e00

1l a)ljg
Ministry of Education
2023 - 1445

Epoch 1/40

17/17 [=================

Epoch 2/40

17/17 [=================

Epoch 3/40

17/17 [=================

Epoch 4/40

17/17 [=================

Epoch 5/40

17/17 [=================

Epoch 36/40

17/17 [=================

Epoch 37/40

17/17 [=================

Epoch 38/40

17/17 [=================

Epoch 39/40

17/17 [=================

Epoch 40/40

17/17 [=================

The fit() method is used to train a model on a given set of input data and labels.

=============] - 1s 16ms/step - loss: 2.2260 - accuracy: 0.3333
=============] - 0s 15ms/step - loss: 1.1182 - accuracy: 0.7256
=============] - @s 15ms/step - loss: 0.7198 - accuracy: 0.8155
=============] - Qs 15ms/step - loss: 0.4978 - accuracy: 0.9031

=============] - 0s 16ms/step - loss: 0.3676 - accuracy: 0.9388

=============] - 0s 15ms/step - loss: 0.0085 - accuracy: 1.0000
=============] - Qs 21ms/step - loss: 0.0080 - accuracy: 1.0000
=============] - Qs 15ms/step - loss: 0.0076 - accuracy: 1.0000
=============] - 0s 15ms/step - loss: 0.0073 - accuracy: 1.0000

=============] - Qs 15ms/step - loss: 0.0071 - accuracy: 1.0000

arguments, as illustrated in Table 4.3.

Table 4.3: The arguments of the "fit" method

X_train_hog

This is the input data that is used to train the model. It consists of the
HOG-transformed data that was also used to train the latest version of
the SGDClassifier in the previous section.

y_train_num

This includes the label for each image in integer format.

This is the number of samples that is processed in each batch during
training. The model updates its weights and biases after each batch,
and the batch size can affect the speed and stability of the training
process. Larger batch sizes can lead to faster training, but they can also
be more computationally expensive and may result in less stable
gradients.

batch_size

®oe, e00®
00e,%°: «°, 000
00, °.°,° 00
epochs °

Pl ajlig

Ministry of Education

This is the number of times the model iterates over the entire dataset
during training. An epoch consists of one pass through the entire dataset,
and the model updates its weights and biases after each epoch. The
number of epochs can affect the model's ability to learn and generalize
to new data. It is an important hyperparameter that should be chosen
carefully. In this case, the model is trained for 40 epochs.

2023 - 1445

It takes four main

The trained model can now be used to predict the labels of the images in the testing set:

pred = model.predict(X_test_hog)
pred[@] # prints the predictions for the first image

14/14 [::::::::::::::::::::::::::::::] - OS ZmS/Step

array([4.79123509e-03, 9.79321003e-01,
7.83501855e-06, 3.50346789e-04,
4.41945267e-05, 4.11721296e-04,
1.97038025e-04, 2.34744814e-03,
dtype=float32)

.39506648e-03, 1.97884417e-03,
.45465224e-07, 1.19854585e-05,
.27362555e-05, 9.83431892e-06,
.49758552e-04, 1.57057808e-03],

g = W o

While the predict() function from the sklearn library returns the most likely label as predicted by the
classifier, the Keras predict() function returns the probability of all candidate labels. The np.argmax()
function can then be used to return the index of the highest probability:

index of the class with the highest predicted probability.
print(np.argmax(pred[0]))

name of this class

print(classes[np.argmax(pred[0])])

uses axis=1 to find the index of the max value per row
accuracy_score(y_test_num,np.argmax(pred, axis=1))

1
Duck
0.7529021558872305

This simple neural network achieves an accuracy around 75%, similar to the one reported by the
SGDClassifier. However, the advantage of neural architectures comes from their versatility, which
allows you to experiment with different architectures to find the one that best fits your dataset.

This accuracy was achieved with a simple and shallow architecture that included just one hidden layer
with 200 neurons. Adding additional layers would make the network deeper, while adding more
neurons per layer would make it wider. The choice of the number of layers and number of neurons
per layer are important components of neural network design that have a considerable impact on
their performance. However, they are not the only way to improve performance and, in some cases,
using a different type of neural network architecture may be more effective.

Prediction Using Convolutional Neural Networks

One such type of architecture that is particularly well-suited for image classification is the Convolutional
Ngl?raIJ\letwml?(:NN As the CNN processes the input data, it continually adjusts the parameters of
eo'nvoj\?e.d fiters ¢»detect patterns based on the data it sees, in order to better detect the desired
features. The output of each layer is then passed on to the next layer, where more complex features

il atbdgtecfed, until the final output is produced.

Ministry of Education

2023 - 1445

Despite the benefits of complex neural networks like CNNs, it is)
important to note that: Convolutional Neural
Network (CNN)

CNNs are deep neural
networks that
automatically learn a
hierarchy of features from
raw data, like images, by
applying a series of
convolved filters to the
input data, which are
e Even though neural networks have indeed achieved impressive designed to detect specific
results in image processing and other tasks, they are not patterns or features.
guaranteed to always deliver the best performance across
problems and datasets.

e The power of convolutional neural networks (CNNs) is their
ability to automatically extract relevant features from images,
without the need for manual feature engineering.

e More complex neural architectures have more parameters that
have to be learned from the data during training. This typically
requires a larger training dataset, which may not be available
in some cases. In such cases, creating an overly complex
architecture is unlikely to be effective.

e Even if a neural network architecture is the best possible solution for a specific task, it may take
a lot of time, effort, and computational resources to experiment with different options until this
architecture is found. It is therefore best practice to start with simpler (but still effective) models,
such as the SGDClassifier and many others from libraries such as sklearn. Once you have built a
better prediction for the dataset and have reached the point where such models can no longer be
improved, then experimenting with neural architectures is an excellent next step.

\ 4

~@or ok

Y
000
\4

—_—

*

1

i

1

1

1

1

]

1

1

1

1

1

1

i
Manual feature extraction Learning m

Figure 4.13: Neural network with manual feature engineering

INFORMATION

e *@ne of the key advantages of CNNs is that they are very good at

X .‘ :Iearning from large amounts of data, and can often achieve high
. levels of accuracy on tasks such as image classification without the

| i1l éJ |j g need for manual feature engineering, such as the HOG process.

Ministry of Education
2023 - 1445

————-—--e
[P,

----o

-

----o

Feature extraction & learning

Figure 4.14: Convolutional neural network without manual feature engineering

Transfer Learning

Transfer learning is a process of reusing a pre-trained neural network to solve a new task. In the
context of convolutional neural networks (CNN), transfer learning involves taking a pre-trained model,
which was trained on a large dataset, and adapting it to a new dataset or task. Instead of starting
from scratch, transfer learning allows the use of pre-trained models, which have already learned
important features, such as edges, shapes, and textures from the training dataset.

Load) Predict and
pretrained .Replace Train e Deploy
network final layers network ek e
accuracy
N

New layers are added N TERrETEIR o - ,

to learn the specific
features of your data.

Figure 4.15: Reuse of pretrained network

pul il ajljg
Ministry of Education

2023 - 1445

217

e What are the challenges of visual data classification?

e You are given two numpy arrays X_train and y_train. Each row in X_train has a shape
of (100, 100, 3) and represents a 100 x 100 RGB image. The n_th rowiny_train represents
the label of the n_th image in X_train. Complete the following code so that it flattens
X_train and then trains a MultinomialNB model on this dataset.

from sklearn.naive_bayes import MultinomialNB #imports the Naive Bayes Classifier from sklearn

X_train_flat = np.array()

model_MNB = MultinomialNB() # new Naive Bayes model

model_MNB. fit(,) #fits model on the flat training data

e Descibe briefly how CNNs work and one of their key advantages.

pl il g)ljg
Ministry of Education
2023 - 1445

218

o You are given two numpy arrays X_train and y_train. Each row in X_train has a shape
of (100, 100, 3) and represents a 100 x 100 RGB image. Then_throw iny_train represents
the label of the n_th image in X_train. Complete the following code so that it applies
the HOG transformation on this dataset and then uses the transformed data to train a
MultinomialNB model:

from skimage.color import # used to convert a multi-color (rgb) image to grayscale

from sklearn. import StandardScaler # used to scale the data

from sklearn.naive_bayes import MultinomialNB # imports the Naive Bayes Classifier from sklearn

X_train_gray = np.array([(img) for img in X_train]) #converts training data

X_train_hog =

scaler = StandardScaler()

X_train_hog_scaled = .fit_transform(X_train_hog)

model _MNB = MultinomialNB()

model MNB.fit(X_train_flat_scaled,)

e Name some challenges of CNNs.

pul g
Ministry of Education
2023 - 1445

219

Lesson 2

Unsupervised Learning
for Image Analysis

Understanding Image Content

In the context of computer vision, unsupervised learning has been
used for a variety of tasks, such as image segmentation, video
segmentation, and anomaly detection. Another key application
of unsupervised learning is image search, which involves searching
a large database of images to find those that are similar to a given
query image.

The first step towards building a search engine for image data is
defining a similarity function that can evaluate the similarity
between two images based on their visual properties, such as
their border, texture, or shape. Once the user submits a new image
as a query, the search engine goes over all the images in the
available database, finds those with the highest similarity score,
and returns them to the user.

An alternative approach is to use the similarity function to separate
the images into clusters, so that each cluster consists of images
that are visually similar to each other. Each cluster is then
represented by a centroid: an image that sits at the center of the
cluster and has the smallest overall distance (i.e. difference) from
the other cluster members. Once the user submits a new image
as a query, the search engine will go over all the clusters and select
the one whose centroid is the most similar to the query image.
The members of the selected cluster then returned to the user.
Figure 4.16 shows an example of this approach:

Vehicle type: car
Direction: passing

Vehicle type: car
Direction: passing

Ministry CIESECo
2023 - 1445

Link to digital lesson

www.ien.edu.sa

Anomaly Detection

Anomaly detection is a process
used to identify abnormal or
unexpected patterns, events, or
data points within a dataset. Its
aim is to uncover unusual cases
that stand out from the norm and
may warrant further
investigation.

Image Segmentation

Image segmentation is a process
of dividing an image into multiple
segments or regions that share
common visual properties. Its aim
is to partition an image into
meaningful and coherent parts
that can be used for further
analysis.

Vehicle type: car
Direction: passing

Figure 4.16: Autonomous vehicle vision with image segmentation

40%

Figure 4.17: Clusters of image recognition analysis

In this example shown in figure 4.17, the query image has a similarity of 40%, 50%, and 90% with the
centroids of the three image clusters, respectively. Similarity is assumed to be a percentage between
0% and 100%. Cluster 2 has the highest score, as it includes cats of the same breed and color as the
query image. The scores of clusters 1 and 3 are close to each other (40% and 50%), as the two clusters
are similar to the query in different ways. Cluster 1 includes cats with a significantly different color
pattern. On the other hand, even though cluster 3 represents a different type of animal (tiger), the
color pattern is similar to that of the query image.

The process of clustering visual data is similar to that of clustering numeric or textual data. However,
the unique nature of visual data requires specialized methods for evaluating visual similarity. Even
though early methods relied on hand-crafted features, recent advances in deep learning have led to
the development of powerful models that can automatically learn sophisticated features from
unlabeled visual data.

This lesson uses an image-clustering task to demonstrate how using more sophisticated features can
lead to significantly better results. Specifically, the lesson will cover three different approaches:

e Flattening and clustering the original data, without any feature engineering.

¢ Transforming the data using the HOG feature descriptor (introduced in the previous lesson) and
then clustering the transformed data.

¢ Using a neural network model to cluster the original data without any feature engineering.

Pheou-ll AnlmaIcFaees dataset that was used in the previous lesson will also be used to evaluate the

uaslbus.lmage un.siarmg techniques. This dataset was originally designed for classification tasks and

therefore‘includes the true label (the actual animal type) for each image. In this lesson, these labels
Pl mlldﬂl e used for validation and will not be used to actually cluster the images. An effective
Ministry OF(EHEE%?%% approach should be able to group images with the same label in the same cluster and
2023 - 14.i,L(i;’(Jarate images with different labels into different clusters.

Loading and Preprocessing Images
The following code imports the libraries that will be used to load and preprocess the images:

%%capture
import matplotlib.pyplot as plt
from os import listdiry

!'pip install scikit-image

from skimage.io import imread

from skimage.transform import resize
from skimage import img_as_ubyte

a palette of 10 colors that will be used to visualize the clusters.
color_palette = ['blue','green','red', 'yellow', 'gray', 'purple', 'orange',
"pink', 'black', 'brown']

The following function reads the images of the LHI-Animal-Faces dataset from their input_folder and
resizes each of them to the same width and height dimensions. It extends the resize_images() from
the previous lesson by allowing the user to specify a list of animal classes that should be considered.
It also uses a single line of Python code to read, resize, and store each image:

def resize_images_v2(input_folder:str,
width:int,
height:int,

labels_to_keep:list

):
labels = [] # a list with the label for each image
resized_images = [] #a list of resized images in np array format
filenames = [] # a list of the original image file names

for subfolder in listdir(input_folder):

print(subfolder)
path = input_folder + '/' + subfolder

for file in listdir(path):

label=subfolder[:-4] # uses the subfolder name without the "Head" suffix
if label not in labels_to_keep: continue
labels.append(label) # appends the label
#loads, resizes, preprocesses, and stores the image.
resized_images.append(img_as_ubyte(resize(imread(path+'/'+file),
4w;d.th, hei.gm)a))
00e,°. o°, édl®names.append(file)
oo..°.‘.°..oo
__return resized_images,labels,filenames
1l ajlig
Ministry of Education
2023 - 1445

Unstructured data is diverse and can require a lot of time and computational resources. This is
especially true when they are processed via complex deep learning techniques, as will be done later
in this lesson. Therefore, in order to reduce computational time, the resize_images_v2() is applied to
a subset of images from animal classes:

resized_images,labels,filenames=resize_images_v2(
"AnimalFace/Image",
width = 224,
height = 224,

labels_to_keep=['Lion', 'Chicken', 'Duck', 'Rabbit', 'Deer’,
'Cat', 'Wolf', 'Bear', 'Pigeon', 'Eagle']

)
BearHead MonkeyHead
CatHead Natural
ChickenHead PandaHead These 10 are the
CowHead PigeonHead labels that are
DeerHead RabbitHead going to be used
DuckHead SheepHead
EagleHead TigerHead
ElephantHead WolfHead
LionHead

You can easily change the "labels_to_keep" parameter to focus on particular classes. You will also
notice that the width and height of the images are now set to 224 x 224, rather than the 100 x 100
shape that was used in the previous lesson. This is done because one of the deep-learning clustering
methods that is presented in this lesson requires the images to have these dimensions. The 224 x
224 shape is therefore adopted in order to ensure that all methods are given access to the same
input.

As also mentioned in the previous lesson, the original lists (resized_images, labels, filenames) include
the images from each class packed together. For instance, all the "Lion" images appear together at
the beginning of the 'resized' list. This can be misleading for many algorithms, especially in the
computer vision domain. While this can be addressed by randomly shuffling each of the three lists,
it is important to ensure that the same random order is used for all three of them. Otherwise, it is
impossible to find the correct label or filename for a specific image.

In the previous lesson, shuffling was taken care of by the train_test_split() function. However, given
that this function is not applicable for clustering tasks, the following code is used for shuffling:

import random

® g‘connects the gh‘eg lists together, so that they are shuffled in the same order
e !omec;ed’ t—. Pl%t(zip(resized_images,labels,filenames))
random-shuffle(connected)

pul il f Eﬁtff&f:ects the three lists

Ministry OFECJFUCO]UzOend images,labels, filenames= zip(+*connected)

2023 - 1445

The next step is to convert the 'resized_images' and 'labels' lists to numpy arrays. Similarly to the
previous lesson, the standard (X,y) variable names are used to represent data and labels:

import numpy as np #used for numeric computations
X = np.array(resized_images)
y = np.array(labels)

X.shape

(1085, 224, 224, 3)

The shape of the data verifies that it includes 1,085 images, each with dimensions of 224 x 224 and
3 RGB channels.

Clustering without Feature Engineering

The first clustering attempt will focus on simply flattening the images to convert each of them to a
one-dimensional vector with 224 x 224 x 3 = 150,528 numbers.

Similar to the classification algorithms that were explored in the previous lesson, most clustering
algorithms also require this type of vectorized format.

X_flat = np.array([img.flatten() for img in X])
X_flat[0].shape

(150528,)

X_flat[0] # prints the first flat image

array([107, 146, 102, ..., 91, 86, 108], dtype=uint8)

Each numeric value in this flat format is an RGB value between 0 and 255. As also seen in the previous
lesson, standard scaling and normalization can sometimes improve the results of some machine
learning algorithms.

The following code can be used to normalize the values and bring them between 0 and 1.

X_norm = X_flat / 255
X_norm[0]

oo hexay([0e2380784, 0.57254902, 0.4 , ..., 0.35686275, 0.3372549 ,
ee . e, 0, 0142882941])

1l a)ljg
Ministry of Education
2023 - 1445

The data can now be visualized using the familiar TSNEVisualizer tool from the yellowbrick library.
This tool was also used in unit 3 lesson 2 to visualize the clusters in text data.

%%capture
I'pip install yellowbrick
from yellowbrick.text import TSNEVisualizer

tsne = TSNEVisualizer(colors = color_palette) #initializes the tool
tsne.fit(X_norm, y) #uses TSNE to reduce the data to 2 dimensions
tsne.show();

TSNE Projection of 1085 Documents

Bear
Cat
Chicken
Deer
Duck
Eagle
Lion
Pigeon
Rabbit
Wolf

Figure 4.18: Clusters visualization

This preliminary visualization is not promising. The various animal classes seem to be scrambled
together, without clear separation and no obvious clusters. This indicates that simply flattening the
original image data is unlikely to lead to high quality results.

Next, the same agglomerative clustering algorithm that was used in unit 3 lesson 2 is also used to
ggsger.the date:ibz(_norm. The following code imports the set of required tools and visualizes the
dendrogramegfdhesdataset:

pul il ajljg
Ministry of Education

2023 - 1445
225

from sklearn.cluster import AgglomerativeClustering # used for agglomerative clustering
import scipy.cluster.hierarchy as hierarchy

hierarchy.set_link_color_palette(color_palette) #sets the color palette
plt.figure()

iteratively merges points and clusters until all points belong to a single cluster
linkage_flat = hierarchy.linkage(X_norm, method = 'ward') 'ward' is a linkage
hierarchy.dendrogram(linkage_flat)
plt.show()

method used in
hierarchical

agglomerative
clustering.

1600

1400

1200

1000

Figure 4.19: Dendrogram categorizing data into two clusters
The dendrogram reveals two large clusters that can be further broken down into smaller ones. The
following code uses the AgglomerativeClustering tool to create 10 clusters, which is the actual number
of clusters in the data:

AC = AgglomerativeClustering(linkage = 'ward',n_clusters = 10)
AC.fit(X_norm) # applies the tool to the data

pred = AC.labels_ # gets the cluster labels

pred

® arraw(le, 6,3, ..., 4, 4, 3], dtype=int64)

pil —ill a)jlig _ _ - o
Ministry Finally, the homogeneity, completeness, and adjusted Rand metrics (all introduced in unit 3 lesson 2)
2023 - 13m8;used to evaluate the quality of the produced clusters:

from sklearn.metrics import homogeneity_score, adjusted_rand_score,
completeness_score

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.09868725008128477
Adjusted Rand score: 0.038254515908926826

Completeness score: 0.101897123096584

As described in detail in unit 3 lesson 2, the homogeneity and completeness scores take values between
0 and 1. The first is maximized when all the points of each cluster have the same ground truth label.
The second one is maximized when all the data points with the same ground truth label also belong
to the same cluster. Finally, the adjusted Rand score takes values between —0.5 and 1.0 and is maximized
when all the data points with the same label are in the same cluster and all points with different labels
are in different clusters. As expected following the visualization of the data, the algorithm fails to find
high-quality clusters that match the actual animal classes. The values for all three metrics are very
low. This demonstrates that, even though simply flattening the data was sufficient to get reasonable
results for image classification, image clustering is a significantly harder problem.

Clustering with Feature Selection

The previous lesson demonstrated how the HOG transformation can be used to convert image data
into a more informative format that led to significantly higher performance for image classification.
Next, the same transformation is applied to test whether it can also improve the results of image
clustering tasks.

from skimage.color import rgb2gray

from skimage.feature import hog

converts the list of resized images to an array of grayscale images

X_gray = np.array([rgb2gray(img) for img in resized_images])
computes the HOG features for each grayscale image in the array

X_hog = np.array([hog(img) for img in X_gray])

X_hog.shape

(1085, 54756)

The shape of the transformed data reveals that each image is now represented as a vector of 54,756
numeric values.

:Pgafellowingco(Ze:uses the TSNEVisualizer tool to visualize this new format:
@y o o L0
00, °*,°,° o060

_tsne = TSNEVisualizer(colors = color_palette)
il ilkeagjmit(x_hog, y)

Ministry of Edsatichow() ;
2023 - 1445

TSNE Projection of 1085 Documents

Bear
Cat
Chicken
Deer
Duck
Eagle
Lion
Pigeon
Rabbit
Wolf

Figure 4.20: Clusters visualization

The visualization is much more promising than the one produced for the non-transformed data. Even
though some impurities exist, the figure reveals clear and generally well-separated clusters. The
dendrogram of this more promising dataset can now be computed:

plt.figure()

linkage_2 = hierarchy.linkage(X_hog,method = 'ward"')
hierarchy.dendrogram(linkage_2)

plt.show()

100

Pl il a)lig |

Ministry GFEQUCatoN

2023 - 1445

Figure 4.21: Dendrogram of the various animal face categories with HOG

The dendrogram suggests 5 clusters, exactly half of the correct number of 10. The following code

adopts this suggestion, applies the AgglomerativeClustering tool, and reports the results for the three
metrics:

AC = AgglomerativeClustering(linkage = 'ward', n_clusters = 5)
AC.fit(X_hog)
pred = AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.4046340612330986
Adjusted Rand score: 0.29990205334627734

Completeness score: 0.6306921317302154

The results reveal that, even though the number of clusters that was used was significantly lower

than the correct one, the results are far superior to those delivered when using the correct number
on the non-transformed data.

This demonstrates the intelligence of the HOG transformation and validates that it can lead to
impressive performance improvements for both supervised and unsupervised learning tasks in

computer vision. To complete the analysis, the following code re-clusters the transformed data with
the correct number of clusters:

AC = AgglomerativeClustering(linkage = 'ward', n_clusters = 10)
AC.fit(X_hog)
pred = AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.5720932612704411
Adjusted Rand score: 0.41243540297103065

Completeness score: 0.617016965322667

As expected, the scores have increased overall. For instance, both homogeneity and completeness
Sreclow aboye e S% indicating that the algorithm does a better job both of placing animals from the

same cl»ass;n fn.ecame cluster and of creating "pure" clusters that mostly consist of the same animal
class.)

1l a)ljg
Ministry of Education
2023 - 1445

Clustering Using Neural Networks

The use of deep learning models (deep neural networks with multiple layers) has revolutionized the
field of image clustering by providing powerful and highly accurate algorithms that can automatically
group similar images together without the need for feature engineering. Many traditional image
clustering methods rely on feature extractors to extract meaningful information from an image and
use this information to group similar images together. This process can be time-consuming and requires
domain expertise to design effective feature extractors. In addition, as seen in the previous lesson,
even though feature descriptors such as the HOG transformation can indeed improve the results,
they are far from perfect and there is certainly room for improvement.

Deep learning, on the other hand, has the ability to learn feature representations from the raw data
automatically. This allows deep learning methods to learn highly discriminative features that capture
the underlying patterns in the data, resulting in more accurate and robust clustering. To achieve this,

several different layers are used in a neural network including:

e Dense layers
¢ Pooling layers
e Dropout layers

In the neural network of unit 3 lesson 1, a
300-neuron hidden layer of the Word2Vec model
was used to represent each word. In that case,
the Word2Vec model was pre-trained on a very
large dataset with millions of stories from Google
News. Pre-trained neural network models are also
popular in the computer vision domain. A
chracteristic example is the VGG16 model, which
is commonly used for image recognition tasks.

VGG16 follows a deep CNN-based architecture
with 16 layers. VGG16 is a supervised model that
was trained on a large dataset of labeled images,
called ImageNet. However, the training dataset
for the VGG16 consists of millions of images and
hundreds of different labels. This significantly
improves the model's ability to understand the
different parts of an image.

Similar to the simple CNN shown in the figure 4.22,
VGG16 also uses a final dense layer with 4,096
neurons to represent each image, before feeding
it to the output layer. This section demonstrates
how VGG16 can be adapted for image clustering,
even though it was originally designed for image
cIaSS|f|cat|on

Q d.ead’the.prgotlamed VGG16 model.

Dense layer

A layer in neural networks Where the
signals are passed from the nodes in the
previous layer in the network to the nodes
in the current layer by means of a specific
weight, and an activation function is
applied to the signals sent to the dense
layer to generate the final output results.

Pooling layer

A layer in neural networks used to reduce
the spatial dimensions of the input data.

Dropout layer

A regularization technique used to prevent
overspecialization of a model to a dataset
in neural networks by randomly dropping
out nodes in the layer during each training
iteration.

Q Remove the output layer of the model. This leaves the final dense layer as the new output layer.

Pl —€MIusglilm truncated model to map each of the images in the Animal Faces dataset to a numeric
Ministry of Ecveeteswith 4,096 values.

2023 - 1€h5Use Agglomerative Clustering to cluster the produced vectors.

e [e [Tl 0w [Tl [T 2w | ool e
| =| C N|N| € || m| S ||| £ n|wn| | c ol Bl @

H — — — — —:::
mput—> 2\ 218 | 2\ 28| |z|2|2|5| |2|2|z|3| |2|2|2|3| |§|5|8&| > o
o|lo| & o|lo| & olo|lol® olo|lofl® olo|lol® (a3 N=-1[-]

Q| O OO QOO QO] O QOO

Figure 4.22: VGG16 architecture

The TensorFlow and Keras libraries that were introduced in the previous lesson can be used to access
and truncate the VGG16 model. The first step is to import all the required tools:

from keras.applications.vggl6 import VGG16 # used to access the pre-trained VGG16 model
from keras.models import Model

model = VGG16() #loads the pretrained VGG16 model
removes the output layer

model = Model(inputs = model.inputs, outputs = model.layers[-2].output)

T

Remove the last layer

The following code applies some basic preprocessing required by from the output.
VGG16, such as scaling the RGB values to be between 0 and 1:

from keras.applications.vggl6 import preprocess_input (1085, 224, 224, 3)
X_prep = preprocess_input(X)
X_prep.shape

Note that the shape of the data remains the same: 1,085 images, each with dimensions of 224 x 224
and 3 RGB channels. Next, the truncated model can be used to map each image to a vector of 4,096
numbers:

X_VGG16 = model.predict(X_prep, use_multiprocessing = True)
X_VGG16.shape

34/34 [::::::::::::::::::::::::::::::] - 575 2S/Step

(1085, 4096)

The multiprocessing=True parameter is set to speed up the process by computing the vectors for
multiple images in parallel. Before proceeding with the clustering step, the following code is used to
Pisualjze the vgetefized data:

00o,° o°,000

__tsne = TSNEVisualizer(colors = color_palette)
Pl ikgadjmit(x_vee16, labels)

Ministry of Edsneishow() ;
2023 - 1445

TSNE Projection of 1085 Documents

Bear
Cat
Chicken
Deer
Duck
Eagle
Lion
Pigeon
Rabbit
Wolf

Jimil

Figure 4.23: Clusters visualization

The results are impressive. The new visualization reveals clearly separated, near perfect clusters. The
separation is also significnatly better than that in the HOG-transformed data.

linkage_3 = hierarchy.linkage(X_VGG16, method = 'ward')
plt.figure()

hierarchy.dendrogram(linkage_3)

plt.show()

1200

1000

800

o Figure 4.24: Dendrogram of the various animal face categories with VGG16

| ajljg
Mlnlstr Jhe dendrogram suggests 4 clusters. In this case, the practitioner can easily ignore this suggestion
2023 - 1@28 instead follow the visualization above which clearly indicates the existence of 10 clusters.

The following code uses Agglomerative Clustering and reports the metric scores for both 4 and 10
clusters:

AC = AgglomerativeClustering(linkage = 'ward',n_clusters = &)
AC.fit(X_VGG16)
pred=AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.504687456015823
Adjusted Rand score: 0.37265351562538257

Completeness score: 0.9193141240200559

AC = AgglomerativeClustering(linkage="ward',n_clusters = 10)
AC.fit(X_VGG16)
pred=AC.labels_

print('\nHomogeneity score:', homogeneity_score(y, pred))
print('\nAdjusted Rand score:', adjusted_rand_score(y, pred))
print('\nCompleteness score:', completeness_score(y, pred))

Homogeneity score: 0.8403973102506642
Adjusted Rand score: 0.766734821176714

Completeness score: 0.8509145102288217

The results validate the evidence provided by the visualization. The transformations produced by
VGG16 lead to vastly superior results for both 4 and 10 clusters. In fact, near-perfect scores for all
three metrics were reported when using 10 clusters, verifying that the produced results are almost
perfectly aligned with the animal classes in the dataset.

VGG16 is one of the earliest highly intelligent pre-trained CNN models for computer vision applications.
However, many other intelligent pre-trained CNN models have been published and surpassed the
performance of the VGG16 model.

®oo, c00®

00o,° o°,000

00, ., o000
1l a)ljg

Ministry of Education

2023 - 1445

o Mention an advantage that unsupervised vision techniques have over supervised
techniques.

e You are given a numpy array X_flat that includes flattened images. Each row in the array
represents a different flattened image as a sequence of integers between 0 and 255.
Complete the following code so that it uses Agglomerative Clustering to group the
images from X_flat into 5 different clusters.

from import AgglomerativeClustering # used for agglomerative clustering
AC = AgglomerativeClustering(linkage="ward"',)
X_norm = # normalizes the data

AC.fit(X_norm) # applies the tool to the data

pred = AC. # gets the cluster labels

List some advantages of using Deep Learning over other traditional image clustering
methods?

pul il a)jljig

Ministry of Education
2023 - 1445

e You are given a numpy array X_flat that includes flattened images. Each row in the array
represents a different flattened image as a sequence of integers between 0 and 255.
Complete the following code so that it uses the ward method to create and visualize
the dendrogram of the images in this array:

import scipy.cluster.hierarchy as hierarchy # visualizes and supports hierarchical clustering tasks

import as plt

X_norm = # normalizes the data

plt.figure() #creates a new empty figure

linkage_flat=hierarchy.linkage(, method=" ")

hierarchy. (linkage_flat)

plt.show() #shows the figure

o Describe how clustering with neural networks is applied in image analysis.

Pl il ajljg
Ministry of Education
2023 - 1445

235

Link to digital lesson

Lesson3

Generating Visual Data

www.ien.edu.sa

Using Al to Generate Images

While the computer vision algorithms described in the previous
two lessons of this unit focused on understanding the different
aspects of a given image, the field of image generation in this
lesson focuses on creating new images. The field of image
generation has a long history, dating back to the 1950s & 1960s,
when researchers first began experimenting with mathematical
equations to create images. Today, the field has grown to
encompass a wide range of techniques.

One of the earliest and most well-known techniques for image
generation is the use of fractals. A fractal is a geometric shape
or pattern that is self-similar, meaning that it looks the same
at different zoom scales. The most famous fractal is the
Mandelbrot set, which can be seen in figure 4.25.

Figure 4.25: Mandelbrot fractal

In the late 20th century, researchers began to explore more advanced techniques for image generation,
such as neural networks. One of the most popular techniques for image generation with neural networks
is text-to-image synthesis. This technique involves training a neural network to generate images from textual
descriptions. The neural network is trained on a dataset of images and their associated text descriptions.
The network learns to associate certain words or phrases with specific features of an image, such as the
shape or color of an object. Once trained, the network can be used to generate new images from text
descriptions. This technique has been used to generate a wide range of images, from simple objects to
complex scenes.

Another technique for image generation is image-to-image synthesis. This technique involves training a
neural network on a dataset of images to learn to recognize the unique features of an image, in order to
generate new images that are similar to the existing one, but with variations. Recently, researchers have
been exploring text-guided image-to-image synthesis, which combines the strengths of text-to-image and
image-to-image synthesis methods by allowing the user to guide the synthesis process using text prompts.
This technique has been used to generate high-quality images that are consistent with a given text prompt
while also being visually similar to an initial image.

Finally, another state-of-the-art technique is text-guided image-inpainting, which focuses on filling in missing
ogc.orrupted partsp‘an image based on a given text description. The text description provides information
abwt y\m.‘:\t .the snéseing or corrupted parts of the image should look like, and the goal of the inpainting
aﬁgorfthm is to 5 ude tis information to generate a realistic and coherent image. This lesson provides practical
emepIF]-s for text-to-image, text-guided image-to-image, and text-guided image-inpainting generation.

Mlmstfq of Education
2023 - 1445

Image Generation and Computational Resources

Image generation is a computationally intensive task, as it involves
the use of complex algorithms that require large amounts of
processing power. These algorithms typically involve the treating of
large amounts of data, such as 3D models, textures, and lighting
information, which can also contribute to the computational demands
of the task.

One of the key technologies that is used to accelerate image
generation is the use of Graphics Processing Units (GPUs). Unlike a
traditional Central Processing Unit (CPU), which is designed to handle
a wide range of tasks, a GPU is optimized for the types of mathematical

Graphics Processing Unit
(GPU)

A GPU is a specialized type of
processor that is designed to
handle the large number of
mathematical operations
required for rendering images
and video.

operations required for image rendering and other graphics-related tasks. This makes them much more
efficient at handling large amounts of data and performing complex calculations, which is why they are
often used in image generation and other computationally intensive tasks.

This lesson demonstrates how you can utilize
the popular Google Colab platform to get access
to a powerful GPU-based infrastructure at no
cost, using only a standard google account.
Google Colab is a free cloud-based platform that
allows users to write and execute code, run
experiments, and train models in a Jupyter
Notebook environment.

() ‘ €O Welcome To Colaboratory - Cola X ‘—f—

&« O &) https;//colab.research.google.com o

(Welcome To Colaboratory

File Edit View Insert Runtime Tools Help

axt # Copy to Drive

‘= Tableo
Q Getting Select all cells Ctrl+Shift+A |
patas ne to Colab!
o} Cut cell or selection
Machit

Copy cell or selection

() MoreF Ppaste

To access Google Colab:

> Go to https://colab.research.google.com @
> Sign in with your Google account. (2]

> Click on Edit > Notebook settings. (3

> Choose GPU @ and click Save. @

= X

Connect ~ /" Editing A

RN |

rady familiar with Colab, check out this video to learn about interactive tables, the
yde history view, and the command palette.

Fe Delete selected cells Ctrl+M D
Se Find and replace Ctrl+H
Find next Ctrl+G ﬂ
Find previous Ctrl+Shift+G
Notebook settings e .
Notebook settings
Clear all outputs
Hardware accelerator
L X Y 0®® \\nhatisC 1
° ° tisColab? None v
cette. o0 atis Colab ®
e L L4 [X } . .
®e c . Colab, or "Colaboratory" Mtput when saving this noteboo
Al — il enlia « Zero configuratior TPU
) R b b |

Ministry of Education
2023 - 1445

Cancel Save

Figure 4.26: Accessing Google Colab

To use Python Notebook:

> Click on File > New notebook. @

> Click Files @ and inside the adjacent area that unfolds drag
and drop the images you will be using in the lesson. (3)

> You can now type your python code inside the code cell (4]
and run it by clicking the button beside. (5)

(o) Welcome To Colaboratory
File Edit View Insert Runtime Tools Help

=

New notebook o Jode + Text # Copy to Drive

= Ta
Open notebook Ctrl+0
O, C Uploadnotebook CC & Untitledlipynb %
C File Edit View Insert Runtime Tools Help All changes saved
®
. M X + Code + Text
| Save a copy in Drive i= Files
O))
Save a copy as a GitHub Gist Q rc m Q

Save a copy in GitHub ° o

€ o -
Save cr 4 > @@ sample_data
@ o

Download

Print Ctrl

The Google Colab environment works similarly to Jupyter
Notebook. Below is the classic "Hello World" example:

cO & Untitledlipynb v«
File Edit View Insert Runtime Tools Help All changes

The image generation algorithms described in this
chapter are designed to be creative, and are thus not

= | *+Code +Text determistic. This means that they are not guaranteed
to always generate the exact same image for the
Q v @ print("hello world") same input. The generated images included in this
chapter are thus just examples of the possible images
= hello world that can be generated by the code.
O

Figure 4.27: Use a Python Notebook.

Diffusion Models and Generative Adversarial Networks

In recent years, the field of image generation has seen significant progress, with the development of
varipys techma.u@sand models that can generate realistic and high-quality images from different
sM@s of mfpsmz?cﬂ)n Two of the most popular and widely used techniques for image generation
are Generatlve'AdversarlaI Networks (GANs) and Stable Diffusion.

pul Adn thig ef&]on you will be introduced to the main concepts and techniques behind GANs and Stable
Ministry Ql@%g@oﬂnd provide an overview of their applications in image generation. Furthermore their
2023 - 1§}|E‘§Iar|t|es and differences will be discussed and the pros and cons of each approach.

Generating Images with Generative Adversarial Networks (GANs)

GANSs are a class of generative models that consist of two main components: a generator and a
discriminator. The generator generates fake images, while the discriminator tries to distinguish the
generated images from real images. The two components are trained in an adversarial way, where
the generator tries to "trick" the discriminator, and the discriminator tries to become better at detecting
fake images.

One of the main advantages of GANs is that they can generate high-quality and realistic images that
are difficult to distinguish from real images. However, GANs also have some limitations, such as non-
convergence which means generator and discriminator networks do not improve over time, and mode
collapse in outputs, which means often repeating the same or similar outputs, regardless of the input
noise or data.

[Real Images Discriminator }H{ Predicted Labels }

The generator and
the discriminator in
GANSs are typically

implemented using .
N Random Noise Generator
Convolutional Neural

Networks (CNNs) or a
similar architecture.

Fake Images }

Figure 4.28: GAN architecture

Generating Images with Stable Diffusion

Stable Diffusion is a deep learning model for text-to-image generation. The method consists of two
main components: a text encoder and a visual decoder. The text encoder and visual decoder are
trained together on a dataset of paired text and image data, where each text input is associated with
one or more corresponding images.

The text encoder is a neural network that takes in text input (such as a sentence or a paragraph) and
maps it to an embedding: a numeric vector with a fixed number of values. This embedding representation
captures the meaning of the input text. A similar approach is used by the Word2Vec and SBERT models
that were covered in unit 3 and generate embeddings for individual words and sentences, respectively.

The text embedding created by the encoder is then passed through the visual decoder to generate
an image. The visual decoder is also a type of neural network and is typically implemented using a
CNN or a similar architecture. The generated image is compared with the corresponding real image
from the dataset, and the difference between them is used to compute the loss. The loss is then used
to update the parameters of the text encoder and visual decoder to minimize the difference between
the generated images and the real images.

Table 4.4: Stable Diffusion training process

1. Pass the text input through the text encoder to get the text embedding.

2. Pass the text embedding through the visual decoder to generate an image.

3. Compute the loss (difference) between the generated image and the corresponding real

0o MBE- _Le0

O U5 oV o0
04: S Usg the .Fogs-to update the parameters of the text encoder and visual decoder. At a high
level, this includes rewarding the neurons that helped reduce the loss and "punishing" the

pl il {_—'p}ﬁmjons that contributed to its increase.

Ministry o

FSluCREpeat the above steps for multiple text-image pairs in the dataset.

2023 - 1445

Both GANs and Stable Diffusion models have delivered impressive results in the field of image
generation. The remainder of this lesson focuses on providing practical Python examples for the
diffusion-based approach, which is currently considered the state-of-the-art.

As described before, image generation is a computationally intensive task. It is therefore strongly
encouraged that you run all Python examples on the Google Colab platform or a different GPU-powered
infrastructure that you may have access to.

This chapter utilizes the "diffusers" library, which is currently considered the best open-source library
for diffusion-based models. The following code installs the library, as well as some additional required
libraries:

%%capture

!'pip install diffusers
!'pip install transformers
!pip install accelerate

import matplotlib.pyplot as plt
from PIL import Image # used to represent images

Text-to-Image Generation

This section demonstrates how the diffusers library can be used to generate images based on text
prompt provided by the user. The examples in this section utilizes "stable-diffusion-v1-4", a popular
pretrained model for text-to-image generation.

a tool used to generate images using stable diffusion

from diffusers import DiffusionPipeline

generator = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
specifies what GPUs should be used for this generation

generator.to("cuda")

image = generator("A photo of a white lion in the jungle.").images[0]
plt.imshow(image);

The model responds to the "A photo of a white
lioninthe jungle" prompt with an impressive and
very realistic image as shown in figure 4.29.
Experimenting with creative prompts is the best
way to gain experience and understand the
capabilities and limitations of this approach.

INFORMATION

CUDA (Compute Unified Device Architecture)
is a parallel computing platform that enables
the use of GPUs.

Figure 4.29: Generated image of a white lion in the jungle

The following prompt adds an additional dimension to the generation process, by asking for a white
lion painted in the specific style of Pablo Picasso, one of the most famous artists of the twentieth-
century.

image = generator("A painting of a white lion in the style of Picasso.").
images[0]
plt.imshow(image);

Again, the results are impressive and demonstrate
the creativity of the stable diffusion process. The
produced image is indeed that of a white lion.
However, contrary to the previous prompt, the new
prompt leads to painting-like rather than photo-like
images. In addition, the painting's style is indeed
remarkably similar to that followed by Pablo Picasso.

Image-to-lmage Generation with
Text Guidance

The next example uses the diffusers library to
generate an image based on two inputs: an existing
image, which serves as the basis for the new image
that will be generated and a text prompt that
describes what the produced image should look like.
While the text-to-image task demonstrated in the
previous section was only limited by a text prompt,
this new task has to ensure that the new image is
both similar to the original and an accurate visual of
the description given in the text prompt.

Figure 4.30: Generated image of lion in Picasso style

pipeline used for image to image generation with stable diffusion

from diffusers import StableDiffusionImg2ImgPipeline

loads a pretrained generator model

generator = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-
diffusion-vi-5")

moves the generator model to the GPU (CUDA) for faster processing

generator.to("cuda")

init_image = Image.open("landscape.jpg")
init_image.thumbnail((768, 768)) #resizes the image to prepare it as input of the model
plt.imshow(init_image);

1l a)ljg
Ministry of Education
2023 - 1445

The example on figure 4.31 uses the pretrained
model "stable-diffusion-v1-5", which is

appropriate for image-to-image generation with
text guidance.

a detailed prompt describing the desired visual
for the produced image

prompt = "A realistic mountain
landscape with a large castle."
image = generator(prompt=prompt,
image = init_image, strength=0.75).
images[0]

plt.imshow(image);

Figure 4.32: Generated landscape image with strength=0.75

The model indeed generates an image that is both faithful to the text prompt and visually similar to the
original image. The "strength" parameter is used to control the visual difference between the original and
new images. The parameter takes values between 0 and 1, with higher values allowing the model to be
more flexible and less constrained by the original image. For example, the following code uses the exact
same prompt with a strength=1.

generate a new image based on the prompt and the
initial image using the generator model

image = generator(prompt=prompt,

image = init_image, strength=1).images[0]
plt.imshow(image);

Figure 4.33: Generated landscape image with strength=1

The resulting image in figure 4.33 verifies that increasing the value of the
strength parameter leads to a visual that fits even better with the guidance
offered by the text prompt, but is also significantly less similar to the
input image.

Another characteristic example is shown below. Its output is shown
ogﬂgure 4, 34 ...

init_imige = Image.open("cat_1.jpg")
Pl idhiyljmage. thumbnail((768, 768))
MInIStrLJOFE&J‘CWOW(lnlt image);

2023 - 1445 — SR
242 Figure 4.34: Original cat image

The following code will now be used to convert this to a photo of a tiger:

prompt = "A photo of a tiger"
image = generator(prompt=prompt, image=init_image, strength=0.5).images[0]
plt.imshow(image);

The first attempt is bound by the value of the
strength parameter, leading to a picture that
appears to be a mix between a tiger and the cat
from the original photo as shown in figure 4.35.
The new picture indicates that the algorithm did
not have enough "strength" to properly convert
the face of the cat to that of a tiger. The background
remains highly similar to that of the original image.

Next, the strength parameter is increased to allow
the model to move further away from the original
image and closer to the text prompt:

Figure 4.35: Generated tiger image
with strength=0.5

image = generator(prompt=prompt,
image = init_image, strength=0.75).
images[0]

plt.imshow(image);

Indeed, the new image displayed is a tiger.
However, notice how the surroundings, posture
and angles of the animal remains very similar to
the original. This demonstrates that the model is
still aware of the original image and tried to
maintain elements that did not have to be changed
to get closer to the text prompt.

1l a)ljg
Ministry of Education
2023 - 1445

Figure 4.36: Generated tiger
image with strength=0.75

Text-Guided Image-Inpainting

The next example focuses on using stable diffusion to replace specific parts of a given image with a
new visual described by a text prompt. The "stable-diffusion-inpainting" pretrained model is used for
this purpose. The following code loads the image of a cat on a bench and a "mask" isolates the specific
parts of the image that are covered by the cat

tool used for text-guided image in-painting

from diffusers import StableDiffusionInpaintPipeline
init_image = Image.open("cat_on_bench.png").resize((512, 512))
plt.imshow(init_image);

mask_image = Image.open("cat_mask.jpg").resize((512, 512))
plt.imshow(mask_image);

Figure 4.37: Original cat image Figure 4.38: Cat image mask

The mask is a simple black and white image that has the exact same dimensions as the original. The
parts that are replaced in the new image are highlighted in white, while every other part of the mask

is black. Next, the pretrained model is loaded and a prompt is created to replace the cat in the original
picture with an astronaut as you can see in figure 4.39.

generator = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-
diffusion-inpainting")

ggge.rator .:.gwrator.to("cuda")

00e,°: «°, 000

.p?'o?np:t';"'.A 'pﬁo.to of an astronaut"”
_image = generator(prompt=prompt, image=init_image, mask_image=mask_image).

Pl ihsadio]

plicdmshow(image);
2023 - 1445

The new image successfully replaces the cat from the
original image with a very realistic visual of an
astronaut. In addition, this visual blends smoothly with
the background elements and lighting of the image.

In fact, even a simpler, less accurate mask is sufficient
to produce a realistic replacement. Consider the
following input image and mask:

Figure 4.39: Generated astronaut image

init_image = Image.open("desk.jpg").resize((512, 512))
plt.imshow(init_image);

mask_image = Image.open("desk_mask.jpg").resize((512, 512))
plt.imshow(mask_image);

——

Figure 4.40: Original desk image Figure 4.41: Desk image mask

In this example, the mask covers the laptop at the middle of the image. The following prompt and
code are then used to replace the laptop with a photo of book:

prompt = "A photo of a book"

image = generator(prompt=prompt, image=init_image, mask_image=mask_image).
images[0]

plt.imshow(image);

Despite the fact that the prompt asked for the
introduction of an object (book) that was significantly
different from the one that was being replaced
(laptop), the model did a good job of blending shapes
gr:o:e.dgrs.to:q%%e an accurate visual. With the
eontintied advaric@ment of machine learning and
computer'graphics technologies, it is likely that even
Pl plbra)heressive and realistic images will be generated > \ 4
Ministry ofincihe:future . T e i |

2023 - 1445 Figure 4.42: Generated desk image with book

e Give a brief description of text-guided image inpainting.

e Describe the training process for Stable Diffusion models.

._...) . ..“
Oo..'.'.°..oo

pulc il ajljg

Ministry of Education
2023 - 1445
246

e Describe the generator and discriminator components in Generative Adversarial Networks.

e Use the DiffusionPipeline tool from the diffusers library to create a photo of your favorite
animal eating your favorite food. Use the Google Colab platform for this task.

Use the StableDiffusionlmg2IimgPipeline tool from the diffusers library to transform
the animal in the photo from the previous exercise to a different animal of your choice.
Use the Google Colab platform for this task.

®oe, e00®

00,e,°. +°,000
Pl il ajljg
MinistrgoFEducation
2023 - 1445

247

Not every dataset responds the same to training with all the
classification algorithms. In order to receive the best results for
your dataset, you have to experiment with different algorithms.
The Python Sklearn library offers a variety of algorithms you can
try, including the ones below:

> from sklearn.ensemble.forest import RandomForestClassifier
> from sklearn.naive_bayes import GaussianNB

> from sklearn.svm import SVC

Use the training set of the animal faces to train a model that
achieves the highest possible accuracy on the testing set.

Replace the SGDClassifier library with each of the algorithms
mentioned above (RandomForestClassifier, GaussianNB, SVC)
and try to find the best one.

Re-run your notebook after each replacement to compute the
accuracy of each new model that you try.

Create a report that compares the accuracy of all the models

that you tried and identifies the one that achieved the best
PY X J

sccuracy® 2q

pul il ajljg

Ministry of Education

2023 - 1445

v

Computer vision

Convolutional Neural
Network (CNN)

Diffusion Model
Feature Engineering

Feature Selection

L4 - -

Generative Adversarial
Network (GAN)

Histogram of Oriented
Gradients (HOG)

Image Generation

Image Preprocessing

Image Recognition
Network Layer
Stable Diffusion
Standard Scaling

Visual Data

Ministry of Education

pL

5. Optimization &

250

Decision-making
Algorithms

In this unit, you will study various algorithms and techniques that help to find
the most efficient solutions to complex optimization problems. You will learn
how optimization and decision-making algorithms work and how they can be
applied to solve real-world problems related to resource allocation, scheduling,
and route optimization.

Learning Objectives

In this unit, you will learn to:

> classify optimization approaches to address complex problems.
> describe different decision-making algorithms.

> use Python to solve team-based resource allocation problems.

> solve scheduling problems by using optimization algorithms.

> use Python to solve scheduling problems.

> use mathematical programming to solve optimization problems.
> define the Knapsack problem.

> define the Traveling Salesman problem.

Tools

> Jupyvrer Mctebook

Link to digital lesson

Lesson1

Resource Allocation Problem

www.ien.edu.sa

Optimization Algorithmsin Al

Alis being used in various industries to make decisions that are efficient
and accurate. One way Al is used to make decisions is through the use
of machine learning algorithms. As you learned in the previous unit,
machine learning algorithms enable Al to learn from data and make
predictions or recommendations. For example, in health care, Al can
be used to predict patient outcomes and recommend treatment plans
based on data collected from similar cases. In finance, Al can be used Objective functions
to make investment decisions by analyzing large sets of financial data
and identifying patterns that indicate potential risks or opportunities.

Constraints

Constraints are restrictions on the
solution, such as a maximum weight
limit for a package being shipped.

Objective functions are measures of
how well the solution meets

Even though machine learning algorithms are increasingly popular, desired outcomes, such as
they are not the only type of Al algorithm that can be used to make minimizing the travel distance for a
decisions. Another approach is to use optimization algorithms, which delivery truck.

are generally used to find the best solution to a problem based on
certain constraints and objectives.

The purpose of optimization is to achieve the "best" design relative to a set of prioritized criteria or constraints.
These include maximizing factors such as productivity, reliability, longevity and efficiency, and in the same time,
minimizing other factors such as costs, waste, downtime, and errors.

Allocation Problems

Allocation problems are common optimization problems in which a set of resources, such as workers,
machines, or funds, need to be assigned to a set of tasks or projects in the most efficient way possible. They
arise in a wide range of fields, including manufacturing, logistics, project management, and finance, and
can be formulated in various ways depending on their constraints and objectives. In this lesson, you will
learn about allocation problems and the optimization algorithms used to solve them.

s} =
Constraint N Objective function
Weight limitation S “ Maximizing the number of items

3) J p processed and dispatched
@ ‘ - - - .Jul{/<//,‘/
g —; B D\ ii_‘i_ : ‘.__, - -
- ’-.- : ; . [= - I
= - [ﬁ \ '. J u.
Il. : .-. 1 i - - - .
- JC Wl @i
j il ° I LR b4 "w II sl .
2 T (v v+

Next, you will look at a number of examples each with their own domain specific constraints and objectives.

Constraints

Objective functions

- Time windows for deliveries, to ensure that
packages are delivered within a specific time

frame.
Trasportation - The availability and capacity of delivery
companies vehicles, to make sure that the right vehicle

is used for each delivery and that it can carry
the necessary amount of packages.

- The availability and shift patterns of drivers
and other employees, to ensure that they
work efficiently and are not overworked.

- Minimizing delivery time and distance traveled
to reduce costs and improve efficiency.

- Maximizing the number of packages delivered
per vehicle to reduce the number of trips
needed.

- Maximizing customer satisfaction by delivering
packages on time and within a specific time
frame.

/D - Aircraft availability and maintenance schedules,
to ensure that all airplanes are well-maintained
2 and available for flights.
Airline - Air traffic control restrictions, to avoid delays
- and reduce fuel consumption.
scheduling

- Passenger demand and preferences, to schedule
flights that are most convenient for passengers.

- Minimizing flight delays and cancellations to
improve customer satisfaction.

- Maximizing aircraft utilization to reduce costs
and improve efficiency.

- Maximizing revenue by offering flights that are
in high demand and adjusting ticket prices
based on demand.

- Production capacity and lead times, to ensure
that products are produced on time.

- Material availability and storage capacity, to

Manufacturers avoid stockouts or overstocking.

- Demand fluctuations, to adjust production
schedules based on changes in customer
demand.

- Minimizing production costs by optimizing the
use of resources and reducing waste.
- Maximizing production efficiency by scheduling

production runs to minimize setup times and
changeovers.

- Maximizing customer satisfaction by ensuring
products are available when needed.

- Limited storage capacity, which requires
careful management of inventory levels.

- Delivery lead times and variability, which
affect how much inventory needs to be held
at any given time.

Inventory
management - Budget availability for purchasing inventory.
in companies

- Maximing profit by securing sufficient inventory
levels for high-margin items.

- Minimizing storage costs by optimizing inventory
levels based on demand forecasts.

- Maximizing customer satisfaction by ensuring
that the right products are available at the right
time and at the right location, and by minimizing
stockouts, delays, and other disruptions that
can impact the customer experience.

- Electricity demand and fluctuations.

R - Th.e‘aua'lability of necessary raw materials
ote, °a:nd.'e!i§rgy sources.

°- Transmission and distribution constraints,

Power
wHi&)ljg such as grid capacity and distance between

Ministry of Education POWer plants and consumers.
2023 - 1445

- Minimizing the cost of generating and distributing
electricity by optimizing the use of resources.

- Minimizing power losses and service failures.

All of the above applications can be modeled as complex problems with a vast number of possible
solutions. For instance, consider a classic resource-allocation problem focused on team formation.
This problem arises when we have:

¢ alarge pool of workers with different skill sets, and
¢ atask that requires a specific subset of skills in order to be completed.

The objective is to create the smallest possible team of workers, while satisfying the constraint that
the members of the team should be able to collectively cover all the skills required by the task.

For instance, assume a simple scenario with five workers:

SR - S = S

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5
Skills: s1, s3, s6 Skills: s2, s3 Skills: s1, s2, s3 Skills: s2, s4 Skills: s5
The task to be completed requires all skills s1, s2,
s3, s4, s5, and s6. A brute-force solution would Brute-force
be to consider all possible teams of workers, focus Brute-force is a method of problem-solving
on the teams that cover all required skills, and that involves systematically trying every
choose the team with the smallest size. Assuming possible solution to the problem in order
that each team must have at least one person, to find the optimal solution, regardless of
you can create a total of 31 different teams with computational cost.

5 workers.

e Forateam of size 1, there are 5 ways to choose 1 out of 5 workers.

The total number of

e Forateam of size 2, there are 10 ways to choose 2 out of 5 workers. possible different teams
e For ateam of size 3, there are 10 ways to choose 3 out of 5 workers UECELIC L Ol
’ Y ' 5+10+10+5+1=31

e For ateam of size 4, there are 5 ways to choose 4 out of 5 workers. The number can also be
computed as 2° - 1.

e For ateam of size 5, there is only 1 way to choose all 5 workers.

Evaluating all 31 possible teams would reveal that

the best possible solution is creating a team that

includes workers 1, 4 and 5. That team would cover

all six required skills and would include three = = =
workers. It is not possible to cover all the skills with Worker 1 Worker 4 Worker 5
a smaller team, making this the optimal solution. Skills: s1, 3, s6 Skills: s2, s4 Skills: s5

Another solution would be a team
that includes workers 1, 2, 3, and
B.ahile this tegmendeed covers

alts?.x-s]dILs: ft-a.?sb fequires more : : ! ﬁ D
workers. This'makes it a feasible Worker 1 Worker 2 Worker 3 Worker 5

t timal solution. Skills: s1, s3, s6 Skills: s2,s3 Skills: s1, s2, s3 Skills: s5

Ministry of Education
2023 - 1445

The exchaustive nature of the brute-force approach guarantees that it will always find the optimal solution,
as long as one exists. However, examining all possible teams comes at a high computational cost:

¢ |f we have 6 workers, the number of possible teamsis 26-1 =63

¢ |f we have 10 workers, the number of possible teams is 2% -1 =1,023

¢ |f we have 15 workers, the number of possible teams is 2 - 1 = 32,767

o |f we have 20 workers, the number of possible teams is 22°- 1 = 1,048,575
o |f we have 50 workers, the number of possible teams is 2°°- 1 =1,125,899,906,842,623

Clearly, in such settings, exchaustive enumeration of all possible
solutions is not a practical option. Various optimization approaches
have been proposed to address complex problems by searching the
space of possible solutions in ways that are much more efficient
than the brute-force approach. These approaches can be broadly

classified into three categories:

e heuristic methods

e constraint programming

¢ and mathematical programming.

Optimal Solution

Even for a modest number
of 50 workers, the number

of possible teams explodes
to over one quadrillion!

It is possible for multiple optimal solutions to exist. In this example, this would mean multiple teams that
include three members and can cover all required skills. It is also possible that no feasible solution exists
for some problems. For example, if the given task required a skill s7 that none of the workers possessed,

then there would be no feasible solution.

Heuristic Methods

Heuristic methods are typically based on experience, rules
of thumb, or common sense, rather than on a rigorous
mathematical analysis. They can be used to find good solutions
quickly, but do not guarantee an optimal (best possible)
solution. Examples of heuristics include greedy algorithms,
simulated annealing, genetic algorithms, and ant colony
optimization. These methods are typically used for complex
problems in which the computation time is too high and
finding exact solutions is not feasible. You will learn more
about these algorithms in the following lessons.

Constraint Programming

Constraint Programming (CP) solves optimization problems
by modeling the constraints and finding a solution that
sqigﬁes all the constgaints. This approach is particularly useful
[o ® .
fa’pmbfen.]s that leawe a large number of constraints or that
re'qﬁife-the.Optirhiza%ion of several objectives.

+ Pros

Heuristics are computationally efficient, can
handle complex problems, and can find good
quality solutions if a reasonable heuristicis used.

They do not guarantee an optimal solution and
some heuristics require significant tuning to
deliver good results.

+ Pros

CP can handle complex constraints and can
find optimal solutions.

These methods can also be computationally

1l a)ljg
Ministry of Education
2023 - 1445

expensive for large problems.

Mathematical Programming

Mathematical Programming (MP) is a family of techniques ; p;s¢
that uses mathematical models to solve optimization
problems. MP includes Linear Programming, Quadratic
Programming, Nonlinear Programming, and Mixed-Integer
Programming. These techniques are widely used in many
areas, including economics, engineering, and operations
research. MP techniques also play a crucial role in deep The computational cost for large problems and
learning. Deep learning models typically have a large the complexity of creating an appropriate
number of parameters that need to be learned from data. mathematical formulation are high for complex
Optimization algorithms are used to adjust the parameters real-world problems.

of the model in order to minimize a cost function that

measures the difference between the predicted output

from the model and the true output. Several optimization

algorithms, such as Adam, AdaGrad, and RMSprop have

been developed specifically for deep learning models.

MP can handle a wide range of optimization
problems and can often guarantee an optimal
solution.

A Working Example: Optimization for the Team-Formation Problem

This lesson will initially demonstrate the use of a brute-force algorithm and a greedy heuristic algorithm
for solving a decision problem focused on the team-based resource allocation problem described
above. Then, the results of the two algorithms will be compared.

The following function can be used to create randomized instances

of the team formation problem. It allows the user to specify four Greedy Heuristic Algorithm
parameters: the total number of skills to be considered, the total A greedy algorithm is a heuristic
number of available workers, the number of skills that the members approach to problem-solving,
of a team have to collectively cover in order to complete a task, and where the algorithm constructs
the maximum number of skills that each worker can have. the solution step-by-step,

The function then creates and returns a set of workers with different selects the locally optimal
skillsets, as well as the set of required skills. The function uses the choice at each stage, hoping to
popular "random" library, which can be used to sample random eveptually reach a global
numbers from a given interval or random elements from a given list. optimum.

import random

def create_problem_instance(skill_number, # total number of skills
worker_number, #total number of workers
required_skill_number, # number of skills the team has to cover
max_skills_per_worker #max number of skills per worker

DE

:: : o crea:a:P:ez]/obal list of skills s1, s2, s3, ...
oo .:skil‘rs:rﬂ[ds' + str(i) for i in range(1, skill_number+1)]

pul il Ajlicyker_skills = dict() #dictionary that maps each worker to their set of skills
Ministry of Education
2023 - 1445

for i in range(1, worker_number+1): # foreach worker

makes a worker id (w1, w2, w3, ...)

worker_id = 'w' + str(i)

randomly decides the number of skills that this worker should have (at least 1)
my_skill_number = random.randint(1, max_skills_per_worker)

samples the decided number of skills
my_skills = set(random.sample(skills, my_skill_number))

remembers the skill sampled for this worker
worker_skills[worker_id] = my_skills

randomly samples the set of required skills that the team has to cover
required_skills = set(random.sample(skills, required_skill_number))

returns the worker and required skills
return {'worker_skills':worker_skills, 'required_skills':required_skills}

Now, you will test the above function by creating a problem instance with 10 total skills, 6 workers,
5 required skills, and at most 5 skills per worker.
x10

The problem needs
S 10 total skills

X6 x5 [@ x5

workers required @ at most 5 skills
: skills per worker

Figure 5.2: Graphic representaion of a problem instance

.....
::' °. %%, ‘:: Given the randomized nature of the
[] ° o o L4

function, you will get a different problem
instance every time you run this code.

1l a)ljg
Ministry of Education
2023 - 1445

256

the following code represents the above test
sample_problem = create_problem_instance(10, 6, 5, 5)

prints the skills for each worker
for worker_id in sample_problem['worker skills']:
print(worker_id, sample_problem['worker_skills'][worker_id])

print()

prints the required skills that the team has to cover
print('Required Skills:', sample_problem['required_skills'])

wl {'s10'}

w2 {'s2', 's8', 's5', 's6'}

w3 {'s7', 's2', 's4', 's5', 's1'}
ws {'s9', 's4'}

w5 {'s7', 's4'}

we {'s7', 's10'}

Required Skills: {'s6', 's8', 's7', 's5', 's9'}

The next step is to create a solver which is an optimization algorithm that can determine the smallest
possible team of workers that can be used to cover all the required skills.

Decision Making with a Brute-Force Algorithm

The first solver will implement the brute-force approach that relies on exhaustively enumerating and
considering all possible teams. This solver will use the "combinations" tools from the "itertools" module
to generate all possible teams of a specific size.

The tool is demonstrated via a simple example below:

used to generate all possible combinations in a given list of elements
from itertools import combinations

L=1_['wl", 'w2', 'w3', 'w4'l]

print('pairs', list(combinations(L, 2))) #all possible pairs
print('triplets', list(combinations(L, 3))) #all possible triplets

®e 4 pairs [".uﬂé, 'w2'), ('wil', 'w3'), ('wil', 'w&'), ('w2', 'w3'), ('w2',
Soelih y, LB, "wi')]
“triplets®[("wl', 'w2', 'w3'), ('wl', 'w2', 'wa'), ('wl', 'w3', 'w&'),
ey LG22 w3, twa)]
pul il ajljg
Ministry of Education
2023 - 1445

The following function can then be created to solve an instance of the team formation problem via
the brute-force approach. This brute-force solver considers all possible team sizes and creates all
possible teams for each size. It then identifies teams that cover all required skills and reports the
smallest one.

def

brute_force_solver(problem):

worker_skills = problem['worker skills']
required_skills = problem['required_skills']

worker_ids = list(worker_skills.keys()) #gets the ids of all the workers
worker_num = len(worker_ids) # total number of workers
all_possible_teams = [] #remembers all possible teams

best_team = None #remembers the best (smallest) team found so far

#for each possible team size (singles, pairs, triplets, ...)
for team_size in range(1, worker_num+1):

creates all possible teams of this size
teams = combinations(worker_ids, team_size)
for team in teams: # for each team of this size

skill_union = set() #union of skills covered by all members of this team
for worker_id in team: # for each team member
adds their skills to the union
skill_union.update(worker_skills[worker_id])

if all the required skills are included in the union
if required_skills.issubset(skill_union):

if this is the first team that covers all required skills

or this team is smaller than the best one or

if best_team == None or len(team) < len(best_team):
best_team = team # makes this team the best one

return best_team #returns the best solution

Itis possible for a problem instance to not have a feasible solution. For example, if the set of required
skills includes a skill that none of the available workers possesses, then there is no way to create a
team that covers all skills. In such cases, the above solver will simply return a None value.

The following code can now be used to test the brute-force solver on the sample problem that was
created above.

uses the brute-force solver to find the best team for the sample problem
J)g;t._team =. ggtge_force_solver(sample_problem)
Lol Spua bgs‘g_.teanﬂ

pul o Tl dyhzy, 'w3', ‘ws')

Ministry of Education

2023 - 1445

The brute-force solver is guaranteed to always find the best possible solution (the smallest possible
team), as long as a solution exists. However, as discussed in the beginning of this Lesson, its exhaustive
nature also leads to an explosion of computational cost as the size of the problem gets bigger.

This can be demonstrated by creating multiple problems with an increasing number of workers. The
following code can be used to generate instances of the team formation problem. The number of
workers is varied to be equal to 5, 10, 15, and 20. A total of 100 instances are generated for each
worker number. All instances include 10 total skills, 8 required skills and at most 5 skills per worker.

problems_with_5_workers = [] #5 workers

problems_with_10_workers = [] # 10 workers
problems_with_15_workers [1 #15 workers
problems_with_20_workers [1 #20 workers

for i in range(100): #repeat 100 times

problems_with_5_workers.append(create_problem_instance(10, 5, 8, 5))

problems_with_10_workers.append(create_problem_instance(10, 10, 8, 5))
problems_with_15 workers.append(create_problem_instance(10, 15, 8, 5))
problems_with_20_workers.append(create_problem_instance(10, 20, 8, 5))

The following function accepts a list of problem instances and a solver. It then uses the solver to
compute and returns the solution for all instances. It also prints the total time (in seconds) required
to compute the solutions, as well as the total number of instances for which a solution could be found.

import time
def gets_solutions(problems,solver):

total_seconds = 0 #total seconds required to solve all problems with this solver
total_solved = 0 #total number of problems for which the solver found a solution
solutions = [] #solutions returned by the solver

for problem in problems:

start_time = time.time() #starts the timer

best_team = solver(problem) #computes the solution

end_time = time.time() # stops the timer
solutions.append(best_team) #remembero the solution
total_seconds += end_time-start_time # computes total elapsed time

if best_team != None: #ifthe best team is a valid team
::::.. ..::fc&al_solved +=1
®0 ., trinf("s®@®%ed {} problems in {} seconds".format(total_solved,

Lo total_seconds))
pul il ajljg

Ministry of Educatr@turn solutions
2023 - 1445

The following code uses this function and the brute-force solver to compute the solutions for 5-worker,
10-worker, 15-worker, and 20-worker datasets that were created above.

brute_solutions_5 = gets_solutions(problems_with_5_workers,
solver = brute_force_solver)

brute_solutions_10 = gets_solutions(problems_with_10_workers,
solver = brute_force_solver)

brute_solutions_15 = gets_solutions(problems_with_15 workers,
solver = brute_force_solver)

brute_solutions_20 = gets_solutions(problems_with_20_workers,
solver = brute_force_solver)

Solved 23 problems in 0.0019948482513427734 seconds
Solved 80 problems in 0.06984829902648926 seconds
Solved 94 problems in 2.754629373550415 seconds
Solved 99 problems in 109.11902689933777 seconds

While the exact numbers printed by the gets_solutions() function will vary due to the randomized
nature of the datasets, two patterns will always be consistent:

e Increasing the number of workers leads to a higher number of problem instances for which a
solution could be found. This is reasonable, as having more workers increases the probability that
the worker pool includes at least one worker that possesses each required skill.

¢ Increasing the number of workers leads to a significant (exponential) increase in computational
time. This was anticipated given the analysis conducted in the beginning of this lesson. For worker
populations of size 5, 10, 15, and 20, the number of possible teams is equal to 31, 1023, 32767,
and 1048575, respectively.

In general, given N workers, the number of possible teams is equal to 2V-1. This number becomes far
too large to evaluate even for modest values of N. This demonstrates that, even for a simple problem
with 1 constraint (covering all required skills) and 1 objective (minimizing the size of the team), brute
force is only applicable for very small datasets and it is certainly not practical for any of the complex
real-world optimization problems described at the beginning of this lesson.

Decision Making with a Greedy Heuristic Algorithm

The following function addresses this constraint by implementing an optimization algorithm based
on a "greedy" heuristic. The heuristic gradually populates a team by adding one member at a time.
The next member that is added is always the one that covers the most of the previously uncovered
skills. The process continues until all required skills have been covered.

The "greedy heuristic" in this case is the criterion of choosing a worker that

covers the most of the previously uncovered skills. A different heuristic function
could have been adding first the worker having the largest number of skills.

Ministry of Education

2023 - 1445

def greedy_solver(problem):

worker_skills = problem['worker_skills']
required_skills = problem['required_skills']

skills that still have not been covered

uncovered_required_skills = required_skills.copy()

best_team = []

remembers only the skills of each worker that are required but haven't been covered yet
uncovered_worker_skills = {}

for worker_id in worker_skills:

remembers only the required uncovered skills that this worker has
uncovered_worker_skills[worker_id] = worker_skills[worker_id].

intersection(uncovered_required_skills)
intersection() returns a

while there are still required skills to cover new set containing only the
while len(uncovered_required_skills) > 0:

skills that are common to
worker's worker_skills and

best_worker_id = None # the best worker to add next - i
uncovered_required_skills.

number of uncovered skills required for the best worker to cover \

best_new_coverage = 0
for worker_id in uncovered_worker_skills:

uncovered required skills that this worker can cover
my_uncovered_skills = uncovered_worker_skills[worker_id]

if this worker can cover more uncovered required skills than the best worker so far

if Tlen(my_uncovered_skills) > best_new_coverage:
best_worker_id=worker_id # makes this worker the best worker
best_new_coverage=len(my_uncovered_skills)

if best_worker_id != None: #if a best worker was found
best_team.append(best_worker_id) # adds the worker to the solution

#removes the best worker's skills from the skills to be covered
uncovered_required_skills = uncovered_required_skills -
uncovered_worker_skills[best_worker_id]

for worker_id in uncovered_worker_skills:

remembers only the required uncovered skills that this worker has
uncovered_worker_skills[worker_id] =

. uncovered_worlger_skills[worker_id] .intersection(uncovered_required_skills)
[Y X J

oo.:°. .‘:.oo

®e, °,°.8lse? ¥ no best worker has been found and some required skills are still uncovered

: return None # no solution could be found
1l a)lig

Ministry of EducatigicUFR best_team

2023 - 1445

The greedy solver does not consider all possible teams and does not guarantee finding the optimal
solution. However, as demonstrated below it is much faster than the brute-force solver and can still
produce good (and often optimal) solutions. The method is also guaranteed to find a solution if one
exists.

The following code uses the greedy solver to compute the solutions for the same 5-worker, 10-worker,
15-worker, and 20-worker datasets that was used to evaluate the brute-force solver.

greedy_solutions_5 = gets_solutions(problems_with_5_workers,
solver = greedy_solver)

greedy_solutions_10 = gets_solutions(problems_with_10_workers,
solver = greedy_solver)

greedy_solutions_15 = gets_solutions(problems_with_15_workers,
solver = greedy_solver)

greedy_solutions_20 = gets_solutions(problems_with_20_workers,
solver = greedy_solver)

Solved 23 problems in 0.0009970664978027344 seconds
Solved 80 problems in 0.000997304916381836 seconds
Solved 94 problems in 0.001995086669921875 seconds
Solved 99 problems in 0.0019943714141845703 seconds

The difference in speed between the two solvers is evident. In fact, the greedy solver can be applied
even on much larger problem instances. For example:

creates 100 problem instances of a team formation problem with 1000 workers
problems_with_1000_workers = []

for i in range(100): # repeats 100 times
problems_with_1000_workers.append(create_problem_instance(10, 1000, 8, 5))

solves the 100-worker problems using the greedy solver

greedy_solutions_1000 = gets_solutions(problems_with_1000_workers,
solver = greedy_solver)

Solved 100 problems in 0.09574556350708008 seconds

1l a)ljg
Ministry of Education
2023 - 1445

Comparing the Algorithms

Having demonstrated the speed advantage of the greedy heuristic, the next step is to also validate
the quality of the solutions that it produces. The following function accepts the solutions produced
by the greedy and brute-force solvers on the same collection of problem instances. It then reports
the percentage of instances for which both solvers report the optimal solution (the smallest possible
team).

def compare(brute_solutions,greedy_solutions):
total_solved = 0
same_size = 0

for i in range(len(brute_solutions)):

if brute_solutions[i] != None: #ifa solution was found
total_solved += 1

if the solvers reported a solution of the same size
if len(brute_solutions[i]) == len(greedy_solutions[i]):
same_size += 1

return round(same_size / total_solved, 2)

The compare() function can now be used to compare the effectiveness of the two solvers applied to
the datasets with 5, 10, 15, and 20 workers.

print(compare(brute_solutions_5,greedy_solutions_5))

print(compare(brute_solutions_10,greedy_solutions_10))
print(compare(brute_solutions_15,greedy_solutions_15))
print(compare(brute_solutions_20,greedy_solutions_20))

1.0

0.82
0.88
0.85

The results demonstrate that the greedy heuristic can consistently find the optimal solution for about
80%, or higher, of all solvable problem instances. In fact, one can easily verify that, even for cases
when it fails to find the optimal solution, the size of the team that it returns is very close to that of
the best possible team.

Combined with the overwhelming speed advantage, this makes the heuristic a far more practical
ehojce for realigtis @pplications.

(X)) ®e o °0

Th\e.n'gxt, I'essq'rfwili explore even more intelligent optimization techniques and their applications to
different problems.

1l a)ljg
Ministry of Education
2023 - 1445

What are the advantages and disadvantages of the brute-force and greedy algorithms
for solving optimization problems?

Analyze how greedy heuristicalgorithms are used to find optimal solutions in optimization
problems.

Pty
Ministry of Education
2023 - 1445

264

9 You want to create a greedy solver for the optimization problem of team formation.
Complete the following code so that the function utilizes a greedy heuristic for the
assignment of team members to a job.

def greedy_solver(problem):
worker_skills=problem['worker_skills'] # worker skills for this problem
required_skills=problem['required_skills'] # required skills for this problem

uncovered_required_skills = required_skills. () #skills not covered
best_team=[1 #best solution
uncovered worker skills={}

for worker_id in worker_skills:

uncovered_worker_skills[worker_id]=worker_skills[worker_id].
(uncovered_required_skills)
while len(uncovered_required_skills) > 0:

best_worker_id= # the best worker to add next

best_new_cove raéE:() ~# number of uncovered required skills covered by the best worker

for worker_id in uncovered_worker_skills: # for each worker
my_uncovered_skills=uncovered_worker_skills[worker_id]
if this worker can cover more uncovered required skills than the best worker so far
if Tlen(my_uncovered_skills)>best_new_coverage:

best_worker_id=worker_id # makes this worker the best worker

best_new_coverage= (my_uncovered_skills)
if best_worker_id!= : #if a best worker was found
best_team. (best_worker_id) #adds the worker to the solution

#removes the best worker's skills from the skills to be covered

uncovered_required_skills=uncovered_required_skills - uncovered_
worker_skills[best_worker_id]

for each worker

for worker_id in uncovered_worker_skills:

remembers only the required uncovered skills that this worker has
uncovered_worker_skills[worker_id]=uncovered worker_

skills[worker_id]. (uncovered_required_skills)
else: #no best worker has been found and some required skills are still uncovered
L X 1Y ° e00®
s % B el . N Sefurn # no solution could be found

P 1l a)ljg
Ministry of Education
2023 - 1445

0 List three different real-world optimization problem. For each problem:

¢ Give an example of an objective function.
¢ Give two examples of constraints, if any.

In the brute-force solver, if you increase the number of workers, how does it affect the
problem in terms of number of solutions and computational time?

....
.OQ_ e o '...
o0 e ° o0

.. ° ..
L]

Rl g)ljg
Ministry of Education
2023 - 1445

266

Link to digital lesson

Lesson 2

Resource Scheduling Problem

www.ien.edu.sa

Scheduling Problems

Scheduling problems are common in the optimization field as they require the allocation of limited resources
to multiple tasks in a way that optimizes some objective function. Scheduling problems often have additional
constraints, such as requiring tasks to happen in a specific order or to be completed by a certain deadline.
These problems are essential in various real-world applications, including manufacturing, transportation,
healthcare, and project management. In this lesson, you will go deeper into optimization algorithms by
introducing additional techniques to solve scheduling problems.

Table 5.1: Real-world applications need scheduling solutions

Application Function

Project scheduling Allocate resources and tasks to project activities to minimize project
duration and costs.

Production planning Determine the optimal production plan to meet demand while minimizing
inventory and costs.

Airline scheduling Schedule aircraft departures and crew shifts to optimize flight schedules
while minimizing costs and delays.

Call center scheduling | Allocate agents to shifts to ensure adequate coverage for working periods
while minimizing costs and meeting service level agreements.

Job shop scheduling Allocate resources in manufacturing to minimize production time and
costs.

Media scheduling Schedule the timing of advertisements on television or radio to maximize
audience reach and revenue, while respecting budget constraints.

Nurse scheduling Assign nurses to shifts in a hospital to ensure adequate coverage during
working periods while minimizing labor costs.

Project View
Week 01 Week 02 Week 03 Week 04 Week 05
MITIWIT|F[M[T[w[T[F[m[T]W][T[F[m[T[w[T[F|M|T|W|T|F[M T|W
100% = i s
100%
L X 1Y oo® 3
.. °
00 eiige @ .79%.
L] L] v
oo, ol w2 P
80%
et o
pul il ajljg
75%
Ministry of Education 0%

2023 =1445 o
Figure 5.3: A Gantt chart showing a project schedule

In this lesson, the Single-Machine Weighted Tardiness (SMWT) problem will be used as a working
example to demonstrate how optimization algorithms can solve scheduling problems.

Single-Machine Weighted Tardiness (SMWT) Problem

To illustrate the problem, consider a factory that needs to schedule the production tasks of several
items on a single machine.

e Each job has a specific processing time and a due date by which it needs to be completed.
e Each job is also associated with a weight, that represents the job's importance.

If it is impossible to complete all tasks by the deadline, it will be less expensive to miss the deadline
for low-weight tasks than for high-weight tasks.

Goal

The goal is to schedule the jobs in a way that minimizes the weighted sum of the lateness (tardiness)
of each job. The weight tardiness sum thus serves as the objective function for optimization algorithms
designed to solve this problem.

Lateness calculation

The lateness of a job is calculated as the difference between its completion time and its due time.
Job weights are then used as multipliers to complete the final weighted sum. For example, consider
a schedule with three jobs J1, J2, and J3 with weights equal to 2, 1, and 2, respectively. According to
this schedule, J1 will finish on time, J2 will be 3 hours late, and J3 will finish 1 hours late. This means

that the weighted tardiness sum is equal to 3x1+1x2=5,
(1 hour late) (3 hours Iate)

/////)////%
Ciob 1 | iob 3 | T

Figure 5.5: Visual representation of the sequence of jobs

J1 14 11 0 0
12 20 23 3 3
13 17 18 1 2

Figure 5.4: Calculate the weighted tardiness

TH@SMWT probb?rPls challenging to solve as its complexity grows

expoﬁentlauy w?tﬁ #he number of jobs. Thus making it computationally oPtai::izasgg'::Lg;t':::ms

expensive, ‘and often impossible, to find the best possible solution - -
near-optimal solutions for

Pl cfanlaggjipput sizes. a problem in a reasonable

Ministry of Education amount of time.
2023 - 1445

Job Shop Scheduling (JSS) Problem

The Job Shop Scheduling (JSS) problem, is another classic scheduling problem that has been widely
studied in the optimization field. The JSS problem involves scheduling a set of jobs on multiple
machines, where each job has to be processed in a specific order and time on each machine in relation
to the other jobs.

Goal
To minimize the total completion time (makespan) of all jobs.

Variants of the problem
Other variants of this problem introduce multiple additional constraints, such as:

e Each job has a "release" date before which it cannot be started, in addition to each deadline date.
e Some jobs have to be scheduled before others due to precedence constraints between them.

e Each machine has to undergo periodic maintenance according to a strict maintaince schedule.
Machines cannot service jobs during maintenance and a job cannot stop once it has started.

Each machine needs to have some downtime after completing a job. The length of the downtime
might be fixed or it may vary across machines. It might also depend on the time that it took to complete
the previous job.

The above are only a subset of the various complex constraints and problem variants that occur in
real-world scheduling problems. Each variant has its own unique characteristics and practical
applications, and different optimization algorithms may be more suitable for solving each variant.

Using Python and Optimization to Solve the SMWT Problem
The following code can be used to create randomized instances of the SMWT problem:

import random
creates an instance of the Single-Machine Weighted Tardiness problem.

def create_problem_instance(job_num, #number of jobs to create
duration_range, #job duration range
deadline_range, #deadline range
weight_range):# importance weight range

generates a random duration, deadline, and weight for each job

durations = [random.randint(*duration_range) for i in range(job_num)]
deadlines = [random.randint(*deadline_range) for i in range(job_num)]
weights = [random.randint(*weight_range) for i in range(job_num)]

returns the problem instance as a dictionary
®oo, return.j'.(bwations ":durations,
0o, 0. +lee%®adlines :deadlines,
.t 'weights':weights}
1l a)ljg
Ministry of Education
2023 - 1445

The random.randint(x,y) function is used to generate a random integer between x and y. A different
way to use this function is to provide a list [x,y] or a tuple (x,y). In that case, the * symbol needs to
be typed before the list, exactly as done in the function above. For example:

for i in range(5):# prints 5 random integers between 1 and 10
print(random.randint(+[1, 10]1))

= = 0o

The following code uses the create_problem_instance() function to generate a sample problem
instance such that:

e The instance includes 10 jobs.
e Eachjob can last between 5 and 20 time units. We will assume hours as time units for the remainder
of this lesson.

e Each job has a deadline that can range between 5 and 50 hours. The deadline clock starts from the
moment the first job starts using the machine. For example, if the deadline for a job is equal to 10,
then this means that the job has to be completed within 10 hours from the beginning of the job
that was scheduled first.

e The weight of each job is an integer between 1 and 3. number of J [job duration

jobs to create range

f]

create_problem_instance(10, [5,[20], [5, 501, [1, 3])
(deadline range)

importance

{'durations': [18, 17, 17, 6, 9, 6, 20, 12, 9, 19],
'deadlines': [39, 31, 6, 42, 48, 10, 39, 16, 34, 35],
'weights': [2, 2, 3, 2, 1, 3, 2, 1, 3, 11}

weight range

The following function can be used to evaluate the quality of a schedule that has been produced by
any algorithm for a specific problem instance. The function accepts a problem instance and a schedule.
It then goes over all the jobs in their scheduled order to compute their finish times, as well as the
total weighted tardiness of the entire schedule. The latter is computed by computing the tardiness
of each job (with respect to its deadline), multiplying it by the job's weight, and adding the result to
the sum.

computes the total weighted tardiness of a given schedule for a given problem instance
def compute_schedule_tardiness(problem, schedule):

gets the information for this problem
durations, weights, deadlines=problem['durations'], problem['weights'],
Ppestent dagtes]
oo..°.‘.°..oo
jobenum = len(schedule) # getsthe number of jobs
| ill éflinish_times = [0] * job_num #stores the finish time for each job
: dule_tardiness = 0 #initializes the weighted tardiness of the overall schedule to 0
Ministry of Education

2023 - 1445

for pos in range(job_num): # goes over the jobs in scheduled order
job_id=schedule[pos] # schedule[pos] is the id in the 'pos’ position of the schedule

if pos == 0: #ifthisis the job that was scheduled first (position 0)

the finish time of the job that starts first is equal to its run time
finish_times[pos] = durations[job_id]

else: #forall jobs except the one that was scheduled first

the finish time is equal to the finish time of the previous time plus the job's run time
finish_times[pos] = finish_times[pos-1] + durations[job_id]

computes the weighted tardiness of this job and adds it to the schedule's overall tardiness
schedule_tardiness += weights[job_id] * max(finish_times[pos] -
deadlines[job_id], 0)

return schedule_tardiness,finish_times

The compute_schedule_tardiness() function will be used to evaluate schedules and will serve as a
useful tool for all the algorithms that will be presented in this Lesson for the solution of the SMWT
problem.

Itertools.Permutations() Function

The brute-force solver will be using the itertools.permutations() function to create all possible schedules
(job combinations). It will then be computing the tardiness of each possible schedule and reporting
the best one (the one with the lowest total tardiness).

The itertools.permutations() function accepts a single iterable (e.g. list) and creates each possible
permutation of input values. The following simple example demonstrates the use of the permutations()
function and shows the permutations of all given job ids:

job_ids = [0,1,2] #theids of 3 jobs Brute-force solvers are
for schedule in itertools.permutations(job_ids): better used for small
print(schedule) problems. An instance of
the SMWT problem with
N jobs has N! possible

(0, 1, 2) schedules. For N =5, this
(0, 2, 1) creates only 5! = 120
(1, 0, 2) schedules. However, the
(1 !) ! o) number skyrockets for

1o N =10 to 10! = 3,628,800
(2, 0, 1) and for N =11 to
(2, 1, 0) 11! = 39,916,800.

Bu;te -Force Spber

ﬁ1.tﬁe pf’ev’ot!s'lesson you learnt how to implement a brute-force solver for the team formation
problem £ven though the solver was shown to be too slow for larger problems, its ability to always

pul o fnddh ptlmal (best possible) solution for small instances was useful for evaluating the quality of
utions produced by faster optimization algorithms that do not guarantee optimality. Similarly,

Ministry oFtII—_nfuc%ltlon

2023 - 1 AE!BE following brute-force solver can be used to solve an instance of the SMWT problem.

import itertools
def brute_force_solver(problem):

gets the information for this problem
durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

job_num = len(durations) #number of jobs

Generates all possible schedules
all_schedules = itertools.permutations(range(job_num))

Initializes the best solution and its total weighted tardiness
best_schedule = None #initialized to None

'inf" stands for 'infnity". Python will evaluate all numbers as smaller than this value.
best_tardiness = float('inf')

stores the finish time of each job in the best schedule
best_finish_times = None # initalized to None

for schedule in all_schedules: # forevery possible schedule

#evalutes the schedule
tardiness,finish_times=compute_schedule_tardiness(problem, schedule)

if tardiness < best_tardiness: #this schedule is better than the best so far
best_tardiness = tardiness
best_schedule = schedule
best_finish_times = finish_times

returns the results as a dictionary

return {'schedule':best_schedule,
'tardiness':best_tardiness,
'finish_times':best_finish_times}

The solver returns the best schedule, its tardiness, and the
finish time of each job given this best schedule. For example,

if a 3-job schedule has finish times equal to [10, 14, 20], then number deadline
this means that the job that started first finished after 10 hours, of jobs to range
The second job finished 4 hours after that, and the last job Create

finished 6 hours after the second job was done. J

sample_problem = create_problem_instance(5, [5, 20], [5,f30], [1, 3])~—W

dgyte_force _gqlyer(sample_problem)
oo.:'. .‘:_.oo
00, °*,°,%° o009

{'sch.edule' (0, 2, 1, 3, 4) job duration importance
pul 1l Aybagdiness': 164, range weight range
Ministry of Educafidnish_times': [5, 11, 21, 36, 511}
2023 - 1445

Pl — PhHssin

Greedy Heuristic Solver

This greedy solver uses a simple heuristic to sort the jobs and decide the order in which they should
be scheduled. It then goes over the jobs in this order to compute the finish time of each job and the
total weighted tardiness of the entire schedule. For this particular example, the greedy solver returns

exactly the same type of output as the brute-force solver.

The greedy solver accepts two parameters: the problem to be solved and the heuristic function (job-
sorting criterion) to be used. This allows the user to implement any heuristic function of their choosing

as a Python function and pass it to the greedy solver as a parameter.

The following function implements an optimization algorithm that uses a greedy heuristic function

to solve the problem:

def greedy_solver(problem, heuristic):

gets the information for this problem

durations, weights, deadlines = problem['durations'], problem['weights'],

problem['deadlines']

job_num = len(durations)# gets the number of jobs

Creates a list of job indices sorted by their deadline in non-decreasing order

schedule = sorted(range(job_num), key

evaluates the schedule

= lambda j:

heuristic(j, problem))

tardiness, finish_times = compute_schedule_[tardiness(problem, schedule)

returns the results as a dictionary

return {'schedule':schedule,
'tardiness':tardiness,
'finish_times':finish_times}

In this example, the greedy
heuristic function used to select the

next job to be scheduled is choosing
the job having the closest deadline.

The use of the 'lambda’ syntax is used with
Python's sorted() function when the goal is to
sort a list of elements based on a value that is

computed separately for each element.

The following function returns the deadline of a specific job in a given problem instance:

returns the deadline of a given job
def deadline_heuristic(job,problem):

...
oo. ’re;urn. p?cﬁ)lem[deadlines'][job]

accesseg &e deadlines for this problem and returns the deadline for the job

g)this deadline_heuristic() function as a parameter to the greedy solver means that the solver
Ministry 0F\@Hh§g,lal%qule (sort) the jobs in ascending deadline order. This means that the jobs with the earliest
2023 - 149eadlines will be scheduled first.

greedy_sol = greedy_solver(sample_problem, deadline_heuristic)
greedy_sol

{'schedule': [3, 1, 4, 0, 2],
'tardiness': 124,
'finish_times': [15, 26, 32, 48, 571}

The following function implements an alternative heuristic that also takes into account the weights
of the jobs when deciding their order in the schedule:

returns the weighted deadline of a given job
def weighted_deadline_heuristic(job,problem):

accesses the deadlines for this problem and returns the deadline for the job

return problem['deadlines'][job] / problem['weights'][job]
weighted_greedy_sol=greedy_solver(sample_problem, weighted_deadline_heuristic)
weighted_greedy_sol

{'schedule': [3, 2, 1, 4, 0],
'tardiness': 89,
'finish_times': [15, 24, 35, 41, 571}

Local Search

Even though the greedy solver is much faster than the brute-force

approach, it also tends to produce lower quality solutions with a Local search
significantly higher tardiness. A way to improve a solution computed Local search is a heuristic
by a greedy algorithm or by any other approach is Local Search. optimization method that
In Local Search, a starting solution is iteratively refined by examining focuses on exploring the
its neighboring solutions, which are obtained by applying small neighborhood of a given
modifications to the current solution. For many optimization solution to improve it.

problems, a common approach for modifying a solution is by

iteratively swapping elements. For instance, in the team-formation

problem that was covered in the previous lesson, a local search approach would try to create a better
team by swapping team members with workers who are currently not a part of the team.

The greedy heuristic solver constructed the solution step-by-step until eventually a complete and
final solution was obtained. On the contrary, local search methods start with a complete solution
(that may be of moderate or even bad quality), and work iteratively to improve the quality of the
solution. Each step, a small change is made to the current solution, and the quality of the resulting
solution (known as the neighbor) is evaluated. If the neighbor solution has better quality, then it
replasgs the cqunthIqun and the search continues. Otherwise, the neighbor solution is discarded
ag(itbe pfocess E, ;epeated to generate another neighbor. The search terminates when no neighbor
solution can be found having quality better than the current solution. The best solution found is

pul craNEgg

Ministry of Education
2023 - 1445

Local_search_solver() Function

The following local_search_solver() function implements a swap-based local search solver for the
SMWT problem. The function accepts four parameters:

e A problem instance.
e Agreedy heuristic that will be used by the greedy_solver() function to compute an initial solution.

e Aswap_selector function that will be used to select two jobs that will swap their positions in their
schedule. For example, if the current solution of a 4-job problem is [0,2,3,1], and the swap selector
decided to swap the first and last jobs, the new candidate solution would be [1,2,3,0].

e A max_iterations integer that determines how many swaps should be attempted before the solver
returns the best solution found so far.

In each iteration, the solver selects two jobs to swap. It then
creates a new schedule that swaps the two jobs but is otherwise The behavior of local search
identical to the original. If the new schedule has a lower weighted Al ERTEL ST T L

tardiness than best schedule found so far, then it becomes the

heavily influenced by the

strategy that is used to
best in its place. The solver has the exact same output as the iteratively modify the solution.

greedy and brute-force solvers.

def local_search_solver(problem, greedy_heuristic, swap_selector, max_
iterations):

gets the information for this problem

durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

job_num = len(durations) # getsthe number of jobs

uses the greedy solver to get a first schedule

this schedule will be then iteratively refined through local search

greedy_sol = greedy_solver(problem, greedy_heuristic) # the bestschedule so far

best_schedule, best_tardiness, best_finish_times = greedy_sol['schedule'],
greedy_sol['tardiness'], greedy_sol['finish_times']

local search
for i in range(max_iterations): #foreach of the given iterations

chooses which two positions to swap
posl, pos2 = swap_selector(best_schedule)

new_schedule = best_schedule.copy() #create a copy of the schedule

swaps jobs at positions pos1 and pos2

®ee, ne.w'swedule[posl], new_schedule[pos2] = best_schedule[pos2],
00e,°. <%, 000 best_schedule[pos1]
00, °,°,° o000

1l a)ljg
Ministry of Education
2023 - 1445

computes the new tardiness after the swap

new_tardiness, new_finish_times = compute_schedule_tardiness(problem,
new_schedule)

if the new schedule is better than the best one so far
if new_tardiness < best_tardiness:

The neighbors of a solution in this

the new_schedule becomes the best one example are all solutions that are
best_schedule = new_schedule obtained by selecting two jobs

best_tardiness = new_tardiness within the solution and swapping
best_finish_times = new_finish_times their positions in their schedule.

returns the best solution

return {'schedule':best_schedule,
'tardiness':best_tardiness,
'finish_times':best_finish_times}

The following function implements a random swap by simply selecting two random jobs in the given
schedule that should exchange places.

def random_swap(schedule):
job_num = len(schedule) # getsthe number of scheduled jobs

posl = random.randint(®, job_num - 1) #samples a random position

pos2 posl
while pos2 == posl: #keepssampling until it finds a position other than pos1
pos2 = random.randint(®, job_num - 1) #samples another random position

return posl, pos2 #returns the two positions that should be swapped

The following function then adopts a different strategy by always choosing to swap a random pair of
jobs that are adjacent in the schedule. For example, if the current schedule for a 4-job problem
instance was [0,3,1,2], then the only candidate swaps would be 0<>3, 3<>1, and 1<>2.

def adjacent_swap(schedule):

job_num = len(schedule) # getsthe number of scheduled jobs

®ee .posl = .rglgc@m .randint(@, job_num - 2) #samples a random position (excluding the last

©0eq),%. %, 000

®® e p0sde.pd21®+ 1 #gets the position after the sampled one

]:L_I.J_L'I'-“ l"_"lﬂg'cprn posl,pos2 #returns the two positions that should be swapped
Ministry of Education

2023 - 1445

The following code uses both swap strategies with the local search solver to solve the sample problem
generated in the beginning of this lesson.

print(local_search_solver(sample_problem, weighted_deadline_heuristic, random_
swap, 1000))

print(local_search_solver(sample_problem, weighted_deadline_heuristic,
adjacent_swap, 1000))

{'schedule': [3, 4, 2, 1, 0], 'tardiness': 83, 'finish_times': [15, 21, 30,
41, 571}
{'schedule': [3, 4, 2, 1, 0], 'tardiness': 83, 'finish_times': [15, 21, 30,
41, 571}

The results show the best schedule [3, 4, 2, 1, 0] for this example and also the overall tardiness (83)
and finish times (job 3 will finish on the 15% unit of time, job 4 on the 215 and so on).

Comparing Solvers

The following code uses the create_problem_instance() function to generate two datasets:

¢ A dataset of 100 SMWT problem instances with 7 jobs each.

¢ A dataset of 100 SMWT problem instances with 30 jobs each.

The first dataset will be used to compare the performance of all solvers that were described in this
lesson:

1. The brute-force solver.
2. The greedy solver with the deadline heuristic.
3. The greedy solver with the weighted deadline heuristic.

4. The local search solver with random swaps and a greedy solver with the deadline heuristic to find
the initial solution.

5. The local search solver with random swaps and a greedy solver with the weighted deadline heuristic.
6. The local search solver with adjacent swaps and a greedy solver with the deadline heuristic.
7. The local search solver with adjacent swaps and a greedy solver with the weighted deadline heuristic.

The second dataset will be used to compare all solvers except for the brute-force one, which is far
too slow for 30-job problems.

#Dataset 1
problems_7 = []
for i in range(100):
problems_7.append(create_problem_instance(7, [5, 201, [5, 501, [1, 31))

.... e00®
®9Rijsel 2 .00
e O C [N]

probléms 30 = []
i in range(100):

., far i
p‘-'-'l_;"l CIJI|$ﬁ>blems_30.append(create_problem_instance(30, [5,20], [5, 501, [1, 31))
Ministry of Education

2023 - 1445

Compare(Q Function

The following compare() function uses all the solvers to solve all problems in the given dataset. It
then returns the average tardiness value achieved by each solver over all the problems in the dataset.
The function also accepts a boolean use_brute parameter to determine if the brute-force solver
should be used or not.

from collections import defaultdict
import numpy

def compare(problems,use_brute):
comparison on Dataset 1
maps each solver to a list of all tardiness values it achieves for the problems in the given dataset
results = defaultdict(list)
for problem in problems: # for each problem in this datset

#uses each of the solvers on this problem
if use_brute == True:
results['brute-force'].append(brute_force_solver(problem)

['tardiness'])

results['greedy-deadline'].append(greedy_solver(problem,deadline_
heuristic)['tardiness'])

results['greedy-weighted_deadline'].append(greedy_
solver(problem,weighted_deadline_heuristic)['tardiness'])

results['ls-random-wdeadline'].append(local_search_solver(problem,
weighted_deadline_heuristic, random_swap, 1000)['tardiness'])

results['ls-random-deadline'].append(local_search_solver(problem,
deadline_heuristic, random_swap, 1000)['tardiness'])

results['ls-adjacent-wdeadline'].append(local_search_solver(problem,
weighted_deadline_heuristic, adjacent_swap, 1000)['tardiness'])

results['ls-adjacent-deadline'].append(local_search_solver(problem,
deadline_heuristic, adjacent_swap, 1000)['tardiness'])

for solver in results: #foreach solver
prints the solver's mean tardiness values
print(solver,numpy.mean(results[solver]))

The compare() function can now be used with both the problems_7 and problems_30 datasets:

compare(problems_7,True) brute-force 211.49
greedy-deadline 308.14
greedy-weighted_deadline 255.61
1s-random-wdeadline 212.35
1s-random-deadline 212.43
ls-adjacent-wdeadline 220.62
1s-adjacent-deadline 224.36

%m re(pr,ob!&n% 30,False) greedy-deadline 10126.18
'.' elelelan greedy-weighted_deadline 8527.61
et ls-random-wdeadline 6647.73
| ill EIJUC] ls—rar?dom—deadline.6650.99
- ls-adjacent-wdeadline 6666.47
Ministry of Education ls-adjacent-deadline 6664.67

2023 - 1445

o Describe two different strategies (swapping, inversion, shifting etc.) for the local search

approach of solving the SMWT problem.

How many possible schedules (solutions) are there for an instance of the SMWT problem
with 9 jobs?

Pl g)ljg
Ministry of Education
2023 - 1445

279

e You want to create a brute-force solver for the SMWT problem. Complete the following
code so that the function utilizes brute force to find the optimal scheduling permutation

def brute_force_solver(problem):
gets the information for this problem
durations, weights, deadlines=problem['durations'], problem['weights'],

problem['deadlines']

job_num = len() #number of jobs

generates all possible schedules

all_schedules = itertools. (range(job_num))

initializes the best solution and its total weighted tardiness

best_schedule = # initialized to None

'inf' stands for 'infnity’. Python will evaluate all numbers as smaller than this value.

best_tardiness = float(')

stores the finish time of each job in the best schedule

best_finish_times- # initalized to None

for schedule in all_schedules: # for every possible schedule
#evalute the schedule
tardiness,finish_times=compute_schedule_tardiness(problem, schedule)

if tardiness<best_tardiness: # this schedule is better than the best so far

best_tardiness=

best_schedule=

best_finish_times=

return the results as a dictionary

Geo, o0
:0 o yttuwd, {:sshedule' :best_schedule,
®e °,°.°% o

'tardiness':best_tardiness,

pu il ajljg "finish_times':best_finish_times}
Ministry of Education
2023 - 1445

o You want to create a local search solver for the SMWT problem. Complete the following
code so that the function utilizes local search to find the optimal scheduling permutation.

def local_search_solver(problem, greedy_heuristic, swap_selector, max_
iterations):

gets the information for this problem

durations, weights, deadlines=problem['durations'], problem['weights'],
problem['deadlines']

job_num = len()# gets the number of jobs
uses the greedy solver to get a first schedule.
this schedule will be then iteratively refined through local search

greedy_sol = (problem, greedy_heuristic) #remembers the best
schedule so far

best_schedule, best_tardiness, best_finish_times=greedy_
sol['schedule'],greedy_sol['tardiness'],greedy_sol['finish_times']

local search

for i in range(): #for each of the given iterations
chooses which two positions to swap

posl,pos2= (best_schedule)

new_schedule = best_schedule. ()# creates a copy of the

schedule

swaps jobs at positions pos1 and pos2

new_schedule[pos1], new_schedule[pos2] = best_schedule[pos2], best_
schedule[pos1]

computes the new tardiness after the swap

new_tardiness, new_finish_times = compute_schedule_tardiness(problem,
new_schedule)

if the new schedule is better than the best one so far

if new_tardiness < best_tardiness:

the new_schedule becomes the best one

best_schedule =

best_tardiness =

best_finish_times=

b ol ® & retuss lg’z)est solution
0 o . returq -{bsthedule :best_schedule,
"tardiness':best_tardiness,

pul il ajljg "finish_times':best_finish_times}

Ministry of Education
2023 - 1445

e Describe how local search works.

G Write your observations about the results of the the greedy solvers compared to the
local search solvers, in the 30 job problem. Why do you think in the 30 job problem the
brute-force solver was not used?

il ajljg

Ministry of Education
2023 - 1445
282

Link to digital lesson

Lesson3

Route Optimization Problem

www.ien.edu.sa

Mathematical Programming
In Optimization Problems

The previous two lessons demonstrated how heuristic algorithms

could be used to solve different types of optimization problems. Mathematical programming
While heuristics can be very fast and often produce good solutions, Mathematical programming is a
they do not always guarantee the optimal solution and may not technique to solve optimization
be suitable for all types of problems. In this lesson you will focus problems by formulating them as
on a different optimization approach: mathematical programming. mathematical models.

Mathematical programming can solve many optimization problems,

such as resource allocation, production planning, logistics, and scheduling. The technique has the
advantage of providing a guaranteed optimal solution and can handle complex problems with multiple
constraints.

A mathematical programming solution starts with formulating the given optimization problem as a
mathematical model using variables. These variables represent the values that have to be optimized.
They are used to define the objective function and constraints, which together describe the problem
and enable the use of mathematical programming algorithms.

Mathematical programming utilizes decision variables which can be controlled and tuned by the
decision-maker to find the solution, or state variables which the decision-maker has no control over
and are imposed by the external environment. State variables cannot be tuned. The following lists
provide examples of decision and state variables for some popular optimization problems:

Table 5.2: Examples of decision and state variables

Decision Variables State Variables

The quantity of each product | The availability of raw materials, production

Produc-tion that has to be produced. machines' capacity, and production labor
Planning availability.

The number of goods to be | The distance between the locations that

Resource' transported from one location | must be visited and the capacity of the
Transportation RIS vehicles.

The order and time duration of | The availability of workers and machines,
TR T -8l each job to be performed. the deadlines, and the importance weights
of each job.

The assignment and scheduling | The skills, preferences, and availability of
of workers to different tasks at | each worker. The skills required to complete

Fersonel
Rostering different times. each task.

The objective function is formulated as a mathematical expression to be optimized (maximized or
minimized) based on the relevant variables. This function represents the goal of the optimization
problem, such as maximizing profit or minimizing costs. It is usually defined in terms of the decision
variables and sometimes the state variables. Similarly, the constraints can be formulated using variables
and mathematical inequalities.

There are several types of mathematical programming, including Linear Programming (LP), Quadratic
Programming (QP), and Mixed Integer Programming (MIP). This lesson focuses on MIP, which is used
for problems where the decision variables are restricted to integers, such as scheduling or routing
problems.

The Knapsack Problem

A simple example of using MIP to formulate the objective function and constraints is the 0/1 Knapsack
Problem. The problem is defined as follows: you are given a knapsack with a maximum weight capacity
of Cand a set of items 1. Each item i has two state variables: a weight w,and a value v,. The requirement
is to fill the knapsack with the maximum possible value within the knapsack's capacity. A decision
variable x;, is also used to keep track of the combinations of items to be packed in a knapsack, where
x, = 1if the item i is selected to be added to the knapsack and x, = 0 otherwise. The goal is to select
a subset of the items from I such that:

¢ Constraint: The sum of the weights of the selected items is not greater than the maximum capacity C.
¢ Objective function: The sum of the values of the selected items is as high as possible (maximized).

V,x
0 20 Wo=5 __________ > {mmm - W3:8 \/3:15
V=10 W,=10 | --=-==m-mmm - > .
P A —— w,=11 | Vam
V.= =
523\,=19| ------- >) T — w,=2 [l

Figure 5.6: The Knapsack problem

A knapsack instance is illustrated in figure 5.6 with six items having specific weights and values and
a maximum knapsack capacity of 40. The following code installs and uses the open-source Python
library mip (mixed integer programming) to solve an instance of the 0/1 Knapsack problem and imports
the necessary modules.

'pip install mip #install the mip library

’#9mpp'rt6:ueéf.t.ll-tdo?s from the mip library

from mip import Model, xsum, maximize, BINARY
P—LI—LLJEQIJEBC}: [20, 10, 23, 15, 7, 7] #values of available items
Ministry of wedghttsh = [5, 10, 19, 8, 11, 2] #weights of available items
2023 - 1445

(@]
1}

40 # knapsack capacity

—
n

range(len(values)) # creates an index for each item: 0,1,2,3,...

solver = Model("knapsack") # creates a knapsack solver
solver.verbose = 0 # setting this to 1 will print more information on the progress of the solver

x = [1 #represents the binary decision variables for each item.

for each items creates and appends a binary decision variable
for i in I:
x.append(solver.add_var(var_type = BINARY))

creates the objective function
solver.objective = maximize(xsum(values[i] * x[i] for i in I))

adds the capacity constraint to the solver
solver += xsum(weights[i] * x[i] for i in I) <= C

solves the problem
solver.optimize()

<OptimizationStatus.OPTIMAL: 0>

The code creates a list x to store the binary decision variables for the items. The mip library provides:
e the add_var(var_type=BINARY)) tool for creating binary variables and adding them to the solver.

¢ the maximize() tool for optimization problems that need to maximize an objective function, whereas
the minimize() tool is used for optimization problems that need to minimize an objective.

e the xsum() tool for creating mathematical expressions that include sums. In the above example,
the tool is used to compute the total weight of the items in a solution and create the capacity
constraint.

¢ the optimize() tool for finding a solution that optimizes the objective function while respecting the
constraints. The tool uses MIP to efficiently consider different combinations of values for the
decision variables and find the one that optimizes the objective.

¢ the += operator to add additional constraints to an existing solver.

In the implementation below, the list x holds one binary variable for each item. After the solution has
been computed, each variable will be equal to 1 if the item was included in the solution and equal
to 0 otherwise. The mip library uses the x[i].x syntax to return the binary value for the item with
index 1. The solver computes the decision variable x, then finds the total value and weight of the
selected items by iterating over the decision variable x, accumulating the weights and values for each
ge:ezste;:l.ite.m :’,:ozﬁged on x[i], and displaying them as shown in the following code.

00, °,°,%° o000

total_weight = 0 #stores the total weight of the items in the solution

=y = '|'||tHﬂ}E)/a1ue = 0 #stores the total value of the items in the solution

Ministry of Education
2023 - 1445

for i in I: # foreach item
if x[i].x == 1: #if the item was selected
print('item', i, 'was selected')
updates the total weight and value of the solution
total_weight += weights[i]
total_value += values[i]

print('total weight', total_weight)
print('total value', total_value)

item 0 was selected
item 2 was selected
item 3 was selected
item 5 was selected

total weight 34
total value 65

Traveling Salesman Problem

Another problem that can be solved via MIP is the Traveling Salesman
Problem (TSP). It is a classic problem that seeks to determine the
shortest possible route a salesman must take to visit a set of cities
exactly once and then return to his starting point, without visiting any
city twice. The figure 5.7 visualizes an instance of this problem.

TSP graph instances are fully

connected; there is an edge
connecting every pair of nodes.

Each circle (node) represents a city or location that has to be

visited. There is an edge connecting two locations if it is possible

to travel between them. The nu mber on the edge represents

the cost (distance) between the two locations. In this example, 20

the locations have been numbered according to their order in 10 15
the optimal solution to the problem. The total cost of the route

1—52—4—3—1is 10 + 25 + 30 + 15 = 80, which is the shortest

. . , 25 30
possible route that visits every city exactly once and returns to
the starting point. TSP has practical applications in logistics, 2 35 3
transportation, supply chain management, and telecommunications.
It belongs to a broader family of routing problems that also includes Figure 5.7: Instance of
other famous problems which are presented below: Traveling Salesman problem

e The Vehicle Routing Problem involves finding the optimal routes for a fleet of vehicles to deliver
goods or services to a set of customers while minimizing the total distance traveled. Applications
include logistics, delivery services, and garbage collection.

-.The Pickup and.D.eIivery Problem involves finding the optimal routes for vehicles to pick up and
° ﬁv.ergopdg(frpeople to different locations. Applications include taxi services, emergency medical
*strvices, and shtittle services.

.. The Train Timetabling Problem involves finding the optimal train schedules in a railway network
p"'l_g"lwfﬂé Jrﬁnimizing delay percentage and ensuring efficient use of resources. Applications include

Ministry of By transportation and scheduling.
2023 - 1445

The following code can be used to create an instance of the TSP. The function accepts the number of
locations to be visited and the distance range (minimum and maximum distance) between two
locations. It then returns:

¢ adistance matrix that includes the distance between every possible pair of locations.
¢ aset of numeric location ids (one for each location).

¢ the location that serves as the start and end of the route. This is referred to as the 'startstop'
location.

import random
import numpy
from itertools import combinations

def create_problem_instance(num_locations, distance_range):

initializes the distance matrix to be full of zeros

dist_matrix = numpy.zeros((num_locations, num_locations))

creates location ids: 0,1,2,3,4,...

location_ids = set(range(num_locations))

creates all possible location pairs

location_pairs = combinations(location_ids, 2)

for i,j in location_pairs: #foreach pair
distance = random.randint(+distance_range) #samples a distance within range
the distance from i to j is the same as the distance from j to i
dist_matrix[j,i] = distance
dist_matrix[i,j] = distance

returns the distance matrix, location ids and the startstop vertix
return dist_matrix, location_ids, random.randint(®, num_locations - 1)

The following code used the above function to create a TSP instance with 8 locations and pairwise
distances between 5 and 20:

dist_matrix, location_ids, startstop = create_problem_instance(8, (5, 20))
print(dist_matrix)
print(startstop)

[[@:.19. 17. 15. 18. 17. 7. 15.
[19. ©:.15. 18. 11. 6. 20. 5.
[17. 15. @w.17. 15. 7. 5. 11.
[15. 18. 17. 0:.19. 7. 7. 16.
00, 18- 11, J5. 19, 0:.17. 20. 17.
000 F17..%be0d. 7. 17. 0:.15. 14.
e (702008, 7.20. 15. 0. 14.

e e e e et e

Notice that the diagonal

[15. 5. 11. 16. 17. 14. 14. 0% represents the distances from
pul il ajljg the nodes to themselves (dist_
Ministry of Education matrix[i,i]), and thus is zero.

2023 - 1445

Creating a Brute-Force Solver for the Traveling Salesman Problem

The following function uses brute force to exhaustively enumerate all possible routes (permutations)
and return the shortest one. It accepts the distance matrix and the startstop location returned by the
create_problem_instance() function. Note that a solution to a TSP instance is a permutation of cities,
starting and ending at the startstop city.

from itertools import permutations

def brute_force_solver(dist_matrix, location_ids, startstop):
excludes the starstop location
location_ids = location_ids - {startstop}
generate all possible routes (location permutations)
all_routes = permutations(location_ids)
best_distance = float('inf') #initializes to the highest possible number
best_route = None # best route so far, initialized to None

for route in all_routes: #foreach route
distance = 0 #total distance in this route
curr_loc = startstop #current location

for next_loc in route:
distance += dist_matrix[curr_loc,next_loc] #adds the distance of this step
curr_loc = next_loc #goes to the next location

distance += dist_matrix[curr_loc,startstop] #goes to the starstop location

if distance < best_distance: #if this route has lower distance than the best route
best_distance = distance
best_route = route

adds the startstop location at the beginning and end of the best route and returns
return [startstop] + list(best_route) + [startstop], best_distance

The brute force solver uses the permutations() tool to create all possible routes. Note that the startstop
location is excluded from the permutations, as it must always appear at the start and end of each
route. For example, if we have 4 locations 0,1,2,3 and 0 is the startstop location, then the list of
possible permutations would be:

for route in permutations({1,2,3}):
print(route)

(1, 2, 3) °
.::!’03’0 2’::.
oo (5:.r.8)e00

(2, 3, 1)
pul o il &g, 2)
MinistrgoFEduEgt’iorz‘n’ 1)
2023 - 1445

The brute force solver computes the total distance of each route and finally returns the one with the
shortest distance. The following code applies the solver to the TSP instance generated above.

brute_force_solver(dist_matrix, location_ids, startstop)

(3, 5, 2, 7, 1, 4, 0, 6, 31, 73.0)

Similar to the brute-force solvers that were described in the previous lessons, this solver is only
applicable to small TSP instances. This is because the number of possible routes is a number that
grows exponentially as IV gets larger and is equal to (N—1)!. For example, for N=15, the number of
possible routes is equal to 14! = 87,178,291,200.

Using MIP to Solve the Traveling Salesman Problem

To use MIP to solve the TSP, a mathematical formulation that covers both the objective function and
the constraints of the TSP needs to be created.

The formulation requires a binary decision variablexi]. for every possible transition i—j from a location
i to another locationj. For a problem with NV locations, the number of possible transitions is equal to
NX(N—1). Ifxl.j is equal to 1, the solution includes a transition from location i to location j. Otherwise,
if xij is equal to O, then this transition is not included in the solution.

Accessing elements in a 2-dimensional numpy array can be easily done via the [i,j] syntax. For example:

arr = numpy.full((4,4), ©) #creates a4x4 array full of zeros [[06 06 0 0]
[0 06 0 0]

print(arr) [0 060 0]
[0 06 00]]

arr[0, 0] = 1

arr[3, 3] = 1 [[1000]
[0 060 0]

print() [0 06 0 0]

print(arr) [0 0 0 1]]

The code also uses the product() tool from 'itertools' to compute all possible location transitions.
For example:

ids = {0, 1, 2} 00
for i, j in list(product(ids, ids)): 01
print(i, j) 02
10
11
12

° o0
0eets. 22000 20
00, ° e, 000 21
2 2

1l a)ljg
Ministry of Education
2023 - 1445

The following code uses the Python mip library to create an MIP solver. It then adds one binary
decision variable for every possible transition in the TSP instance generated above.

from itertools import product # used to generate all possible transition
from mip import BINARY
from mip import Model, INTEGER

solver = Model() #creates a solver
solver.verbose = 0 #setting this to 1 will print info on the progress of the solver

'product’ creates every transition from every location to every other location
transitions = list(product(location_ids, location_ids))

N = len(location_ids) #number of locations

creates a square numpy array full of ‘'None' values
x = numpy.full((N, N), None)

adds binary variables indicating if transition (i->j) is included in the route
for i, j in transitions:
x[1, j] = solver.add_var(var_type = BINARY)

The above code uses the numpy.full() tool to create NxN numpy array for storing the binary x variables.

After adding the x decision variables, the following code can be used to formulate the objective function
for the TSP. The function iterates over every possible transition i—j and multiplies its distance dist_matrix][i,;j]
with its decision variable x[ij]. If the transition is included in the solution, then x[i,j]=1 and dist_matrix[i,j]
will be considered. Otherwise, dist_matrix[i,j] will be multiplied by 0 and will be ignored.

the minimize tool is used then the objective function has to be minimized
from mip import xsum, minimize

objective function: minimizes the distance
solver.objective = minimize(xsum(dist_matrix[i,jl+x[i][j] for i,j in
transitions))

The next step is to ensure that the solver only reports solutions that visit each location, except for
the startstop, exactly once, as the TSP requires. Visiting each location once means that a valid route
can only:

e arrive at each location exactly once.
e depart from each location exactly once.

These arrive/depart constraints can be easily added as follows:

.....
:#3‘3[e’ lznea't/fyrz v
for 1 im 1Scation_ids:
| al éjjolver += xsum(x[i,j] for j in location_ids - {i})

dtler +-= xsum(x[j,i] for j in location_ids - {i})
Ministry of Education

2023 - 1445

exactly 1 arrival
exactly 1 departure

[N

The complete formulation of the TSP includes one more type of constraint to ensure the computation
of connected routes. Consider the TSP instance in figure 5.8. Location 0 is assumed to be the startstop
location.

In this instance, the shortest possible route is 0>3->4->1-2,
with a total travel distance of 24. However, without a
connectivity constraint, a solution with two unconnected 5
routes 0>3->4->0 and 1->2->1 is also valid. This 2-route
solution satisfies the arrive/depart constraints defined in

5
the code above, as every location is entered and exited °
exactly once. However, this is not an acceptable TSP solution. .
A solution with a single connected route can be enforced °
by adding the decision variable y, for every location i. These 0 3 \G>
variables will capture the order in which each location is
visited in the solution. Figure 5.8: TSP instance

adds a decision variable for each location
= [solver.add_var(var_type = INTEGER) for i in location_ids]

For example, if the solution is 0>3->4->1->2->0, then the y values would be y3=0, y4=1, y1=2, y2=3.
Location 0 is the startstop location, so its y value is not considered.

These new decision variables can be used to ensure connectivity by adding a new constraint for each
transition i—j that does not include the startstop:

adds a connectivity constraint for every transition that does not include the startstop
for (i, j) in product(location_ids - {startstop}, location_ids - {startstop}):
ignores transitions from a location to itself
if i = j:
solver += y[j] - y[i] >= (N+1) = x[1i, j] - N

If a transition i—j has xij=1 and is included in the solution, then the above inequality becomes
y[jl >=yl[i] + 1. This states that locations that are visited later are required to have higher y values.
Combined with the arrive/depart constraints, a route that does not include the startstop is valid only
if:

o [fit starts and ends with the same location, to ensure that all locations have exactly one arrival and
one departure.

e It assigns higher y values to locations that are visited later since y[j] has to be greater than y[i] for
all transitions included in the route. This also avoids adding the same edge from a different direction
(e.g., i—j and j—i).

WQwever, ifa Ioga;lon serves as both the start and end of a route, then it needs to have a y value that

Bb@tI\'mghe'ranalgwer than those of all the others in the route. Given that this is impossible, adding

the canriactivity constraint eliminates any solutions with routes that do not include the startstop.

1l a)ljg
Ministry of Education
2023 - 1445

from
from
from
from

As an example, consider the 1->2->1 route in the 2-route solution of the TSP instance shown in the
figure above. The connectivity constraint requires thaty, >y + 1andy, >y, + 1. This is not possible,
so the solution would be eliminated.

In constrast, the correct solution 0>3->4->1->2-0 requires that y, 2 st Ly 2y, +1, and
y, 2y, + 1. These can be satisfied by setting y_=0, y,=1, y =2, y,=3. Connectivity constraints do not
apply to transitions that include the startstop node.

The following function puts everything together to create a complete MIP solver for the TSP:

itertools import product
mip import BINARY,INTEGER
mip import Model

mip import xsum, minimize

def MIP_solver(dist_matrix, location_ids, startstop):

solver = Model()# creates a solver
solver.verbose = 0 #setting this to 1 will print info on the progress of the solver

creates every transition from every location to every other location

transitions = list(product(location_ids,location_ids))
N = len(location_ids) #number of locations

create an empty square matrix full of 'None' values

x = numpy.full((N, N), None)

adds binary decision variables indicating if transition (i->j) is included in the route

for i, j in transitions:
x[i, jl=solver.add_var(var_type = BINARY)

objective function: minimizes the distance

solver.objective = minimize(xsum(dist_matrix[i,jl+«x[i][j] for i,j in transitions))

Arrive/Depart Constraints

for i in location_ids:
solver += xsum(x[i,j] for j in location_ids - {i}
solver += xsum(x[j,1] for j in location_ids - {i}

exactly 1 arrival
exactly 1 departure

) 1
) 1

adds a binary decision variable for each location

y = [solver.add_var(var_type=INTEGER) for i in location_ids]

adds connectivity constraints for transitions that do not include the startstop

for (i, j) in product(location_ids - {startstop}, location_ids - {startstop}):
if i != j: #ignores transitions from a location to itself
solver += y[j] - y[i] >=(N+1)*x[i,j] - N
solver.optimize() #solves the problem

prints the solution

if solver.num_solutions: #ifa solution was found

best_route = [startstop] #stores the best route

curr_loc = startstop # the currently visited location

while True:
for next_loc in location_ids:# for every possible next location

if x[curr_loc,next_loc]l.x == 1: #ifxvalue for the curr_loc->next_loc transition is 1
. best_route.append(next_loc) #appends the next location to the route
00et%. .1 : e 6urr_loc=next_loc #visits the next location
00, °,°.°, o ®Preak

if next_loc == startstop: #exits if route returns to the startstop

pul il ajljg break

Mi;ﬁ'istrg Jeturn, bgst_route, solver. objective_value #returns the route and its total distance

2023 - 1445

The following code generates 100 TSP instances with 8 locations and a distance range between 5 and
20. It also uses the brute-force and the MIP solver to solve each instance and reports the percentage
for which the two methods reported routes with the same distance.

same_count = 0
for i in range(100):
dist_matrix, location_ids, startstop=create_problem_instance(8, [5,20])
routel, distl = brute_force_solver(dist_matrix, location_ids, startstop)
route2, dist2 = MIP_solver(dist_matrix, location_ids, startstop)
counts how many times the two solvers produce the same total distance
if distl == dist2:
same_count += 1
print(same_count / 100)

1.0

The results verify that the MIP solver reports the optimal solution for 100% of the problem instances.
The following code also demonstrates the speed of the MIP solver, by using it to solve 100 larger
instances with 20 locations.

import time

start = time.time() # starts timer

for i in range(100):
dist_matrix, location_ids, startstop = create_problem_instance(20, [5,20])
route, dist = MIP_solver(dist_matrix, location_ids, startstop)

stop=time.time() #stops timer
print(stop - start) #printsthe elapsed time in seconds

188.90074133872986

Even though the exact execution time will depend on the processing power of the machine that you
use to run this Jupyter notebook, it should generally take just a few minutes to compute the solution
for all 100 datasets.

This is quite impressive, considering that the number of possible routes for each of the 100 instances
translates to 19! = 121,645,100,000,000,000 different routes. Such a large number of routes is far
beyond the capabilities of the brute-force approach. However, by efficiently searching this massive
space of all possible solutions, the MIP solver can find the optimal route quickly.

Despite its advantages, mathematical programming also has its limitations. It requires a solid
bwg;standlng gfewathematical modeling and may not be suitable for complex problems where the
Qmectlye ftmetibﬁ and constraints are hard to express via mathematical formulas. In addition, even
though mathématical programming is much faster than the brute-force approach, it might still be too
J%rge datasets. In such cases, the heuristic approach demonstrated in the previous two lessons

pr (s a much faster alternative.
Ministry of E(JULU[IOI‘I

2023 - 1445

Explain how mathematical programming can be used to solve complex optimization
problems.

What are the advantages and disadvantages of the MIP approach for solving optimization
problems?

pul il a)ljig

Ministry of Education
2023 - 1445
294

e Analyze two optimization problems that can be solved with mathematical programming
and outline their state and decision variables.

0 List three different optimization problems from the family of routing problems.

[) (X)

00,e,°: %, 000

Oo..'.'.°..oo
Pl =il eyl
Ministry of Education
2023 - 1445

295

e You want to create a brute-force solver function for the Traveling Salesman Problem.
Complete the following code so that the solver function returns the best route and
best total distance.

from itertools import permutations

def brute_force_solver(dist_matrix, location_ids, startstop):

excludes the startstop location

location_ids = - { }

generates all possible routes (location permutations)

all_routes = ()

best_distance = float('inf') #initializes to the highest possible number

best_route = None # best route so far, initialized to None

for route in all_routes: #foreach route

distance = 0 #total distance in this route

curr_loc = # current location

for next_loc in route:
distance += [curr_loc, next_loc] #adds the distance of this step
curr_loc = # goes the next location

distance += 7[curr_loc, 1 #goes to

back to the startstop location
if distance < best_distance: #ifthis route has lower distance than the best route
best_distance = distance
best_route = route
Qoo Y X J
0ee’e. ®leee

oo, .#°adas fh..e-SRJﬁstop location at the beginning and end of the best route and returns

| il éﬁ?g’rn [startstop] + list(best_route) + [startstop], best_distance

Ministry of Education
2023 - 1445

e You want to create an MIP solver for the Traveling Salesman Problem. Complete the
following code so that the decision variables and connectivity constraints are selected
correctly.

def MIP_solver(dist_matrix, location_ids, startstop):

solver = () #creates a solver

solver.verbose = 0 #setting this to 1 will print info on the progress of the solver
creates every transition from every location to every other location

transitions = list((location_ids, location_ids))
N = len(location_ids) #number of locations

creates an empty square matrix full of 'None' values

x = numpy.full((N, N), None)

adds binary decision variables indicating if transition (i->j) is included in the route

for i, j in transitions:

x[i, j] = solver. (var_type=)

objective function: minimizes the distance

solver.objective = (xsum(dist_matrix[i, j] = x[i][j] for

i, j in transitions))

Arrive/Depart Constraints
for i in location_ids:

solver += xsum(for j in location_ids - {i}) == 1

solver += xsum(for j in location_ids - {i}) == 1

Adds a binary decision variable for each location

y = [solver. (var_type=) for i in
location_ids]

Adds connectivity constraints for transitions that do not include the startstop
for (i, j) in product(location_ids - {startstop}, location_ids -
{startstop}):
oo, i.f. @e'® j: #ignores transitions from a location to itself

$e°:.‘golver += y[31 - y[i] >= (N + 1) = x[i, j] - N

pul o ill a)ljejver. () #solves the problem

Ministry of Education
2023 - 1445

Suppose you work for a delivery company, and your manager has
asked you to find the most efficient route to deliver packages to
multiple locations in the city.

The goal is to find the shortest possible route that visits each location
exactly once and returns to the starting location. This problem is an
instance of the Traveling Salesman Problem (TSP).

You will create various instances of the TSP problem with 3 to 12
locations. Each instance will have a distance range of 5 to 20 units.

Create a plot function with the matplotlib library that graphs the
most efficient route that is outputted by the solver. Use this function
only for the instance with 12 locations.

Create a plot function with the matplotlib library that plots the
performance of both the brute-force and MIP solvers in comparison
with each other.

Write a brief report discussing your findings on the efficiency and
performance of both solvers, and the benefits and drawbacks of
each one.

pul il a)jljg

Ministry of Education

2023 - 1445

e

Brute-Force Solver
Constraint Programming

Greedy Heuristic
Algorithm

Greedy Solver

Heuristic Algorithm

Knapsack Problem
Linear Programming
Local Search

Mathematical
Programming

Integer Programming

Optimization Problem
Quadratic Programming
Scheduling Problem
Team Formation

Traveling Salesman
Problem

Ministry of Education

299

6. Al and Society

In this unit, you will analyze how Al ethics influence and guide the
development of sophisticated Al systems. You will evaluate how large
scale Al systems impact societies and the environment and how they
are regulated for ethical and sustainable use. Then, you will use Webots
simulator to program a drone for autonomous movement and patrolling
of an area with image analysis.

Learning Objectives
In this unit, you will learn to:
> Identify what Al ethics is.

> Interpret how bias and fairness impact the ethical use of
Al systems.

> Evaluate how the transparency and explainability problem
in Al can be solved.

> Analyze how large scale Al systems influence society and
how they are regulated.

> Program a drone device for autonomous movement.

> Develop an image analysis system for the drone used to
patrol an area.

Tools
> \eonts
> OpenCV library

300

Link to digital lesson

Lesson1

Introduction to Al Ethics

www.ien.edu.sa

Overview of Al Ethics

As Al continues to advance, it has become increasingly important to consider

the ethical implications of this technology. As a citizen of the modern world, it Al Ethics

is important to understand the significance of Al ethics in developing and using Al ethics refers to the
responsible Al systems. principles, values, and

One of the main reasons Al ethics is important is that Al systems can potentially moral standards that guide
affect people's lives significantly. For example, Al algorithms can be used to Al systems' development,
make hiring and medical treatment decisions. If these algorithms are biased deployment and use.

or discriminatory, they can lead to unjust outcomes that harm individuals and
communities.

Real-World Examples of Ethical Concerns in Al
Discriminatory algorithms

There were cases where Al systems have been found to perpetuate biases and discriminate against
certain groups of people. For example, a study by the National Institute of Standards and Technology
found that facial recognition technology has higher error rates for people with darker skin tones,
which can lead to false identifications and wrongful arrests. Another example is the use of Al algorithms
in the criminal justice system, where studies have shown that these algorithms can be biased against
minorities and lead to harsher sentences.

Invasion of privacy

Al systems that collect and analyze data can threaten personal privacy. For
example, in 2018, a political consulting firm, had harvested data from millions
of Facebook users without their consent and used it to influence political
campaigns. This incident raised concerns about using Al and data analytics
to manipulate public opinion and infringe on individuals' privacy rights.

Autonomous weapons

The development of autonomous weapons, which can operate without
human intervention, has raised ethical concerns about using Al in warfare.
Critics argue that these weapons can make life-or-death decisions without
human oversight and can be programmed to target specific groups of people,
which could violate international humanitarian law and lead to civilian
casualties.

L 1Y YY) Job displacement

The increasing use of Al and automation in various industries has raised
concerns about job displacement and the impact on workers' livelihoods.
While Al can improve efficiency and productivity, it can also lead to job losses
and exacerbate income inequality, which can have negative social and
economic consequences.

Ministry ofE
2023 - 1445

Bias and Fairness in Al

Bias can occur in Al systems when the data used to train the algorithm is
unrepresentative or contains underlying prejudices. Bias in Al systems can
occur on any data that the system outputs represent, like products, opinions,
communities, and trends, among others.

An example of a biased algorithm is an automated hiring system that uses Al
to screen job candidates. Suppose the algorithm is trained on biased data,
such as historical hiring patterns that favor certain demographic groups. In
that case, it may perpetuate those biases and unfairly screen out qualified
candidates from the groups, ignoring categories that are not well represented
in the data set. For example, suppose the algorithm favors candidates who
attended elite universities or worked at prestigious companies. In that case,
it may disadvantage candidates who did not have access to those opportunities
or who come from less privileged backgrounds. This can lead to a lack of
diversity in the workplace and perpetuate systemic inequalities. Therefore,
it is important to develop and use Al hiring algorithms that are based on fair
and transparent criteria and do not perpetuate biases.

Fairnessin Al refers to how Al systems produce unbiased outcomes and treat
all individuals and groups fairly. Achieving Al fairness requires identifying and
addressing biases in the data, algorithms, and decision-making processes.
For example, one approach to achieving fairness in Al is to use a process called
"debiasing," where biased data is identified and removed or modified to
ensure that the algorithm produces more accurate and unbiased outcomes.

Table 6.1: Factors that contribute to biased Al

Al Bias

In the context of Al, bias
refers to the tendency of
machine learning algorithms
to produce outcomes that
systematically favor or
disfavor certain alternatives
or groups, leading to
inaccurate predictions and
potential discrimination
against certain products or
populations.

Biased training data

Al algorithms learn from the data they are trained on, so if the data is
biased or unrepresentative, the algorithm may produce biased outcomes.
For example, if an image recognition algorithm is trained on a dataset that
predominantly features lighter-skinned individuals, it may have difficulty
in recognizing individuals with darker skin tones accurately.

Lack of diversity in
the development
teams

the Al model.

If the development team is not diverse and does not represent a range of
cultural and technical varieties, they may not recognize the biases in the
data or the algorithm. A team that only consists of individuals from a
particular geographic region or culture leads to a lack of consideration for
other regions or cultures that may be represented in the data used to train

Lack of oversight and
...ascountatgll.tx.
°c, 000

The lack of oversight and accountability in the development and deployment
of Al systems can lead to the perpetuation of biases. Without adequate
oversight and accountability mechanisms from companies and governments,
testing for bias in Al systems may not be carried out and there may be no
recourse for individuals or communities harmed by biased outcomes.

.. kack f)f experience

=T drhéFiedge in the
Ministry of E&élggféﬂﬂnent team

Development teams lacking experience may not identify or address biases
indicators in the training data. A lack of knowledge in designing and testing
Al models for fairness may perpetuate existing biases.

2023 - 1445

Reducing Bias and Promoting Fairness in Al Systems
Diverse and representative data

This involves using data that reflects the diversity of the group it
represents. Additionally, it is important to regularly review and
update the data used to train Al systems to ensure that it remains
relevant and unbiased.

Debiasing techniques

Debiasing techniques involve identifying and removing biased
data from Al systems to improve accuracy and fairness. This can
include techniques such as oversampling, undersampling, and
data augmentation to ensure the Al system is exposed to various
data points.

Explainability and transparency

Making Al systems more transparent and explainable can help to
reduce bias by allowing users to understand how the system
makes decisions. This involves clarifying the decision-making
process and allowing users to explore and test the system's
outputs.

Human-in-the-loop design

Incorporating human-in-the-loop design into Al systems can help
to reduce bias by allowing humans to intervene and correct the
system's outputs when necessary. This involves designing Al

systems with a feedback loop enabling humans to review and
approve the system's decisions.

Ethical principles

Incorporating ethical principles, such as fairness, transparency,
and accountability, into the design and implementation of Al
systems, ensuring that they are developed and used ethically and
responsibly. This involves establishing clear ethical guidelines for
using Al systems and regularly reviewing and updating these
guidelines as necessary.

Regular monitoring and evaluation

Regularly monitoring and evaluating Al systems is essential for
identifying and correcting bias. This involves testing the system's
outputs and conducting regular audits to ensure it operates fairly
and accurately.

Evaluating user's feedback

User feedback can help identify bias in the system, as users are
often more aware of their own experience and can provide better
hﬂghts into Mal bias than Al algorithms can. For example,
usef's'cah p?a\m:e.feedback on how they perceive the Al system’s
performance or provide helpful suggestions for ways to improve

) L]
o ° .. [} ° ° [
o ©® :o. ° []
[} ° o
Oversampling

Oversampling in machine learning
is increasing a class's samples in a
dataset to improve the model's
accuracy. It is done by randomly
duplicating existing points from
the class or generating new points
from the same class.

Undersampling

Undersampling is the process of
reducing the size of the dataset by
deleting a subset of the larger
dataset to focus on the more
important data points. This is
particularly useful if the dataset
contains an imbalance of classes
or different data groups.

@
‘ {}@ : . .o:

Data Augmentation

Data augmentation is the process
of generating new training data
from existing data to enhance the
performance of machine learning
models. Examples include image
flipping, rotation, cropping, color
changing, affine transformation,

=1 | — IWFEyﬂ‘jﬁ‘ and make it less biased.

Ministry of Education

2023 - 1445

and noise addition.

The Problem of Moral Responsibility in Al

The problem of moral responsibility when using advanced Al systems
RROR is a complex and multifaceted issue that has attracted significant
B attention in recent years.

One of the key challenges with advanced Al systems is that they can

< . make decisions and take actions that can have significant positive

or negative consequences for individuals and society. However, who

DR == should be held morally responsible for these outcomes is not always

e clear.

One perspective is that the developers and designers of Al systems

should bear responsibility for any negative outcomes that result

= . == from their use. This view emphasizes the importance of ensuring

RROR - that Al systems are designed with ethical considerations and

s that developers are held accountable for any harm their
creations may cause.

o - Others argue that the responsibility for Al outcomes should

E f = be shared among broader stakeholders, including

£ = policymakers, regulators, and technology users. This
> view highlights the importance of ensuring that Al

systems are used in ways that align with ethical principles
and that the risks associated with their use are carefully
evaluated and managed.

i

L. 0D7)E . D Another view is that Al systems are moral agents
N responsible for their actions. This theory holds that

: advanced Al systems can have agency and
autonomy, making them more than tools and
S = requiring them to be accountable for their own
Hrie Ime acts, but there are various problems with this

. theory.
. Al systems can make judgments and act but
s are not moral agents for multiple reasons.
First, Al systems lack consciousness and
> s subjective experiences, which are essential
for moral agency.

Moral agency usually involves reflecting
on one's ideals and actions. Second,
people train Al systems to follow specified
rules and goals, which limits their moral
judgment. Al systems can replicate moral

ate n] € : decision-making but lack free will and
o personal autonomy.
U .
r Finally, Al system creators and deployers

are responsible for their acts. Thus, Al
systems can aid ethical decision-making
but are not moral agents.

Transparency and Explainability in Al and the

Black-Box Problem Black-Box System

The black-box problem in Al is the challenge of understanding how an A black-box system is one that does
Al-based system makes decisions or produces outputs. This can make not reveal its internal working

it difficult to trust, explain, or improve the system. Lack of openness processes to humans. An input is
and explainability might affect people's trust in the model. Medical fed and an output is produced
diagnosis and autonomous vehicle judgments can be especially without knowing how it works, as
challenging. Biases in machine learning models are another black box depicted in figure 6.1.

concern. The biases in the data these models are trained on can lead
to unfair or discriminating results.

Additionally, the accountability for decisions made by a black box
model can be difficult to determine. It can be challenging to hold
anyone responsible for those decisions, particularly with the need for
human oversight, such as in the case of autonomous weapons systems.
The lack of transparency in Al decision-making makes it challenging
to identify and fix problems with the model. It can be difficult to make
improvements and ensure it functions correctly without knowing how
the model makes its decisions. There are several strategies to
addressing the black box problem in Al.

One strategy is to use explainable Al techniques to make machine
learning models more transparent and interpretable. This can involve
techniques such as natural language explanations or visualizations to
aid in understanding the decision-making process. Another approach
is to use more interpretable machine learning models, such as decision
trees or linear regression. These models may be less complex and
easier to understand, but they may not be as powerful or accurate as
more complex models. Addressing the black box problem in Al is crucial
for building trust in machine learning models and ensuring they are
used ethically and fairly.

Figure 6.1: Black-Box System

Methods for Enhancing the Transparency and Explainability of Al Models

LIME

@ LIME (Local Interpretable Model-Agnostic Explanations), which you have used previously
| for NLP tasks, is a technique that generates local explanations for individual predictions
@ made by a model. LIME creates a simpler, interpretable model approximating the complex
black-box model's behavior around a specific prediction. This simpler model is then used
to explain how the model arrived at its decision for that particular prediction. The advantage
of LIME is that it provides human-readable explanations that non-technical stakeholders

can easily understand, even for complex models like deep neural networks.

SHAP

SHAP (S4lapley Additive exPlanations) is another method for explaining the output of
. m_aelﬂﬂélearnmg models. SHAP is based on the concept of Shapley values from game

-t'heory and assigns a value (or weight) for each feature's contribution to the prediction.
It SHAP can be used with any model, and it provides explanations in the form of feature
: DU import hich can help to identify which feat the most influential i
" Qutput -1 - portance scores, which can help to identify which features are the most influential in
Mml&rq of Education |

the model's output.

2023 - 1445

Another technique for improving Al explainability such as decision trees and decision rules, which
are interpretable models that can be easily visualized. Decision trees partition the feature space based
on the most informative feature and provide explicit rules to make decisions. Decision trees are
particularly useful when the data is tabular and there are a limited number of features. However,
these models are also limited as the interpretability of the generated decision tree decreases with
the tree size. For example, it is difficult to understand trees consisting of thousands of nodes and
hundreds of levels.

Finally, another approach uses techniques such as sensitivity analysis to help understand how input
changes or assumptions can impact the model's output. This approach can be particularly useful in
identifying the sources of uncertainty in the model and in understanding the model's limitations.

Value-Based Reasoning in Al Systems
The goal is to create Al systems more aligned with human values and

ethics, ensuring that they act in beneficial, fair, and responsible ways. Value-Based Reasoning

The first step in value-based reasoning involves understanding and Value-based reasoning in Al
representing ethical values within Al systems. These systems must systems refers to the process
be capable of interpreting and internalizing values or ethical guidelines by which artificial intelligence
provided by their human creators or stakeholders. This process may agents make decisions or
involve learning from examples, human feedback, or explicit rules. derive conclusions based on a
By clearly understanding these values, Al systems can better align predefined set of values,
their actions with the desired ethical principles. principles, or ethical

considerations.

Figure 6.2: Representation of Value-Based Reasoning

The second aspect of value-based reasoning focuses on evaluating decisions or actions based on
internalized values. Al systems must assess the potential outcomes of different decisions or actions
by considering each option's consequences, risks, and benefits. This evaluation process should consider
the underlying values the Al system has been designed to uphold, ensuring that it makes informed
and value-aligned choices.

Lastly, value-based reasoning requires Al systems to make decisions that align with established
values. After evaluating various options and their potential outcomes, the Al system should select
the decision or action that best reflects the ethical principles and goals it was designed to follow. By
nmkigg value-aligree® decisions, Al agents can act in ways consistent with the ethical guidelines set
bﬁ ﬁ\%i'r.crea:tals“ﬁramoting responsible and beneficial behavior. For example, Al systems are being
used in healthcare to assist with diagnosis and treatment decisions. These systems must be able to

f(BﬂPaut the ethical implications of different treatments, such as the potential side effects or the
Ci)rF‘rfg%zEJctu{JignquaIity of life, and make decisions prioritizing patient well-being. Another example is Al

C

Ministr
joek msgems used in finance to assist with investment decisions.

2023 -1

These systems must be able to reason about the ethical implications of different investments, such
as the impact on the environment or social welfare, and make decisions that align with the investor's
values.

Itis important to note that responsibility does not solely rely on the Al system, but rather a collaboration
between the Al and human experts. The Al system will assist in decision-making by summarizing the
case and presenting the tradeoffs to the user expert, who ultimately takes the final decision. This
ensures that the human expert retains control and is accountable for the final outcome, while also
benefiting from the insights and analysis provided by the Al system.

Al and Environmental Impact

The impact of Al on the environment and our relation to
the environment is complex and multifaceted.

Potential benefits

On the one hand, Al has the potential to help us better
understand and address environmental challenges, such as
climate change, pollution, and biodiversity loss. Al can help
us in analyzing vast amounts of data and predict the impact
of different human activities on the environment. It can
also help in designing more efficient and sustainable
systems, such as energy grids, agriculture, transportation
systems, and buildings.

Figure 6.4: Al analyzing large amounts of data

Potential risk or harm

However, there are also concerns about the environmental impact
of Al itself. The development and use of Al systems require significant
energy and resources, which can contribute to greenhouse gas
emissions and other environmental impacts. For example, training a
single Al model can require as much energy as several cars use in
their lifetimes. Additionally, producing electronic components in Al
systems can contribute to environmental pollution, such as using toxic
chemicals and generating electronic waste.

Moreover, Al can potentially change our relationship with the
environment in ways that are not always positive. For example, using

Figure 6.3: Al systems require
Alin agriculture may lead to more intensive and industrialized farming significant energy and resources

practices, negatively impacting soil health and biodiversity. Similarly,
the use of Al in transportation may lead to more reliance on cars and
other modes of transportation, which can contribute to air pollution
and habitat destruction.

Conclusion

Qverall the |mpact.ofAI on the environment and our relation to the
Omlufanmen’e Qemnds on how we develop and use Al systems. It is
Mpbr:tant 40-cofistder Al's potential environmental impacts and
develop and use Al systems in ways that prioritize sustainability,

P-'J—Q!.-HﬂUllnh‘ﬂ and the planet's health.

Ministry of Education
2023 - 1445

Regulatory Frameworks and Industry Standards

Regulatory frameworks and industry standards are critical in promoting ethical Al applications. Regulations
and standards can help ensure that organizations developing and using Al systems are accountable for their
actions. By setting clear expectations and consequences for non-compliance, regulations, and standards
can incentivize organizations to prioritize ethical considerations when developing and using Al systems.

Transparency

Regulations and standards can promote transparency in Al systems by requiring organizations to disclose
how their systems work and what data they use. This can help build trust with stakeholders and reduce
concerns about potential biases or discrimination in Al systems.

Risk assessment

The risk of unintended consequences or negative outcomes from using Al can also be reduced with appropriate
regulations and standards. By requiring organizations to conduct risk assessments. This means identifying
potential risks and hazards and implementing appropriate safeguards, regulations and standards can help
minimize potential harm to individuals and society.

Clear Al developing and deploying frameworks

Regulations and standards can also encourage innovation by providing a clear framework for developing
and using Al systems. Using regulations and standards to establish a level playing field and providing guidance
on ethical considerations, can help organizations develop and deploy Al systems in ways that are consistent
with ethical and social values.

Regulatory frameworks and industry standards are important in promoting ethical Al applications. By
providing clear guidance and incentives for organizations to prioritize ethical considerations, regulations
and standards, ensuring that Al systems are developed and used in ways that are aligned with social and
ethical values.

Sustainable Al Development in the Kingdom of Saudi Arabia <« %>
>
Al technologies and systems are expected to become a major disruptor in the §< aﬁi p¢
financial sectors of many countries and may significantly affect the job market. < E\w% >:
Itis predicted that in the coming years, about 70% of the routine work currently : :i g : >
<>

performed by workers will be fully automated. The Al industry is expected to
create 97 million new jobs and add 16 trillion US dollars to global GDP. s DAIA

The Saudi Data and Artificial Intelligence Authority (SDAIA) has developed (i asgeull digl
strategic goals for the Kingdom to use sustainable Al technologies for its eliuadlsillg ,
development. KSA will be a worldwide hub for Data & Al. They also hosted the Saudi Data & Al Authority
first Global Al summit in KSA, where global leaders and innovators can discuss
and shape Al's future for society's benefit. Another aim is to transform the
Kingdom's workforce by developing a local Data & Al talent supply. As Al is
transforming labor markets globally, most sectors need to adapt and integrate
Data & Al into education, professional training, and public knowledge. By doing
so, KSA can gain a competitive advantage in terms of employment, productivity,
affPimgQuatione @ ® ®

00 o o 000

THe"fm.anga-I s te Atlract companies and investors through flexible and stable regulatory frameworks

and incentives. Regulations will focus on developing policies and standards for Al, including ethical
=Yi =W\ ThE FEamework will promote and support ethical development of Al research and solutions while
Ministry griovidinigodata protection and privacy standards guidelines. This will provide stability and direction
2023 - 1forstakeholders operating in the Kingdom.

The Kingdom of Saudi Arabia plans to use Al systems and technologies
as the base of its NEOM and THE LINE megacity projects. The NEOM
project is a futuristic city that will be powered by clean energy, have
advanced transportation systems, and provide high-tech services.
It will be a platform for cutting-edge technologies, including Al, and
will use smart city solutions to optimize energy consumption, traffic
management, and other urban services. Al systems will be used to
enhance the quality of life for residents and to improve sustainability.

Similarly, THE LINE will be a linear, zero-carbon city built with Al
technologies. THE LINE will use Al systems to automate its infrastructure

and transportation systems, creating a seamless, efficient experience for
residents. The city will be powered by clean energy and will prioritize]
sustainable living. Al-powered systems will be used to monitor and [o

optimize energy usage, traffic flow, and other urban services. Overall,

Al systems and technologies will play a crucial role in developing these

megacity projects, enabling them to become sustainable, efficient, and E
innovative cities of the future.

International Al Ethics Guidelines

As illustrated in the table below, UNESCO has developed a guideline document detailing the values
and principles with which new Al systems and technologies should be developed and maintained.

Table 6.2: Values and principles of Al ethics

Values Principles

® Respect, protection and promotion of human e Proportionality and doing no harm
dignity, human rights and fundamental « Safety and security

freedoms

) o e Fairness and non-discrimination

e Environment and ecosystem flourishing

. e Sustainability
¢ Ensuring diversity and inclusiveness

S e Privacy
e Living in harmony and peace
e Human oversight and determination
e Transparency and explainability

e Responsibility and accountability

e Awareness and literacy

oo, Y 3 o Multi-stakeholder and adaptive governance
©0e,° %, 000 .
e °,°. % o0 and collaboration

1l a)ljg
Ministry of Education
2023 - 1445

Read the sentences and tick v/ True or False. True False

1. Al ethics is only concerned with the development of Al systems.

2. Al and automation have the potential to lead to job displacement.

3. A lack of diversity in Al development teams can lead to biases being
overlooked or unaddressed.

4. Incorporating ethical principles into Al systems can help ensure their
responsible development and use.

5. Human-in-the-loop design requires that Al systems work without any
human intervention.

6. The black box problem in Al refers to the difficulty in understanding how Al
algorithms arrive at their decisions or predictions.

7. Al models can be designed to adapt their decisions or outcomes according
to established ethical values.

8. The widespread use of Al only has positive implications on the
environment.

a Describe how Al and automation might lead to job displacement.

®oe, e00®
00,e,°: %, 000
Pl a)ljg

Ministrg oF Education

2023 - 1445

e Outline how biased training data can contribute to biased Al outcomes.

e Define the black-box problem in Al systems.

e Compare how Al systems can have both positive and negative impact on the environment.

(X o0
00e,°:. «°,000
00, *.°, % o0o0

— 1l Aallia

=11 —HEHHG

Ministry of Education
2023 - 1445
31

Lesson 2

Applications of Robotics|

Revolutionizing the World with Robotics

Robotics is a rapidly growing field that is revolutionizing the way people work,
live, and interact with their environment. It has a wide range of applications,
from industrial manufacturing to space exploration, medical procedures to
home cleaning, and entertainment to military missions.

A key advantage of robotics is their ability to perform repetitive tasks with a
high degree of accuracy and precision. Robots can work tirelessly and without
error, making them ideal for tasks that are too dangerous or difficult for humans
to perform. For example, in the manufacturing industry, robots are used to
perform tasks such as welding, painting, and assembling products. In the
medical field, robots are used to perform surgeries with greater precision, and
in space exploration, robots are used to explore and study distant planets.

Robotics and Simulators

Two significant challenges in robotics include the cost and time required
to build and test physical robots; this is where simulators come in.
Simulators are widely used in robotics research, education, and industry, as
they provide a cost-effective and safe way to test and experiment with robots.

Simulators allow developers to create virtual environments that mimic
real-world scenarios, allowing them to test their robots' abilities and
performance in a variety of situations. They can simulate different
weather conditions, terrains, and obstacles that robots may encounter
in the real world. Simulators can also simulate the interactions between
multiple robots and between robots and humans, allowing developers to
study and refine the ways in which robots interact with their environment.

2023 - 1445 Figure 6.5: Simulation of industrial arms
312

Link to digital lesson

www.ien.edu.sa

Robotics

Robotics is the study of
robots, which are machines
that can perform a variety
of tasks autonomously,
semi-autonomously, or
under human control.

Simulator

Software that allows
developers to test and
refine their robot designs
and algorithms in a virtual
world before building
physical robots.

Another advantage of simulators is that they allow developers to easily modify and test different
robot designs and algorithms without the need for expensive hardware. This allows for faster iteration
and experimentation, leading to faster development cycles and more efficient designs.

In general, robotics is a rapidly growing field with a wide range of applications and simulators which
play a crucial role in robotics development by allowing developers to test and refine their robot designs
and algorithms in a safe, cost-effective, and efficient way. As technology continues to advance, the
applications of robotics and the use of simulators are only expected to grow, paving the way for a
more automated and interconnected world.

Webots is a powerful software tool that can be used to simulate robots and their
environments and an excellent platform for introduction to the world of robotics
and artificial intelligence Al. With Webots, students can design, simulate, and test
their own robotic systems and algorithms without the need for expensive hardware.

Using Webots in Al is particularly useful because it allows students to experiment
with machine learning algorithms and test their performance in a simulated
environment. By creating virtual robots and environments, students can explore the
capabilities and limitations of Al, and learn how to program intelligent systems that
can make decisions based on real-time data.

You can download Webots from this link:
https://github.com/cyberbotics/webots/releases/download/R2023a/webots-R2023a_setup.exe

Webots-

robot simulation

& Ci\Program Fil

DJI Mavic 2 PRO demo

ic_2_prowibt (mavic) - Webots R2023a

File Edit View Simulation Build Overlays Tools Help

o®

- oo I«" I_P

e

@ © ©® © @& B Q
IMPORTABLE EXTERNPROTO
> @ Worldinfo

@ Viewpoint

@ TexturedBackground

@ TexturedBackgroundLight
@ Floor "floor"

@ Road "road"

@ Windmill "windmill"

@ Windmill "windmill(1)"

@ Windmill "windmill(2)"

@ Windmill "windmill(3)"

@ SmallManor “small manor”
@ SquareManhole "manhole”
@ CardboardBox "cardboard box"
@ TeslaModel3Simple "vehicle"
@ Pine "pine tree”

@ Pine "pine tree(1)"

@ Pine "pine tree(3)"

@ Pine "pine tree(4)"

@ Pine "pine tree(5)"

@ Pine "pine tree(6)"

@ Pine "pine tree(2)"

@ Forest

> @ Mavic2Pro "Mavic 2 PRO"

Pl il ajlig

B

o <
1

' | 36 #include <webots/inertial _unit.h>

" 1142 #define CLAMP(value, low, high) (

= (m) X

o0e®

fo I

.ontrollers\mavic2pro\mavic2pro.c

Dw@ " BQ

mavic2pro.c 8

«J
2 * Copyright 1996-2022 Cyberbotic

W

* Licensed under the Apache Lice
* you may not use this file exce
* You may obtain a copy of the L

http://www.apache.org/lice

* % %

* Unless required by applicable
* distributed under the License
E * WITHOUT WARRANTIES OR CONDITIO
3 * See the License for the specif
* limitations under the License.
4

]
:

.
Description: Simplistic drone
- Stabilize the robot using th
- Use PID technique to stabili
- Use a cubic function applied
- Stabilize the camera.

- Control the robot using the

*
N

4

2‘\

Zﬁ #include <math.h>
27 #include <stdio.h>

28 #include <stdlib.h>
2
30 #include <webots/robot.h>

33 #include <webots/canera.h>
33 #include <webots/compass.h>
34 #include <webots/gps.h>
sj‘ #include <webots/gyro.h>

31‘ #include <webots/keyboard.h>
33 #include <webots/led.h>
39

#include <webots/motor.h>

1 sdefine STN(X) ((X) >) - ((x)

P ek P L
MII‘l:uLJUr Caucaton

2023 - 1445

Figure 6.6: A Webots drone project

313

Area Surveillance

During this lesson and the next one, you will use Webots to
run a simulation of a drone patrolling over a house and you Waypoint

will upgrade it to detect human silhouettes to act as surveillance. Specific geographical location
The simulation consists of a drone taking off from rest on the in 3D space that a drone is
ground and commencing a patrol around the house. In the next programmed to fly to and pass
lesson, you will also be adding computer vision capabilities to through. They are used to

the drone using its camera with the OpenCV library. This will create predefined flight paths
make it possible to analyze images taken by the camera. for the drone to follow and can
The drone is controlled through a Python script; it is responsible be set using GPS coordinates
for controlling all of the drone's devices, including the motors or other location-based

of the propellers, camera, GPS (Global Positioning System), etc. systems.

It also contains the code to synchronize all the motors to move
the drone to various waypoints and stabilize it in the air.

Starting with Webots

In this lesson, you will be introduced to Webots in order to become familiar with its environment.
Webots simulation consists of two components:

¢ The definition of one or more robots and their environments in a Webots world file.
¢ One or more controller programs for the mentioned robots.

A Webots world is a 3D description of a robot's attributes. Every object is defined, including its location,
orientation, geometry, appearance (such as color or brightness), physical characteristics, type, and
more. Objects can contain other objects in the hierarchical systems that make up worlds. A robot
might, for instance, have two wheels, a distance sensor, a joint that houses a camera, etc. A world
file just specifies the name of the controller that is necessary for each robot; it does not contain the
controller code for the robots. Worlds are saved in ".wbt" files. Each Webots project has a "worlds"
subdirectory where the ".wbt" files are stored.

A Webots controller is a computer program that controls a robot specified in a world file. Any of the
programming languages that Webots supports for controller development, such as C++ and Java, can
be used, however for this project, you will use Python (.py). Webots launches each of the given
controllers as a separate process when a simulation begins, and it associates the controller processes
with the simulated robots. Although several robots can share the same controller code, each robot
will run its own process. Each controller's source and binary files are stored together in a controller
directory. Each Webots project contains a controller directory under the "controllers" subdirectory.

The Webots Environment

When you open the program you will notice several fields and windows. The key components of the Webots
interface include:

Menu bar: Located at the top of the interface, the menu bar provides access to various commands and
optlonsjgr worklng wnlg;he simulation, such as creating or importing a robot model, configuring the
S|mulat|on emﬁronxﬁemt qaﬂd running simulations.

Toolbar The tootbar |s a coIIectlon of buttons located under the menu bar that provides quick access to
frequently ps (J'l nctions, such as adding objects to the scene, starting and stopping the simulation, and

Mlﬂlanéorg%(SULU amera V|eW

2023 - 1445

& Ci\Program Fil

Scene tree: The scene tree is a hierarchical representation of the objects in the simulated environment.
It allows users to easily navigate and manipulate the scene, such as adding or deleting objects, changing
object properties, and grouping objects for easier management.

Field editor: The field editor is a graphical interface for editing the properties of objects in the simulated
environment. Users can use it to adjust object parameters such as position, orientation, size, material,
and physical properties.

3D window: The 3D window is the main view of the simulated environment, showing the objects and
their interactions in a 3D space. Users can navigate the 3D window using various camera controls,
such as pan, zoom, and rotate.

Text editor: The text editor is a tool for editing source code or other text-based files used in the
simulation. It provides syntax highlighting and other helpful features for writing and debugging code,
such as auto-completion and error highlighting.

Console: The console is a window that displays text-based output from the simulation, including error
messages and debugging information. It is useful for troubleshooting problems that may arise during
the simulation.

Menu bar Toolbar Text editor

ity.wbt (vehicles) - Webots R2023a - o

|File Edit View Simulation Build Overlays Tools Helpl

City o® Il ;_vehi s_vehicle.c
[06 @ © @ B O cnum o KM P > » O © B < <« D@t B0 &
|MPORTABLE EXTERNPROTO B 1 | ‘ autonomous_vehicle.c
[49
> @ StraightRoadSegment “road(5)" i 5@ // enabe various 'fedtures’

> @ CurvedRoadSegment "road(6)"

> @ StraightRoadSegment "road(7)"

> @ Roadintersection "road intersection(1)"

> @ StraightRoadSegment “road(8)"

> @ CurvedRoadSegment "road(9)"

> @ StraightRoadSegment "road(10)"

> @ CurvedRoadSegment "road(11)"

> @ StraightRoadSegment "road(12)" °

> @ CurvedRoadSegment "road(13)"

> @ StraightRoadSegment "road(14)"

> @ CurvedRoadSegment "road(15)"

> |@ BmwX5 “vehicle”

> @ GenericTrafficLight "generic traffic light"

> @ CrossRoadsTrafficLight "cross road traffic light"
> @ DEF STONES Solid

> @ Buildingl

51 bool enable_collisiof avoidance = false;
52 bool enable_display = false;
53 bool has_gps = false;

54 bool has_camera = false;

55

56 // camera

57 WbDeviceTag camera;

58 int camera_width = -1;

59 int camera_height = -1;

60 double camera_fov = -1.0;
61

62 // SICK Laser

63 WhDeviceTag sick;

64 int sick_width = -1;

65 double sick_range = -1.0;
66 double sick_fov = -1.0;

67

> @ CommercialBuilding "commercial building"

[

JnderC ion "building under e // speedometer

69 WbDeviceTag display;

70 int display_width = 0;

Node ~Mass Position Velocity

mass:

density:

CoM: relative | 1.2975 0 0.1

—w 71 int display_height = 0;

Selection: BmwX5 (Robot) 72 WbImageRef speedometer_image = NULL;

73

74 // GPS

excluding descendants Jjj Vovevicetag goss
76 double gps_coords[3]

=
A
(
2000 kg 77 double gps_speed = 0.0;
. . 78
202769 kg/m*3 — Field editor = | —
1 8@ double speed = 0.0;

81 double steering_angle = 0.0;
82 int manual_steering = 0;

{0.0, 0.0, 0.0};

112507 0 846.89 83 bool autodrive = true;
Inertia matrix: 0 4473.54 0 i]
3 D WIndOW 85 void print_help() {
846.89 0 4346.1 86 printf("You can drive this car!\n");

X

o0@®

87 printf("Select the 3D window and then use tk

Console - All

INFO: autonomous_vehicle: Starting controller: "C:\Program Files\Webots\projects\vehicles\controllers\autonomous_vehicle\autonomous_vehicle.exe"”
INFO: generic_traffic_light: Starting controller: "C:\Program Files\Webots\projects\objects\traffic\controllers\generic_traffic_light\generic_traffic_light.exe" 10 10 r
INFO: crossroads_traffic_lights: Starting controller: "C:\Program Files\Webots\projects\objects\traffic\controllers\crossroads_traffic_lights\crossroads_traffic_lights.exe"

setting spee:

B0ey e0®

You can drivegthig car'
Select the 3nigm’am therPuge fhe.cmso, kgs.to:
[]
L]

[LerT)/ [RIGHT® - Bteq °

[uP]/[DOWN]

o
- accelerate/slow dawn

o0@®

nul—r
¥ e

2023 - 1445

Ministry of Educalfon Figure 6.7: The Webots window
Console

First, you have to install the necessary libraries you will use in your
project. To install the OpenCV library via PyCharm:

To install OpenCV:

> On PyCharm window, click on Packages. (1]
> Type opencv to the search bar. (2]
> Select opencv-python © and click Install. @

> A message will inform you that the installation is done. (5

E File Edit View Navigate Code Refactor Run Tools VCS Window

pythonProject) [main.py L~ & main v

o
@ main.py

e IRt

Packages installed successtully
Installed packages: "openov-python’

Python Packages

opencv @

v Installed (0 found)
opencv-pyth... latest ¥

v PyPI (78 found)
opencv-python @
opencv-python-headless downloads 241M

opencv-contrib-python

opencv-contrib-python-headless Opencv on Wheels
opencve

opencv-pg

Pre-built CPU-only OpenCV packages for Python.

opencvFPS

Check the manual build section if you wish to compile the bindings from source to enable additional modules
such as CUDA.

J opency-iav

opencv-log

BELEATIEL Installation and Usage

pencvzone
pencv-cam2 @ 1. If you have previous/other manually installed (= not installed via pip) version of OpenCV installed (e.g.

£ Python Packages =T sole roblems B Terminal €9 Services

IC shared indexes for Python package "openpyxl= 6 ki 6 10 minutes ago) 1:1 CRLF UTF-8 4spaces Python 3.7 (pythonProject) T

c00® Figure 6.8: Installing OpenCV

Likewise, you can install the Pillow

pul il a)jljg library, by searching for "pillow".

Ministry of Education

2023 - 1445

Let's take a look at the project! First you will have to find and load the Webots world file:

To open a Webots world:

> Click File > Open World... from the Menu bar. (1]

> Find the drone_world.wbt file in the worlds
directory Oand open it. (3]

& C\Program Files\Webots\projects\vehicles\worlds\city.wbt (vehicles) - Webots R2023a

File Edit View Simulation Build Overlays Tools Help

New »
Open World... bhift+0
=iice : Q om0 -oox KPP B» O ® E < <
Open Recent World 4
Open Sample World...
Save World Ctrl+Shift+S
Save World As...
Q Reload World Ctrl+Shift+R
m Reset Simulation Ctrl+Shift+T
() New TextFile Ctrl+N
@@ Open TextFile... Ctrl+0
Save Text File Ctrl+S
B} Save TextFile As...
Save All Text Files
O Revert Text File Ctrl+R
Print Preview...
Prin @ Open World File X
P
§® Take Screenshot.
B Make Movi <« v A > ThisPC > Documents > Al2_U3_Drone > worlds v) £ Search worlds
ake Movie...
< Share.. Organize ¥ New folder = v [@ o
Exit Name ” Date modified Size
S ———

> @ CurvedRoadSt
> @ StraightRoadS
> @ CurvedRoadSt

5& Quick access

ﬁ drone_world.wbt

 Creative Cloud Files

= This PC
> @ StraightRoadS — —
> @ CurvedRoadS{ g Network
> @ BmwxX5 "vehiq
> @ GenericTraffic|
LY 'Y . e00®

30/3/2023 11:35

WBT File

5KB

(=
° File name: | drone_world.wbt

), (*.wbt *.WBT) v

Ul ill a)ljg

Ministry of Education
2023 - 1445

Figure 6.9: Opening a Webots world

Next open the Python script file that will be used to control the drone:

To open a controller script:

> Click File > Open Text File... from the Menu bar. (1]

> Find the drone_controller.py file in the controllers,
drone_controller directory @ and open it. (3]

& C:\Program Files\Webots\projects\vehicles\worlds\city.wbt (vehicles) - Webots R2023a
File Edit View Simulation Build Overlays Tools Help

New »
W Open World... Ctrl+Shift+O O SO - G0 I« » > » @ ® E <
Open Recent World 4
Open Sample World...
Save World Ctrl+Shift+S
Save World As...
Q Reload World Ctrl+Shift+R
I« Reset Simulation Ctrl+Shift+T
(D New Text File Ctrl+N
& Open TextFile... 0+o
Save Text File wtrl+S
B) Save TextFile As...

Save All Text File @ Open File... X

o RevertTextFlle. “— v A > ThisPC > Documents > Al2_U3_Drone > controllers > drone_controller v o A Search drone_controller

Print Preview... %
Print.: Organize v New folder o 8~ [@ o

§® Take Screenshot, s % Quick access

8 Make Movie...
Share > o Creative Cloud Files |

Exit > E ThisPC
R e drone_controller. haarcascade_full
> @ CurvedRoadS > & Network py body.xml

> @ StraightRoad$

> @ CurvedRoadS| — T
> @ StraightRoads File name: | drone_controller.py v| lAII) y V]

Figure 6.10: Opening a Webots controller script

Object Position and Rotation

X, Y, and Z are three-dimensional coordinates used to represent the position of an object in space. X represents
the horizontal axis, Y represents the vertical axis, and Z represents the depth axis. They are similar to the
real world coordinates of latitude, longitude and altitude, used to describe a location on Earth.

Pitch, roll, and yaw are rotational orientations that can be used to describe the movement of an object
relative to a reference frame, as shown in figure 6.11. Pitch is the rotation of an object around its X-axis,
whxh tilts the olyeﬁ up or down relative to a horizontal plane. Roll is the rotation of an object around its
Y%f’ w}nqhglts'tﬂéobject sideways or from side to side. Yaw is the rotation of an object around its Z-axis,
WhICh turns thé obJect left or right relative to a reference frame.

p_._]_dgpﬁ r,t_-hese six values (X, Y, Z, pitch, roll, and yaw) can be used to describe the position and orientation
Ministry &fﬁ%fh%‘d%%t in three-dimensional space. They are commonly used in robotics, navigation systems, and other
2023 - 1ngnglcatlons that require precise positioning and control.

Drone Devices

The drone is equipped with several sensors,
allowing it to collect input from its environment.
getDevice() and enable() are functions provided by
the simulator to interface with various sensors and
actuators of a simulated robot.

The getDevice() function is used to get readings
from a device, such as a sensor or an actuator, from
the Webots robot model. It takes a string argument
that specifies the name of the device to be accessed.

The enable() function is used to activate a device

so that it can start providing data or performing an m

action.

Figure 6.11: Rotational axes

The IMU (Inertial Measurement Unit) can measure the drone's linear

acceleration and angular velocity; it measures forces such as gravity, in
addition to the rotational forces acting on the drone. It can provide
[information about the drone's attitude (pitch, roll, and yaw), which is
critical for stabilization and control.

The GPS (Global Positioning System) is a satellite-based navigation system
that provides precise location information to the drone. GPS enables the
drone to know its current position, altitude, and velocity relative to the
earth. This information is important for drone navigation and control.

Sensors are devices that detect physical quantities or environmental
conditions and measure it, and convert them into an electrical signal
for monitoring or control.

Actuators are devices that convert electrical signals into mechanical
motion to perform a specific action or task.

In contrast to linear speed, which measures the distance traveled in
unit time, angular speed is a measure of the change in the central
angle of a rotating object with respect to time. It is usually measured
in radians per second (rad/s) or degrees per second (°/s).

Figure 6712: Drone with
pJJ_L'I'.“ églhj;qs and camera
Ministry of Education
2023 - 1445

319

The gyroscope is a sensor that measures angular velocity, or the rate of rotation around a specific
axis. The gyroscope is especially useful in detecting and correcting small changes in the drone's
orientation, which is important for maintaining stability and control during flight.

The drone's camera will be used to capture images during flight. It can be mounted on the drone and
by adjusting the camera pitch angle with the setPosition() function, the drone can capture images
from different perspectives and angles. In this project, the position is set to 0.7, which is about 45
degrees looking downwards.

Propellers

The drone's four propeller devices are actuators that
control the rotational speed and direction of the quadcopter.
Quadcopters are drones that are equipped with four rotors,
with two rotors rotating clockwise and the other two
rotating counterclockwise. The rotation of these rotors
generates lift and allows the drone to take off and maneuver
in the air. Just like the rest of the devices, the motors are
retrieved and set into position but the setVelocity() function
is also used to set an initial velocity to the propellers.

Figure 6.13: Four propeller drone device

Moving to a Target

To move from one location to the other, the drone uses the move_to_target() function; it contains
the control logic. It takes a list of coordinates as argument, in the form of pairs [x, y], to be used as
waypoints.

At first, it checks if the target position has been initialized, and if not, sets it to the first waypoint.
Then, it checks if the drone has reached the target position with a precision of target_precision and
if so, the function proceeds to the next target waypoint.

The angle between the current position of the drone and its target position has to be computed, in
order to know how sharp it has to turn in the next step. This value is also normalized to the range of
[-7, z].

Next, it computes the yaw and pitch disturbances required to turn the drone towards the target
waypoint and adjust the drone's pitch angle, respectively.

Motor Calculations

Lastly, the velocity that has to be set to the motors must be calculated. This is done by initially reading
the sensor values: the roll, pitch and yaw from the IMU, and getting values of the x, y and z positions
from the GPS while getting values of the roll and pitch accelerations from the gyroscope.

The various constants defined early in the code are used to make calculations and adjustments in
conjunction with the sensor inputs and finally the correct thrust is set.

INFORMATION

[} [}
9 : o, Ey coﬁtrdlg'ag the speed and direction of these four propellers, the quadcopter can move in any
direction and maintain stable flight. For example, by increasing the speed of the two rotors on one side

| .1, .and decreasing the speed of the other two rotors, the drone can tilt and move in a specific direction.
Nl — 1
J)

Ministry of Education
2023 - 1445

from controller import Robot

import numpy as np #used for mathematic operations 1
import os #used for folder creation
import cv2 #used forimage manipulation and human detection The controller library
from PIL import Image # used forimage object creation contains the Robot class,
from datetime import datetime # used for date and time

whose methods will be

auxiliary function used for calculations used to control the drone.
def clamp(value, value_min, value_max):
return min(max(value, value_min), value_max)

Imports of libraries needed
for calculations and processing

class Mavic (Robot):

constants of the drone used for flight

thrust for the drone to lift

K_VERTICAL_THRUST = 68.5

vertical offset the drone uses as targets for stabilization
K_VERTICAL_OFFSET = 0.6

Constants found

K_VERTICAL_P = 3.0 # P constant of the vertical PID o)
K_ROLL_P = 50.0 # P constant of the roll PID empirically used in
K_PITCH_P = 30.0 # P constant of the pitch PID calculations for flight

and stabilization
MAX_YAW_DISTURBANCE = 0.4

MAX_PITCH_DISTURBANCE = -1
precision between the target position and the drone position in meters
target_precision = 0.5

def init_ (self):
initializes the drone and sets the time interval between updates of the simulation
Robot.__init__(self)
self.time_step = int(self.getBasicTimeStep())

gets and enables devices
self.camera = self.getDevice("camera"
self.camera.enable(self.time_step)

self.imu = self.getDevice("inertial unit")
self.imu.enable(self.time_step)

self.gps = self.getDevice("gps")
self.gps.enable(self.time_step)

self.gyro = self.getDevice("gyro")
self.gyro.enable(self.time_step)

self.camera_pitch_motor = self.getDevice("camera pitch")
self.camera_pitch_motor.setPosition(0.7)

self.front_left_motor = self.getDevice("front left propeller")
self.front_right_motor = self.getDevice("front right propeller")
self.rear_left_motor = self.getDevice("rear left propeller")
:::Gelf.r.eag :ght_motor = self.getDevice("rear right propeller")
P .moﬁor;'s- *, leself.front_left_motor, self.front_right_motor,
° ¢« ° self.rear_left_motor, self.rear_right_motor]
.. far motor in motors: # mass initialization of the four motors

Pl ajljgnetor. setposition(Float(' inf'))

Ministry of Educationmotor.setVelocity(1)
2023 - 1445

self.current_pose = 6 *= [0] #X, Y, Z yaw, pitch, roll
self.target_position = [0, 0, 0]

(Initialization of the drone's
self.target_index = 0 L position (x, y, z) and

self.target_altitude = 0 rotation (roll, pitch, yaw)

def move_to_target(self, waypoints):

Moves the drone to the given coordinates

Parameters:

waypoints (list): list of X,Y coordinates

Returns:

yaw_disturbance (float): yaw disturbance (negative value to go on the right)
pitch_disturbance (float): pitch disturbance (negative value to go forward)

if self.target_position[0:2] == [0, 0]: #initialization
self.target_position[0:2] = waypoints[0]

if the drone is at the position with a precision of target_precision
if all([abs(x1l - x2) < self.target_precision for (x1, x2)
in zip(self.target_position, self.current_pose[0:2])]):

self.target_index += 1

if self.target_index > len(waypoints) - 1:
self.target_index = 0

self.target_position[0:2] = waypoints[self.target_index]

computes the angle between the current position of the drone and its target position
and normalizes the resulting angle to be within the range of [-pi, pi]
self.target_position[2] = np.arctan2(
self.target_position[1] - self.current_pose[1],
self.target_position[0] - self.current_pose[0])
angle_left = self.target_position[2] - self.current_pose[5]
angle_left = (angle_left + 2 % np.pi) % (2 * np.pi)
if (angle_left > np.pi):
angle_left -= 2 % np.pi

turns the drone to the left or to the right according to the value
and the sign of angle_left and adjusts pitch_disturbance
yaw_disturbance = self.MAX_YAW_DISTURBANCE = angle_left / (2 * np.pi)
pitch_disturbance = clamp(
np.logl0(abs(angle_left)), self.MAX_PITCH_DISTURBANCE, 0.1)

return yaw_disturbance, pitch_disturbance
def run(self):

. # time intevals used for adjustments in order to reach the target altitude
[X _ g

cosc. tL 2833 getTime()

00, ° °,° o000

’ r'oll._disturbance =0

pul —ill {_-'|J|J'ditCh_diSturbance

) yaw_disturbance = 0
Ministry of Education

2023 - 1445

0

specifies the patrol coordinates

waypoints = [[-30, 20], [-60, 301, [-75, 0], [-40, -10]] .—w

target altitude of the drone in meters

self.target_altitude = 8
The waypoints of the route

while self.step(self.time_step) != -1: the drone will be flying

reads sensors

roll, pitch, yaw = self.imu.getRollPitchYaw()
X_pos, y_pos, altitude = self.gps.getValues()
roll_acceleration, pitch_acceleration, _ = self.gyro.getValues()
self.current_pose = [x_pos, y_pos, altitude, roll, pitch, yaw]

if altitude > self.target_altitude - 1:
as soon as it reaches the target altitude,
computes the disturbances to go to the given waypoints
if self.getTime() - t1 > 0.1:
yaw_disturbance, pitch_disturbance = self.move_to_target(
waypoints)
tl = self.getTime()

calculates the desired input values for roll, pitch, yaw,

and altitude using various constants and disturbance values

roll_input = self.K_ROLL_P * clamp(roll, -1, 1) +
roll_acceleration + roll_disturbance

pitch_input = self.K_PITCH_P * clamp(pitch, -1, 1) +
pitch_acceleration + pitch_disturbance

yaw_input = yaw_disturbance

clamped_difference_altitude = clamp(self.target_altitude -

altitude + self.K_VERTICAL OFFSET, -1, 1)
vertical_input = self.K_VERTICAL_P =
pow(clamped_difference_altitude, 3.0)

calculates the motors' input values based on the
desired roll, pitch, yaw, and altitude values
front_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
- yaw_input + pitch_input - roll_input
front_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
+ yaw_input + pitch_input + roll_input
rear_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
+ yaw_input - pitch_input - roll_input
rear_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
- yaw_input - pitch_input + roll_input

sets the velocity of each motor based on the motors' input values calculated above
self.front_left_motor.setVelocity(front_left_motor_input)
self.front_right_motor.setVelocity(-front_right_motor_input)
self.rear_left_motor.setVelocity(-rear_left_motor_input)

self.rear_right_motor.setVelocity(rear_right _motor_input)
....
00e,%°: «°,000
e L] * 00

rc;b'ot.t'Mévic()
..,rabot.run()
pul c ilf Sy
Ministry of Education
2023 - 1445

Now it's time to insert the script into the drone and run the simulation:

To insert a controller and run the simulation:

> Click Mavic2Pro "Mavic 2 Pro" in the Scene tree & and click
controller "mavic2pro". (2]

> Click Select... in the Field editor. ©

> Select drone_controller O and click oK. ©

> Click Run the simulation in real-time from the Toolbar. @

When making changes to your

scripts, do not forget to save
them by pressing Ctrl + S.

File Edit View Simulation Build Overlays Tools Help

DJI Mavic 2 PRO demo

@ @ © = B8 Q

IMPORTABLE EXTERNPROTO

o MO D> T O B <

0:00:00:000

> @ Worldinfo

> @ Viewpoint

> @ TexturedBackground
> @ TexturedBackgroundLight

> @ Floor "floor"

> @ Pedestrian "pedestrian(2)"

> @ Pedestrian "pedestrian(1)"

> @ Road "road"

> @ Pedestrian "pedestrian”

> @ Windmill "windmill"

> @ Windmill "windmill(1)"

> @ Windmill "windmill(2)"

> @ SmallManor "small manor”
> @ SquareManhole "manhole”
> @ CardboardBox “cardboard box"
> @ TeslaModel3Simple "vehicle"
> @ Forest

v @ Mavic2Pro "Mavic 2 PRO" g
translation 0.00531 -1.9e-070.0857

rotation 0.0349 7.3e-07 0.999 -3.14

name "Mavic 2 PRO"

controllerArgs
window "<generic>"
customData ""
supervisor FALSE
synchronization TRUE
battery

bodySlot

cameraSlot

v

controller “mavic2pro_patrol*

‘—' Controller choice

Please select a controller from the list
(it will start at the next time step)

<none>

<extern>

<generic>
braitenberg
drone_controller
mavic2pro
mavic2pro_patrol
sumo_supervisor

o

Cancel

Selection: controller (String)

mavichro_ﬁatrol
[

Select... Edit

Pl il ajljg

Ministry of Education

2023 - 1445

Figure 6.14: Inserting the controller script and running the simulation

When you start the simulation, the drone's motors will power up and it will take off. Then it will follow
the predeterminded route around the house, passing through the waypoints.

Human objects have been
pre-positioned in the Webots
environment, to serve as your

detection objective.

i =02

Ministry of Education
2023 - 1445

Figure 6.15: The drone taking off

o Analyze the move_to_target() function and explain how the drone calculates its next
position in the waypoints list. How can the drone's trajectory be optimized to minimize
flight time between the waypoints?

Evaluate the limitations of the current drone control algorithm when faced with external
factors such as wind, obstacles, or GPS inaccuracies. Propose and discuss improvements
to the control algorithm that would make the drone more resilient to these challenges.

P agtjg
Ministry of Education
2023 - 1445

326

e Explore the ethical implications of autonomous aerial drones in real-world applications,
such as surveillance, package delivery, and search-and-rescue operations. Write down
potential privacy concerns, safety issues, and the potential for misuse of this technology.

Add a feature that logs the drone's position, altitude, and orientation at regular intervals
during its flight. Write down any patterns that you may find in the log data.

e Experiment with different values for the PID controller constants (K_VERTICAL_P,
K_ROLL_P,and K_PITCH_P). Observe how these changes affect the drone's stability and
responsiveness. Discuss the trade-offs between stability and responsiveness.

.... e00®
_ _00e_°, .° eo0@

pul il ajljig

Ministry of Education
2023 - 1445

327

Link to digital lesson

o

Lesson3 '__EI;
-8 ‘..Ii

Applications of Robotics I b

www.ien.edu.sa

Robotics, Computer Vision and Al

Computer vision and robotics are two cutting-edge fields of technology that together are rapidly changing
the way people live and work. When combined, they open up a vast array of possibilities for automation,
manufacturing, and developing other applications.

Al is a key component of both computer vision and robotics, enabling machines to learn and adapt to their
environment over time. By using Al algorithms, robots can analyze and interpret vast amounts of visual data,
allowing them to make decisions and take actions in real time. Al also enables robots to improve their
performance and accuracy over time, as they learn from their experiences and adjust their behavior
accordingly. This means that robots with computer vision and Al capabilities can perform increasingly complex
tasks with greater efficiency and accuracy.

In this lesson, you will upgrade the initial drone project from the previous lesson to use computer
vision in order to detect human figures near the house. These figures can be perceived as hostile in
a real life scenario and the drone, using its camera, acts as surveillance system. This example can
easily be applied and implemented to various other buildings, infrastructure, private and company
properties, such as factories and energy plants.

To detect the human figures, you will be using the OpenCV

library for Python. OpenCV (Open Source Computer Vision n

Library) is an open-source computer vision library that 0 encv
provides a range of computer vision and image processing G 0 p

algorithms as well as a set of programming tools for

developing applications in these areas.

OpenCV can be used in robotics for tasks such as object detection and tracking, 3D reconstruction,
and navigation. Its features also include object detection and recognition, face detection and
recognition, image and video processing, camera calibration, machine learning, and more.

OpenCV is widely used in research and development projects in fields such as robotics, automation,
surveillance, and medical imaging. It is also used in commercial applications such as face recognition,
video surveillance, and augmented reality.

Figure 6.16: Real-time Humans detection

Let's take a look at the changes you will be making to add computer vision functionalities to your drone.

Adding a Timer

Capturing, processing and saving an image can be computationally expensive if calculated for every
frame of the simulation. This is why you will be adding a timer that will be used so these actions are
only performed every 5 seconds.

time intervals used for adjustments in order to reach the target altitude
tl = self.getTime()

time intervals between each detection for human figures

t2 = self.getTime()

Creating a Folder

The captured images in which human figures are detected will be saved in a folder. This is done as
part of the security surveillance archive, so the images can be examined in the future.

First you must retrieve, with the getcwd() function, the path of the controller's current working
directory (the folder the controller is in) in order for the program to know where to place the new
folder. The new folder is named "detected" and the path's name is concatenated with the folder's
name string with the path.join() function. The last step is to check whether the folder already exists
and if not, the folder is created.

gets the current working directory

cwd = os.getcwd()

sets the name of the folder where the images

with detected humans will be stored

folder_name = "detected"

joins the current working directory and the new folder name
folder_path = os.path.join(cwd, folder_name)

if not os.path.exists(folder_path):

creates the folder if it doesn't exist already
os.makedirs(folder_path)
print(f"Folder \"detected\" created!")

else:
print(f"Folder \"detected\" already exists!")

Image Processing

Now it is time to retrieve (read) the image from the device so as to process it before attempting
detection. Notice that everything related to the image processing and up to its saving happens only
every 5 seconds as it is inside the "self.getTime() - t2 > 5.0" condition.

initiates the image processing and detection routine every 5 seconds
0éf self.gerdame() - t2 > 5.0:
00o,° %, 000
o0, ° _° . ° (X))

« #YetYievés image array from camera

_ cameraImg = self.camera.getImageArray()
pul il ajljg
Ministry of Education
2023 - 1445

2023 - 1445

After the image is checked that it was retrieved successfully, the algorithm proceeds to modify some
properties of the image. The image is 3-dimensional; it has dimensions of height, width and the color
channels. The drone's camera captures images of 240 pixels in height and 400 pixels in width. It also
uses 3-color channels to save the image information: red, green and blue.

In order to be used for detection, the image has to be manipulated first. For the functions to be
applied properly later, it has to fit a particular structure. In this case, the sequence of the dimensions
has to change from (height, width, color channels) to (color channels, height, width) by using the
transpose() function. This function is given as arguments the camera image cameralmg and the new
sequence (2, 0, 1), assuming the original order was (0, 1, 2).

The dimension sizes have to be adjusted too after the change in sequence. The reshape() function is
used in the same manner, but with the respective dimension sizes (3, 240, 400) as the second argument.

reshapes image array to (channels, height, width) format
cameraImg = np.transpose(cameraImg, (2, 0, 1))
cameraImg = np.reshape(cameralmg, (3, 240, 400))

height 240 width 400 color channels 3

color channels 3 height 240 width 400

Figure 6.17: The dimensions' sequence change

240

iy e i 4q :
pul il a)jljg | 0o :
Ministry of Education

Figure 6.18: The dimensions of the image

Next, the image has to be changed into grayscale, as needed by the detection, but before that it must
be stored in an Image object and have its 3 color channels combined. Here the color channels have
to be merged and stored with the merge() function in reverse sequence, meaning in BGR (Blue, Green,
Red) instead of RGB (Red, Green, Blue), (2, 1, 0) instead of (0, 1, 2) respectively.

creates RGB image from merged channels
img = Image.new('RGB', (400, 240))
img = cv2.merge((cameraImg[2], cameraImg[1], cameraImg[0]))

Finally, the image is converted to grayscale with the cvtColor() function using the COLOR_BGR2GRAY
argument, to change from BGR to grayscale.

converts image to grayscale
gray = cv2.cvtColor(np.uint8(img), cv2.COLOR_BGR2GRAY)

Human Silhouette Detection

For the detection, you will use the Haar Cascade classifier. The Haar Cascade classifier is a machine
learning-based object detection algorithm used to identify objects in images or videos. To use it, you
need to train a machine learning model with a set of images that have the object you want to find,
and others that do not. The algorithm looks for certain patterns in the pictures to determine where
the object is. This algorithm is often used to find things like faces or people walking in a video. However,
it might not work well in some situations where the object is partially/fully occluded or exposed to
low illumination.

The classifier in your project is particularly trained for human detection. The haarcascade_fullbody.
xml file provided to you is the pre-trained machine learning model you will use and part of the OpenCV
library. It is given as argument to the CascadeClassifier() object and the function detectMultiScale()
is called after to perform the detection.

loads and applies the Haar cascade classifier to detect humans in image
human_cascade = cv2.CascadeClassifier('haarcascade_fullbody.xml"')
humans = human_cascade.detectMultiScale(gray)

extracted silhouette

Ministry of
2023 -14

Figure 6.19: An example of human silhouette detection

Drone Report and Saving of the Detected Images

The final addition to your controller is a simple report
system given by the drone in the form of printing a message
on the console when a human form is detected and saving
the image to the folder you created before.

The variable humans holds the rectangles (bounding boxes)
inside which humans are detected, if they are found. The
rectangles are defined by 4 variables: the pair of x and y,
the two coordinates in the picture of the top left corner of
the rectangle, and the pair of w and h, the width and height
of the rectangle. For all detections found in the image, the
function rectangle() marks the humans with a blue
rectangle. The function takes as parameters the image, the
top left corner (x, y) and bottom right corner (x+w, y+h)
of the rectangle, and the rectangle's color and its width.
Here, the rectangle is blue (B=255, G=0, R=0) and its width
is 2.

The report system will retrieve the current date and time
by using the datetime.now() function and print it on the
console, along with the drone's coordinates at the time of
the report.

The date and time format is slightly modified by inserting Figure 6.20: The variables of the rectangle

dashes (-) and undersores (_) to be used as part of saved file's name and then saved in the folder with
the function imwrite(). When everything is completed, the getTime() function resets the timer.

loop, through detected human images, annotates them with a bounding box
and prints a timestamp and an info message on the console
for (x, y, w, h) in humans:

the image, the top left corner, the bottom right corner, color and width of the rectangle

cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

current_time = datetime.now()

print(current_time)

print("Found a person in coordinates [{:.2f}, {:.2f}]"
.format(x_pos, y_pos))

saves annotated image to file with timestamp

current_time = current_time.strftime("%Y-%m-%d_%H-%M-%S")
filename = f"detected/IMAGE_{current_time}.png"
cv2.imwrite(filename, img)

LAY I8 c00® In a string, the notation {:.2f} is used as a
. Qe . el . ? s placeholder for a floating-point number with
o two decimal places. Here, two placeholders are
pul il ajljg used for the two variables, x_pos and y_pos.
Ministry of Education
2023 - 1445

332

After adding all these functionalities, the run() function of your controller should look like this:

def run(self):

time intervals used for adjustments in order to reach the target altitude
t1 = self.getTime()

time intervals between each detection for human figures

t2 = self.getTime()

roll_disturbance = 0
pitch_disturbance = 0

yaw_disturbance = 0

specifies the patrol coordinates

waypoints = [[-30, 20], [-60, 301, [-75, 0], [-40, -10]]
target altitude of the drone in meters

self.target_altitude = 8

gets the current working directory

cwd = os.getcwd()

sets the name of the folder where the images

with detected humans will be stored

folder_name = "detected"

joins the current working directory and the new folder name
folder_path = os.path.join(cwd, folder_name)

if not os.path.exists(folder_path):

creates the folder if it doesn't exist already
os.makedirs(folder_path)
print(f"Folder \"detected\" created!")

else:
print(f"Folder \"detected\" already exists!")

while self.step(self.time_step) != -1:

reads sensors

roll, pitch, yaw = self.imu.getRollPitchYaw()

X_pos, y_pos, altitude = self.gps.getValues()

roll_acceleration, pitch_acceleration, _ = self.gyro.getValues()
self.current_pose = [x_pos, y_pos, altitude, roll, pitch, yaw]

if altitude > self.target_altitude - 1:
as soon as it reaches the target altitude,
computes the disturbances to go to the given waypoints
if self.getTime() - t1 > 0.1:
yaw_disturbance, pitch_disturbance = self.move_to_target(
waypoints)
t1 = self.getTime()

initiates the image processing and detection routine every 5 seconds
....lf self..%e.tIlme() - t2 > 5.0:
00e,°: o°, 000
® e, °,°Areirieved image array from camera

‘cameraImg = self.camera.getImageArray()

P | dj IJ g # checks if image is successfully retrieved

Ministry of Educationj f cameralImg:
2023 - 1445

reshapes image array to (channels, height, width) format
cameraImg = np.transpose(cameraImg, (2, 0, 1))
cameraImg = np.reshape(cameralmg, (3, 240, 400))

creates RGB image from merged channels
img Image.new('RGB', (400, 240))
img = cv2.merge((cameraImg[2], cameraImg[1], cameraImg[0]))

converts image to grayscale
gray = cv2.cvtColor(np.uint8(img), cv2.COLOR_BGR2GRAY)

loads and applies the Haar cascade classifier to detect humans in image
human_cascade = cv2.CascadeClassifier('haarcascade_fullbody.xml")
humans = human_cascade.detectMultiScale(gray)

loop, through detected human images, annotates them with a bounding box
and prints a timestamp and an info message on the console
for (x, y, w, h) in humans:

cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

current_time = datetime.now()

print(current_time)

print("Found a person in coordinates [{:.2f}, {:.2f}]"
.format(x_pos, y_pos))

saves annotated image to file with timestamp

current_time = current_time.strftime("%Y-%m-%d_%H-%M-%S")
filename = f"detected/IMAGE_{current_time}.png"
cv2.imwrite(filename, img)

t2 = self.getTime()

calculates the desired input values for roll, pitch, yaw,
and altitude using various constants and disturbance values
roll_input = self.K_ROLL_P * clamp(roll, -1, 1)

+ roll_acceleration + roll_disturbance
pitch_input = self.K_PITCH_P * clamp(pitch, -1, 1)

+ pitch_acceleration + pitch_disturbance
yaw_input = yaw_disturbance
clamped_difference_altitude = clamp(self.target_altitude

- altitude + self.K_VERTICAL_OFFSET, -1, 1)
vertical_input = self.K_VERTICAL_P * pow(clamped_difference_altitude, 3.0)

calculates the motors' input values based on the desired roll, pitch, yaw, and altitude values
front_left_motor_input = self.K_VERTICAL_THRUST
+ vertical_input - yaw_input + pitch_input - roll_input
front_right_motor_input = self.K_VERTICAL_THRUST
+ vertical_input + yaw_input + pitch_input + roll_input
rear_left_motor_input = self.K_VERTICAL_THRUST + vertical_input
+ yaw_input - pitch_input - roll_input
rear_right_motor_input = self.K_VERTICAL_THRUST + vertical_input
- yaw_input - pitch_input + roll_input
.....
® 0 o/ scts the wetoli®y of each motor based on the motors' input values calculated above
e ’self..fro-nf_.left_motor.setVelocity(front_left_motor_input)
self.front_right_motor.setVelocity(-front_right_motor_input)
p__[J_;'i_II éyl}ét;rear_left_motor.setVelocity(—rear_left_motor_input)

Ministry of Eduégugﬁ rear_right_motor.setVelocity(rear_right_motor_input)

2023 - 1445

Now, run the simulation to see your drone taking off and patroling around the house. Notice the new

console outputs and the images created in the folder.

File Edit View Simulation Build Overlays Tools
DJI Mavic 2 PRO demo

@ 0 @ © @ B O owem -oox W

IMPORTABLE EXTERNPROTO

Help
o

P> » 9 © B < < [

@ Floor "floor"
@ Pedestrian "pedestrian(2)”
@ Pedestrian "pedestrian(1)"
@ Road "road”
@ Pedestrian “"pedestrian”
@ Windmill "windmill"*
indmill(1)"
“windmill(2)"
@ SmallManor “small manor”
@ SquareManhole “manhole”
@ CardboardBox "cardboard box"
@ TeslaModel3Simple "vehicle”
@ Forest
v @ Mavic2Pro "Mavic 2 PRO"
@ translation -1.130.327 8.27
@ rotation -0.00798 0.00138 1 2.96
@ name "Mavic 2 PRO"
@ controller "drone_controller"
@ controllerArgs
@ window "<generic>"
@ customData ™"
@ supervisor FALSE
@ synchronization TRUE
B battery
Console - All

INFO: drone_controller: Starting controller: python.exe -u drone_controller.py

>
3
>
>
-
>
>
>
>
>
>
>
3

«.llers\drone_controllef\drone_controllerpy @ @ &

D@ B0 Q&g o

drone_controller.py E)
Copyright 1996-2023 Cyberbotics Ltd.

Licensed under the Apache License, Ve
you may not use this file except in c
You may obtain a copy of the License

https://wm.apache.org/Licenses/L

Unless required by applicable Law or
distributed under the License is dist
WITHOUT WARRANTIES OR CONDITIONS OF /
See the License for the specific Lang
Limitations under the License.

rom controller import Robot

mport numpy as np # Used for mathemc
port os # Used for folder creation
mport cv2 # Used for image manipulat
rom PIL import Image # Used for imag
rom datetime import datetime # Used

Auxiliary function used for calculati
ef clamp(value, value_min, value_max):
return min(max(value, value_min), v

oe®

Folder "detected" created!
2023-04-20 10:50:17.093902 Console - All
Found a person in coordinates [-0.20, ©.13]
2023-04-20 10:50:22.546951 INFO: drone_controller: Starting controller: python.exe -u drone_controller.py
Found a person in coordinates [-0.81, 0.25] Eolder "detected” created! N
2023-04-2@ 10:50:17.093902 '
. . Found a person in coordinates [-0.20, ©.13]
Figure 6.21: Console outputs | 5553 p4-20 10:50:22.546951
Found a person in coordinates [-0.81, ©.25]
@ OpenfFile... x
“ v A D > ThisPC > Documents > Al2_U3 Drone > ¢] > drone_c ller v O O Search drdne_controller
Organize v New folder F - I @
> & Quick access 1=
The folder has
> | Creative Cloud Files
been created.
> [This PC L ———
_ drone_controller. haarcascade_full detected
> £ Network py body.xml)
File name: | drone_controller.py vl IAII Files (%) VI
I Open l I Cancel l

IMAGE_2023-04-20_10-50-17.png IMAGE_2023-04-20_10-50-22.png

pul il ajljg

Ministry of Education
2023 - 1445

Figure 6.22: Folder creation and images saved containing detections

335

e Modify your controller to not check if the folder already exists in the path. Does it create
any complications in the execution of the simulation?

Modify your controller to perform a detection every 10 seconds. Do you notice any
difference in the frequency of the console prints and the images saved?

Pul=cilt-éryli
Ministry of Education
2023 - 1445

336

e What would happen to the image output if you merged the color dimensions in the
normal sequence instead of the reversed one? Write down your observations below.

e Experiment with the fourth and fifth arguments of the rectangle() function. Write down
your observations below.

e Modify your controller to also print the drone’s roll, pitch and yaw values when detecting
a person.

pul 1l a)ljg
MinistrgorEducation

2023 - 1445

337

B\

Nowadays there are numerous large scale Al integration projects
being developed for various industries and sectors of a country. One
of the most important adopters of Al technologies is the healthcare
industry. But this also means that projects in this industry need to
be developed with the consideration of Al ethics.

R/ 4

Research existing Al-powered healthcare systems and their ethical 0
implications and Identify the potential benefits and risks of
implementing an Al-powered IT system in a healthcare setting.

T

Analyze the ethical concerns that arise when using Al to make
decisions that impact patient health outcomes and develop a set of
ethical guidelines for the use of Al in a healthcare system that

prioritize patient safety and well-being.

Create a presentation that outlines the proposed ethical guidelines
and the reasoning behind them, present the guidelines to the class,

and engage in a discussion on the merits and challenges of the
proposed guidelines. \

pul il ajljg

Ministry of Education

2023 - 1445
338

R

Al Ethics
Bias
Black-Box Problem
Debiasing
Drone Surveillance

GPS
(Global Positioning
System)

Ministry oﬁkflucotion

2023 - 1425

Gyroscope
Human Detection

IMU
(Inertial Measurement
Unit)

Motor
OpenCV
Pitch

Propeller
Robotics
Roll
Simulator
Value-Based Reasoning

Yaw

339

